4 research outputs found

    Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    Get PDF
    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds involving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure elements. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a nonfunctional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajectories. The training data describes H-bond occurrences at successive times along these trajectories by the values of attributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can predict H-bond stability quite well. In particular, their performance is roughly 20 % better than that of models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a give

    A New Monte Carlo Filtering Method for the Diagnosis of Mission-Critical Failures

    Get PDF
    Testing large-scale systems is expensive in terms of both time and money. Running simulations early in the process is a proven method of finding the design faults likely to lead to critical system failures, but determining the exact cause of those errors is still time-consuming and requires access to a limited number of domain experts. It is desirable to find an automated method that explores the large number of combinations and is able to isolate likely fault points. Treatment learning is a subset of minimal contrast-set learning that, rather than classifying data into distinct categories, focuses on finding the unique factors that lead to a particular classification. That is, they find the smallest change to the data that causes the largest change in the class distribution. These treatments, when imposed, are able to identify the settings most likely to cause a mission-critical failure. This research benchmarks two treatment learning methods against standard optimization techniques across three complex systems, including two projects from the Robust Software Engineering (RSE) group within the National Aeronautics and Space Administration (NASA) Ames Research Center. It is shown that these treatment learners are both faster than traditional methods and show demonstrably better results

    Automatically Finding the Control Variables for Complex System Behavior

    Get PDF
    Testing large-scale systems is expensive in terms of both time and money. Running simulations early in the process is a proven method of finding the design faults likely to lead to critical system failures, but determining the exact cause of those errors is still time-consuming and requires access to a limited number of domain experts. It is desirable to find an automated method that explores the large number of combinations and is able to isolate likely fault points. Treatment learning is a subset of minimal contrast-set learning that, rather than classifying data into distinct categories, focuses on finding the unique factors that lead to a particular classification. That is, they find the smallest change to the data that causes the largest change in the class distribution. These treatments, when imposed, are able to identify the factors most likely to cause a mission-critical failure. The goal of this research is to comparatively assess treatment learning against state-of-the-art numerical optimization techniques. To achieve this, this paper benchmarks the TAR3 and TAR4.1 treatment learners against optimization techniques across three complex systems, including two projects from the Robust Software Engineering (RSE) group within the National Aeronautics and Space Administration (NASA) Ames Research Center. The results clearly show that treatment learning is both faster and more accurate than traditional optimization methods
    corecore