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Abstract. Testing large-scale systems is expensive in terms of both time and money. Running
simulations early in the process is a proven method of finding the design faults likely to lead to
critical system failures, but determining the exact cause of those errors is still time-consuming and
requires access to a limited number of domain experts. It is desirable to find an automated method
that explores the large number of combinations and is able to isolate likely fault points.

Treatment learning is a subset of minimal contrast-set learning that, rather than classifying data
into distinct categories, focuses on finding the unique factors that lead to a particular classification.
That is, they find the smallest change to the data that causes the largest change in the class dis-
tribution. These treatments, when imposed, are able to identify the settings most likely to cause a
mission-critical failure. This research benchmarks two treatment learning methods against standard
optimization techniques across three complex systems, including two projects from the Robust Soft-
ware Engineering (RSE) group within the National Aeronautics and Space Administration (NASA)
Ames Research Center. It is shown that these treatment learners are both faster than traditional
methods and show demonstrably better results.
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1. Introduction. Large-scale industrial systems, often containing both hard-
ware and software components, are expensive to design and expensive to build. The
cost of failures decreases exponentially the earlier that they are discovered in the de-
sign process [8]. Modeling and simulation of these large-scale systems has become
increasingly popular over the past decade as a proven method of finding and elimi-
nating potentially costly fault points before a complete prototype is constructed.

However, simply simulating the behavior of a system is not enough. Knowing
that something fails in simulation is not the same as knowing why it failed. No matter
what domains a system primarily falls into, there are a limited number of experts and
their time is even further limited. It is cost-prohibitive to ask those experts to pore
over gigabytes of simulation settings and outcomes. Therefore, it is desirable to find
methods of eliminating that bottleneck: methods that either reduce the amount of
data that experts need to examine or methods that can identify the most obvious
faults automatically.

The field of data mining uses techniques from statistics and artificial intelligence
to find small, yet relevant, patterns in large sets of data. The standard practice in this
field is to classify, to look at an object and make a guess at what category it belongs
to. As new evidence is examined, these guesses are refined and improved. When
testing a complex hardware system, you might try to classify by guessing whether
that particular simulation succeeded or failed.

Treatment learning [27] focuses on a different goal. It does not try to determine
what is, it tries to determine what could be. Classifiers take past evidence and use
that to categorize new data. Treatment learners work in reverse. They take the
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classification of a piece of evidence and try to identify the factors that led to that
classification. Rather than deciding whether a simulation succeeded or failed, you
want to determine why it failed. These learners take those factors and produce a
minimal treatment—a set of rules that, if imposed, will change the expected class
distribution. By only accepting examples that follow the rules set in the treatment,
you improve the odds that these examples will fall within your target class.

Ultimately, classifiers will strive to increase the representational accuracy. They
will stack any evidence and impose any rules in order to accurately guess what cate-
gory a new example belongs to. If the target is complex, the resulting tree will also
be complex. Treatment learning focuses on minimality: what is the smallest rule that
can be imposed to cause the largest change.

Stated formally, treatment learning is a form of minimal contrast-set association
rule learning. The treatments contrast undesirable situations with the desirable ones
(represented by weighted classes). Treatment learning, however, is different from
other contrast-set methods like STUCCO [6] because of its focus on minimal theories.
Conceptually, a treatment learner explores all possible subsets of the attribute ranges
looking for good treatments. Such a search is infeasible in practice so the art of
treatment learning lies in quickly pruning unpromising attribute ranges.

This study utilizes the TAR3 [18–20] and TAR4.1 treatment learners, which op-
erate similarly but score treatments in radically different manners. In order to assess
the effectiveness of these learners, they must be benchmarked against standard meth-
ods. Fundamentally, both of the treatment learning algorithms are attempting to
maximize a set mathematical objective function. Therefore, they can be compared
to standard optimization algorithms. Specifically, this research tests the dedicated
treatment learners against Simulated Annealing [22,28] and Quasi-Newton [17] algo-
rithms using similar objective functions. The results of this study clearly demonstrate
that:

• Treatment learners are orders of magnitude faster than traditional optimiza-
tion algorithms.

• The treatments produced by the TAR3 learner are more precise than those
from standard techniques.

• The treatments produced by the TAR4.1 learner demonstrate a higher recall,
while maintaining a lower false positive rate, than the standard techniques.

2. Practical Implications. NASA often uses high-fidelity physics simulations
early in the design process to verify that flight software will meet the mission re-
quirements. The possible inputs to the simulation can be design parameters like lift
coefficients and center of gravity positions; they may also be environmental parame-
ters like the average magnitudes and the standard deviations of wind gusts; they may
be flags that indicate the failure of a hardware component at some critical time; or
they may be any of a plethora of other parameters that specify the bounds on the
acceptable flight envelope. Errors in software design are much less expensive to fix
early in the design process, but the design space early in the process is very large. To
explore all of the parameter combinations exhaustively is infeasible. However, a very
large sampling of the configurations increases the chance that a design error will be
caught early, and it allows for the possibility of identifying trends or anomalies within
the data.

Manual inspection of these large datasets requires domain expertise, and is likely
to focus only on absolute compliance with requirements. For systems this complex
many different kinds of failures are possible. For aero-braking scenarios, for instance,
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representative failures include skipping out of the Earth’s atmosphere instead of re-
entering and parachutes failing to open. One common heuristic for these analyses is
to push the bounds of the flight envelope until between 10 and 30 percent of all of the
attempted cases have failed in one way or another—this kind of analysis allows you
to find the margins to failure within the system. In the probable event that failures
are identified this early in the process, it is a time-consuming task to determine the
cause of those failures; the failures may be associated with environmental factors (e.g.
strong sustained wind gusts overwhelm the control system), they may be associated
with software errors in the unit under test (e.g. the gains on the control system
are set incorrectly for the nominal case), or they may be associated with software
errors in the simulation used to perform the test (e.g. a legacy environmental model
in the simulation uses different units than expected). A likely first step towards
determining the cause of any failures is to find the input parameters that the failures
are associated with. Even this first step is non-trivial—there are usually hundreds
of input parameters associated with each dataset, and those parameters were chosen
from thousands of input parameters to the actual simulation.

Two of the datasets used for this paper were generated using the Advanced NASA
Technology ARchitecture for Exploration Studies (ANTARES) [1] simulation tool.
The two datasets represent the Monte Carlo runs done for a re-entry study and for
a launch abort study. An example set of trajectories for one of the studies is shown
in Figure 2.1. The collected variables include environmental parameters, internal
simulation values (like random seeds), and spacecraft state specifications—including
both continuous and modal information. Both of these datasets had many different
possible failure types. The third dataset referenced here was collected during a bicycle
ride. The data comes from a bicycle power meter that calculates the power output
and collects the following data at 60 Hz: distance traveled, heart rate, speed, wind
speed, cadence, elevation, hill slope, and temperature. The power calculation for this
particular meter could be very noisy and there was an open question about what
measured parameters were most associated with this noise.

To decrease the amount of time necessary to isolate suspicious inputs, the Robust
Software Engineering (RSE) group at Ames utilizes a multi-step process [18, 19, 35]
that includes targeting tests with n-factor combinatorial test vectors and sorting the
data into clusters with an unsupervised EM algorithm [15] in order to find anomalies
and to aid visualization. This tool is known as the Margins Analysis. A key component
in the Margins Analysis is the use of a treatment learner to tie behaviors in the dataset
to their associated variables and ranges. The treatment learner is used many times
throughout the analysis process. It first is used to find variables associated with the
overall performance; a penalty is built for each dataset that accounts for all failures
and often includes some continuous metric like a target miss distance. The treatment
learner is then used to find the parameters associated with each individual type of
failure; in practice there are 10’s to 100’s of different possible failure types identified
for each dataset. Finally, the treatment learner is used within a loop to discover the
variables associated with each unsupervised cluster. This analysis aids the researcher
in understanding the underlying structure of the dataset and can uncover structure
in the dataset that leads to new requirements.

3. Related Work. The work being performed here—choosing the inputs and
ranges most likely to lead to some output—can be thought of as a type of sensitivity
analysis known as Monte Carlo Filtering [32]. The heavy lifting in most sensitivity
analyses of this type is currently being done either with straight linear correlation
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Fig. 2.1. Visualization of trajectory data.

between the output class and the inputs, a method known as regional sensitivity
analysis (RSA) which relies heavily on standard statistical tests such as the Smirnov
two-sample test, or it is being done using some sort of regression analysis in which
the relationships between the inputs and the outputs are derived from the data [4,
29, 34]. Linear correlations fail in models which are not smooth. For large models,
RSA tends to have a very low success rate [39]. Regression analysis builds some
sort of polynomial relationship by finding the correlation coefficients between the
inputs and outputs. These correlation coefficients are then used to solve the original
question—which inputs and their ranges most affect the output—by looking at the
magnitudes of the correlation coefficients across the entire range. Regression analysis
is computationally expensive, and tends to be limited to relatively small numbers of
theoretically independent inputs, and also tends to assume that relationships between
the inputs and outputs are smooth [29,34].

The types of problems being solved in this paper are non-smooth and of high
dimensionality. To overcome the complications involved in finding the correlation
coefficients for this sort of problem, we choose in practice to ignore the correlation
coefficients altogether and use machine learning techniques that sample the space and
solve the original question directly. One example of another existing sensitivity anal-
ysis that uses machine learning is the identification of tool faults in the semiconductor
industry. Intel uses a technique similar in spirit to the RSE analysis to find spatial
fault patterns on silicon wafers [21]. While the overall goal and appearance of Intel’s
method is comparable to RSE’s, the details for every step of the analysis are very dif-
ferent and they do not use treatment learning for their analysis [13, 40, 42]. The fact
that parametric testing is being used across widespread applications demonstrates
its promise; the massive divergence in the individual components of the technique is
evidence that there is still significant research to be done to streamline its use for
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LSTAT <= 14.98
| RM <= 6.54
| | DIS <= 1.6102
| | | DIS <= 1.358: high (4.0/1.0)
| | | DIS > 1.358
| | | | LSTAT <= 12.67: low (2.0)
| | | | LSTAT > 12.67: medlow (2.0)
| | DIS > 1.6102
| | | TAX <= 222
| | | | CRIM <= 0.06888: medhigh (3.0)
| | | | CRIM > 0.06888: medlow (4.0)
| | | TAX > 222: medlow (199.0/9.0)
| RM > 6.54
| | RM <= 7.42
| | | DIS <= 1.8773: high (4.0/1.0)
| | | DIS > 1.8773
| | | | PTRATIO <= 19.2
| | | | | RM <= 7.007
| | | | | | LSTAT <= 5.39
| | | | | | | INDUS <= 6.41: medhigh (25.0/1.0)
| | | | | | | INDUS > 6.41: medlow (2.0)
| | | | | | LSTAT > 5.39
| | | | | | | DIS <= 3.9454
| | | | | | | | RM <= 6.861
| | | | | | | | | INDUS <= 7.87: medhigh (9.0)
| | | | | | | | | INDUS > 7.87: medlow (3.0/1.0)
| | | | | | | | RM > 6.861: medlow (3.0)
| | | | | | | DIS > 3.9454: medlow (14.0/1.0)
| | | | | RM > 7.007: medhigh (29.0)
| | | | PTRATIO > 19.2: medlow (11.0/1.0)
| | RM > 7.42
| | | PTRATIO <= 17.9: high (25.0/1.0)
| | | PTRATIO > 17.9
| | | | AGE <= 43.7: high (2.0)
| | | | AGE > 43.7: medhigh (3.0/1.0)
LSTAT > 14.98
| CRIM <= 0.63796
| | INDUS <= 25.65
| | | DIS <= 1.7984: low (5.0/1.0)
| | | DIS > 1.7984: medlow (37.0/2.0)
| | INDUS > 25.65: low (4.0)
| CRIM > 0.63796
| | RAD <= 4: low (13.0)
| | RAD > 4
| | | NOX <= 0.655
| | | | AGE <= 97.5
| | | | | DIS <= 2.2222: low (8.0)
| | | | | DIS > 2.2222: medlow (6.0/1.0)
| | | | AGE > 97.5: medlow (5.0)
| | | NOX > 0.655
| | | | CHAS = 0: low (80.0/8.0)
| | | | CHAS = 1
| | | | | DIS <= 1.7455: low (2.0)
| | | | | DIS > 1.7455: medlow (2.0)

Fig. 4.1. A decision tree generated by the WEKA’s j48 classifier

real-world data.

4. Treatment Learning Examples and Techniques.

4.1. Example Output. One reason to recommend treatment learning is that
its theories are succinct and easy to understand. Figure 4.1 and Figure 4.2 show the
output of a classifier (the j48 tree learner from the WEKA1 toolkit) as contrasted
with a treatment learner (TAR3, as defined in a following section) on housing data

1http://www.cs.waikato.ac.nz/ml/weka/
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Baseline class distribution:
low:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [ 133 - 29%]
medlow:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [ 131 - 29%]
medhigh:~~~~~~~~~~~~~~~~~~~~~ [ 97 - 21%]
high:~~~~~~~~~~~~~~~~~~~~~ [ 94 - 21%]

Treatment:[PTRATIO=[12.6..16)
RM=[6.7..9.78)]

New class distribution:
low: [ 0 - 0%]
medlow: [ 0 - 0%]
medhigh: [ 1 - 3%]
high:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [ 38 - 97%]

Fig. 4.2. A textual treatment generated by the TAR3 learner.

from the city of Boston (a nontrivial dataset with over five hundred examples). The
tree output by the j48 classifier is detailed, but difficult to understand. A user must
follow the branches of the tree in order to derive conclusions. The treatment given
by TAR3 is much easier to understand. It only presents three important pieces of
information. First, it tells us the baseline class distribution. It then shows the best
treatment—the smallest constraint that most changes the class distribution. In this
case, the best houses had 6.7 to 9.78 rooms, and the optimal parent-teacher ratio was
12.6 to 16. Finally, it shows the class distribution if that treatment is applied.

These same treatments can be mapped graphically in a way that is even easier to
understand. Figure 4.3 shows a two-variable treatment for a dataset that represents
the timeseries operation of a bicycle. Each variable or combination of variables within
the treatment is given a one or two-dimensional plot. All of the possible values for the
noted attributes are plotted, with different shapes to indicate the class. Black squares
indicate the data that the treatment learner is trying to isolate. Lines are plotted
around the minimum and maximum values of the range given by the treatment. A
single glance informs the user that the area contained within the bold lines is the area
of interest. For example, the plot in Figure 4.3 shows the values for the attributes ”Hill
Slope” and ”Cadence” The treatment suggests limiting the values for this variable to
the area defined by the red lines (about -14% to -1% for Hill Slope and 1.3 to 2.2 for
Cadence). This output is easy to read and understand, especially when compared to
the classifier output shown in Figure 4.1.

Cognitive scientists have demonstrated that humans are far more likely to use
simple models over more complex ones when making decisions [16]. The simpler the
output, the easier it is to implement and the more likely that designers will make
use of it. This is a key point. For treatment learning to make an effective difference
during the design phase of a project, it must produce output that can be understood
in a single look.

4.2. BORE Classification. The raw datasets that we are using have not been
classified. Therefore, before they can be used by the treatment learner, they must
be sorted into distinct categories. This is done by a process called BORE, short for
best or rest. BORE takes instances scored by a penalty function (which is uniquely
defined for each dataset) as inputs and categorizes each of them ”best” or ”rest”.

BORE maps the individual factors into a hypercube, which has one dimension for
each scored utility. It then normalizes instances scored on the N dimensions into 0
for ”worst,” and 1 for ”best.” The corner of the hypercube at 1,1,... is the apex of the
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Fig. 4.3. A graphical representation of a treatment generated by the TAR3 learner.

cube and represents the desired goal for the system. All of the examples are scored
by their normalized Euclidean distance to the apex.

For this study, outputs were scored on one dimension- distance to the desired
target. For each run i of the simulator, the n outputs Xi are normalized to the range
0...1 as follows:

Ni =
Xi −min(X)

max(X)−min(X)
.(4.1)

The Euclidean distance of N1, N2, ... to the ideal position of N1=1, N2=2, ... is then
computed and normalized to the range 0..1 as

Wi = 1−
√
N2

1 +N2
2 + ...√

n
,(4.2)

where higher Wi (0 ≤ Wi ≤ 1) correspond to better runs. This means that the Wi

can only be improved by increasing all of the utilities. To determine the best and rest
values, all of the Wi scores were sorted according to a given threshold. Those that
fall above this threshold are classified as “best” and the remainder as “rest.”
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4.3. TAR3. TAR3 (and its predecessor TAR2 [27]) are based on two fundamen-
tal concepts—lift and support. The lift of a treatment is the change that some decision
makes to a set of examples after imposing that decision. TAR3 is given a set of train-
ing examples E. Each example e ∈ E maps a set of attribute ranges Ri, Rj , ... → C
to some class score. The class symbols C1, C2,... are stamped with a rank generated
from a utility score U1 < U2 < ... < UC . Within E, these classes occur at frequencies
F1, F2,..., FC where

∑
Fi = 1. A treatment T of size M is a conjunction of attribute

ranges R1 ∧R2... ∧RM . Some subset of e ⊆ E is contained within the treatment. In
that subset, the classes occur at frequencies f1, f2,..., fC . TAR3 seeks the smallest
treatment T which induces the biggest changes in the weighted sum of the utilities
times frequencies of the classes. Formally, the lift is defined as

lift =
∑

c Ucfc∑
c UcFc

.(4.3)

The classes used for treatment learning get a score UC and the learner uses this to
assess the class frequencies resulting from applying a treatment by finding the subset
of the inputs that falls within the reduced treatment space. In normal operation,
a treatment learner conducts controller learning; that is, it finds a treatment which
selects for better classes and rejects worse classes. By reversing the scoring function,
treatment learning can also select for the worst classes and reject the better classes.
This mode is called monitor learning because it locates the one thing we should most
watch for.

Real-world datasets, especially those from hardware systems, contain some noise
—incorrect or misleading data caused by accidents and miscalculations. If these noisy
examples are perfectly correlated with failing examples, the treatment may become
overfitted. An overfitted model may come with a massive lift score, but it does not
accurately reflect the details of the entire dataset. To avoid overfitting, learners need
to adopt a threshold and reject all treatments that fall on the wrong side of this
threshold. We define this threshold as the minimum best support.

Fig. 4.4. Probability distribution of individ-
ual attribute scores.

Given the desired class, the best sup-
port is the ratio of the frequency of
that class within the treatment subset
to the frequency of that class in the
overall dataset. To avoid overfitting,
TAR3 rejects all treatments with best
support lower than a user-defined min-
imum (usually 0.2). As a result, the
only treatments returned by TAR3 will
have both a high lift and a high best sup-
port. This is also the reason that TAR3
prefers smaller treatments. The fewer
rules adopted, the more evidence that
will exist supporting those rules.

TAR3’s lift and support calculations
can assess the effectiveness of a treat-
ment, but they are not what generates the treatments themselves. A naive treatment
learner might attempt to test all subsets of all ranges of all of the attributes. Because
a dataset of size N had 2N possible subsets, this type of brute force attempt is ineffi-
cient. The art of a good treatment learner is in finding good heuristics for generating
candidate treatments.
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The algorithm begins by discretizing every continuous attribute into smaller
ranges by sorting their values and dividing them into a set of equally-sized bins.
It then assumes the small-treatment effect; that is, it only builds treatments up to a
user-defined size. Past research [18, 19] has shown that a treatment’s size should be
less than four attributes. TAR3 will then only build treatments from the discretized
ranges with a high heuristic value.

TAR3 determines which ranges to use by first determining the lift of each individ-
ual attribute. These individual scores are then sorted and converted into a cumulative
probability distribution, as seen in Figure 4.4. TAR3 randomly selects values from
this distribution, meaning that low-scoring ranges are unlikely to be selected. To
build a treatment, n (random from 1...max treatment size) ranges are selected and
combined. These treatments are then scored and sorted. If no improvement is seen
after a certain number of rounds, TAR3 terminates and returns the top treatments.

4.4. TAR4.1. TAR3 is not a data miner. Not only does it have a different goal
(treatment versus classification), its very design runs counter to that of traditional
classifiers such as Naive Bayes [43]. Data miners, according to Bradley et al [9]:

• Require one scan, or less, of the data.
• Are on-line, anytime algorithms.
• Are suspendable, stoppable, and resumable.
• Efficiently and incrementally add new data to existing models.
• Work within the available RAM.

TAR3 stores all examples from the dataset in RAM. It also requires three scans
of the data in order to discretize, build theories, and rank the generated treatments.
TAR4 was designed and modeled after the SAWTOOTH [30] incremental Naive Bayes
classifier in order to improve the runtime, lessen the memory usage, and better scale
to large datasets.

Naive Bayes classifiers offer a relationship between fragments of evidence Ei, a
prior probability for a class P (H), and a posteriori probability P (H|E) defined by

P (H|E) =
∏

i

P (Ei|H)
P (H)
P (E)

.(4.4)

For numeric features, a features mean µ and standard deviation σ are used in a
Gaussian probability function [43]:

f(x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2 .(4.5)

Simple naive Bayes classifiers are called “naive” since they assume independence of
each feature. Potentially, this is a significant problem for data sets where the static
code measures are highly correlated (e.g. the number of symbols in a module increases
linearly with the module’s lines of code). However, Domingos and Pazzini have shown
theoretically that the independence assumption is a problem in a vanishingly small
percent of cases [12].

TAR4.1 still requires two passes through the data, for discretization and for
building treatments. These two steps function in exactly the same manner as the
corresponding steps in the TAR3 learner. TAR4.1, however, eliminates the final
pass by building a scoring cache during the BORE classification stage. As explained
previously, examples are placed in a U -dimensional hypercube during classification,
with one dimension for each utility. Each example e ∈ E has a normalized distance
0 ≤ Di ≤ 1 from the apex, the area where the best examples reside. When BORE



10 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

classifies examples into best and rest, that normalized distance is added as Di to the
down table and 1−Di to the up table.

When treatments are scored by TAR4.1, the algorithm does a linear-time table
lookup instead of scanning the entire dataset. Each range Rj ∈ examplei adds downi

and upi to frequency counts F (Rj |base) and F (Rj |apex ). These frequency counts are
then used to compute the following probability and likelihood equations:

P (apex ) =
∑

i upi∑
i upi +

∑
i downi

,(4.6)

P (base) =
∑

i downi∑
i upi +

∑
i downi

,(4.7)

P (Rj |apex ) =
F (Rj |apex )∑

i upi

,(4.8)

P (Rj |base) =
F (Rj |base)∑

i downi
,(4.9)

L(apex |Rk ∧Rl ∧ ...) =
∏
x

P (Rx|apex ) ∗ P (apex ),(4.10)

L(base|Rk ∧Rl ∧ ...) =
∏
x

P (Rx|base) ∗ P (base).(4.11)

TAR4.1 finds the smallest treatment T that maximizes

P (apex |T ) =
L(apex |T )2

L(apex |T ) + L(base|T )
.(4.12)

Note the squared term in the top of the equation, L(apex |T )2. This term was
not squared in the first design of TAR4. The first version of TAR4 was a failure.
Its results were muddled by the dependent attributes. The standard Naive Bayes as-
sumes independence between all attributes and keeps singleton counts. TAR4 added
redundant information, which altered the probabilities. In effect, it produced treat-
ments with high scores, but without the minimum best support required in TAR3.
TAR4.1 was redesigned to prune treatments with low support in the original dataset.
By squaring the likelihood that a range appears in the apex, those treatments that
lack support are dropped in favor of those that appear often in the apex.

5. Optimization Techniques. Treatment learning is a relatively unexplored
field, limiting the number of algorithms that TAR3 and TAR4.1 can be benchmarked
against. One way of casting the treatment problem is as an optimization [11] problem.
The scoring methods used are simply mathematical objective functions. Therefore, it
becomes possible to compare the treatment learning tools against standard techniques
used to address optimization problems. When presented as an optimization problem,
the objective function F for TAR3 looks like

maximize F (x) =
∑

c Ucfc(x)∑
c UcFc

,(5.1)

where Uc, fc and Fc are defined as for Equation 4.3, and x is the attributes and ranges
for a suggested treatment. Similarly, the objective function for TAR4.1 is defined as

maximize F (x) =
L(apex |x)2

L(apex |x) + L(base|x)
,(5.2)
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where the likelihood functions L are the same as those given in Equation 4.12. For
both Equation 5.1 and Equation 5.2, x is the treatment—the attributes (discrete
values) and their ranges (both continuous and discrete values)—and the size of x will
vary based on the number of attributes that the algorithms choose for that particular
treatment. Note that since the algorithms used by TAR3 and TAR4.1 do not use
gradients there is no requirement for either of the above F (x) to be smooth, and, in
practice, both objective functions are highly non-smooth.

5.1. Simulated Annealing. Simulated Annealing is a classic stochastic search
algorithm. It was first described in 1953 [28] and refined in 1983 [22].The algorithm’s
namesake, annealing, is a technique from metallurgy, where a material is heated,
then cooled. The heat causes the atoms in the material to wander randomly through
different energy states and the cooling process increases the chances of finding a state
with a lower energy than the starting position.

The Simulated Annealing algorithm used in this experiment begins by making
an initial guess. This guess is a twelve number vector that approximates a four
variable treatment. The exact structure of this vector is {ATTRIBUTE,MIN,MAX}
repeated four times. The algorithm then tries to solve objective functions correspond-
ing to Equation 5.1 and Equation 5.2, except that, in this case x is limited by the
algorithm to the structure of the initial guess. Note that Simulated Annealing only
requests that the objective functions be smooth in a limited region near the final so-
lution. We have no such guarantees for our problem, but in practice this is a workable
approximation.

The algorithm will continue to operate until a.) the number of tries is exhausted,
b.) improvement has not been seen for several rounds, or c.) a certain temperature
threshold (a function of the time) is met. The current worth will then be compared
to a minimum worth threshold and, if that value is not met, the algorithm will reset.
The number of possible resets can be limited, but was not for this experiment.

5.2. Gradient-Based Optimization. The data mining problem posed here
requests some subset of the variables and then requests a range for those variables. The
best solution to this problem necessarily consists of a combination of integer and (likely
nonlinear) continuous values. What’s more, the search space is large: there are on the
order of hundreds of attributes and on the order of thousands of individual runs. To
complicate the problem further, the possible values for each attribute may themselves
be continuous or discrete. As a final barrier to traditional optimization techniques,
the input variables may not be directly correlated with the output class that is being
chosen, either because the appropriate input variables were not selected out of the
thousands or (sometimes) tens of thousands of possible input variables or because
of some non-determinism in the solution. These factors cause the objective function
to be highly non-smooth—there are likely to be many discontinuities and there are
no guarantees that the neighborhood of the global solution will be discontinuity-
free. Classically, this is the sort of problem that must be solved by direct search
optimization methods. However, on a practical basis, optimization techniques derived
by assuming that the optimization function is smooth tend to be much more efficient,
and often work better-than-expected by utilizing a wide array of numerical ”tricks”
that work to make the objective function act as if it were more smooth.

The particular optimization technique implemented for this work is a Quasi-
Newton method with a BFGS update [38]. This O(n2) method builds up Hessian
information as the iterations proceed, and the approximate Hessian is updated with a
rank-one matrix. This constant building of the curvature information tends to avoid
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the subspace-searching problem that Conjugate Gradient methods can fall into for
large problems like those solved within the RSE group. It also avoids the uncertainty
that comes with parameter tuning for trust-region methods like Levenberg-Marquardt.
However, like all descent methods, the algorithm assumes that the function it is op-
timizing is essentially continuous.

Mixed integer-nonlinear problems can be solved in several ways [17]. The first
such way is a combinatorial approach–solving all possible combinations and choosing
the combination that gives the best answer to the objective function. For the types of
problems solved in practice at RSE, the combinatorial approach is computationally
intractable. One recent example looked for the best 4 attribute treatment out of
128 attributes; the solution of this problem would have required almost 11 million
separate optimizations. Even limiting the problem to choose the one best treatment
would still require 128 different optimizations. Instead, as suggested by Gill et al [17],
we introduced a new set of variables ni into the TAR3 objective function where each
variable was the percentage likelihood that the attribute i should be included in the
treatment. We then introduced the term

∑
i ni

2−1 into the objective function to
further increase the likelihood of a single discrete choice being made by the optimizer.
The final form of this objective function looks like

minimize F (x) =
∑

i

1
ni

2

−
∑

c Ucfc(x, δx(ni))∑
c UcFc

,(5.3)

where Uc, fc and Fc are defined as for Equation 4.3, i is the index corresponding to
the attributes and δx is a threshold function that determines whether a particular
attribute has enough of a percentage likelihood of being included in the treatment.
The vector x now takes the form {ni,MIN,MAX, ...} where all of the components are
continuous and is 3 times the number of attributes in size. While it is possible that
we could have improved the performance of any gradient descent-based method by
recasting the objective function to one that was more smooth or (perhaps) by recasting
the problem as a constrained minimization problem, no such solution presented itself
after a good-faith effort to discover it. This is a common limitation of gradient descent-
based methods.

Another serious limitation of gradient-based optimization methods for these sorts
of data mining problems is that the objective function can have cliffs even with respect
to the continuous ranges because the input to the objective function, the data, is
also inherently discrete. As a result, it is very likely that the optimizer will become
stuck in local equilibria and that the final solution will be highly dependent on the
initial conditions. The particular optimizer we are using here attempts to resolve this
problem by attempting to determine that it has reached a cliff and choosing random
search directions to make progress.

6. Experiment. Twelve Monte Carlo Filtering analyses were run for three dif-
ferent datasets, using five different methods: TAR3, TAR4.1, Simulated Annealing
with the TAR3 scoring function, Simulated Annealing the TAR4.1 scoring function,
and a Quasi-Newton BFGS method with a modified version of TAR3’s scoring func-
tion. Two of the datasets are from actual analyses performed within the RSE group
at NASA Ames. The data in these two sets were gathered during Monte Carlo runs
using a high-fidelity physics simulation. One of these datasets represents reentry sim-
ulations while the other dataset represents launch abort simulations. The first dataset
contains 191 runs worth of 52 different attributes. The second dataset contains 1000
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runs worth of 249 attributes. The data from these two different examples had com-
plicated penalty functions based on all of the flight requirements—these requirements
include metrics like bounds on miss distances, fuel consumption, and the stress on
the parachutes. Data with the highest penalty functions are said to have ‘failed’ and
data with the lowest penalty functions are considered to be the ‘best’ data. Note
that, because of the complicated penalty function, the ‘failed’ data are likely to have
exceeded the allowed values on more than one requirement. An analysis like this gives
an overall view of the safest flight conditions given all of the different possible indi-
vidual failures. While the analysis within the RSE group goes on to do the same sort
of analysis for each individual failure, that was not the focus of our main experiment.

To demonstrate the broad applicability of the technique, we also ran a Monte
Carlo Filtering analysis on some data obtained during a bicycle ride. The software
that generated the data gave a particularly noisy power measurement; the penalty
function in this case evaluated each time point as an individual run and penalized
each run by the noise in the power measurement. The goal was to see which of
the other measured parameters was most likely to correspond with the noisy power
measurement. This dataset contained 4435 runs over 11 attributes.

7. Results. During each trial, several statistics were collected in order to assess
the treatments output by that algorithm. Let {A, B, C, and D} denote the true
negatives, false negatives, false positives, and true positives. From these measures,
we can compute certain standard formulas.

recall = probability of detection =
D

B +D
(7.1)

probability of false alarm =
C

A+ C
(7.2)

precision =
D

D + C
(7.3)

For recall and precision, higher values are better. For the probability of false
alarm, lower values are desired. Those performance measures, along with the runtime
(which should be minimized) were collected for each individual run of each algorithm,
then the averages, medians, and standard deviations were saved for each trial. After
all ten trials, those statistics were combined and used to create quartile charts. The
results for each of our algorithms were combined and ranked using the Mann-Whitney
rank-sum test [23].

These quartile charts, sorted by the Mann-Whitney ranks, can be seen in Fig-
ure 7.1, Figure 7.2, and Figure 7.3. Note that SA-T3 and SA-T4 refer to the two
variants of Simulated Annealing, using the TAR3 and TAR4.1 objective functions
respectively. Also note that only the median values from each individual run were
used in the combined results. In each quartile chart, the horizontal lines show the
25 to 75 percentile range, and the black dot represents the median point. The ranks
come from the Mann-Whitney rank-sum test at a 95% confidence level. Each rank,
from one to five, is statistically different and better than the following rank. If two
algorithms have the same rank, their results are not statistically different.

After looking at the results from all three datasets, a clear ranking emerges for
each of the collected performance statistics. These are (from best to worst, with
parentheses denoting a tie):

• Runtimes: TAR4.1, TAR3, QN, (SA-T4, SA-T3)
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Metric Project 1

Runtime

Rank Program 50%
1 TAR4.1 0.13
2 TAR3 0.31
3 QN 6
4 SA-T4 15
4 SA-T3 16

Recall

Rank Program 50% Quartiles
1 TAR4.1 59 .2.1.8.2 w
1 QN 36 .1.5.5.1 w
2 SA-T4 25 .0.0.0.0 w
3 TAR3 22 .9.0.8.9 w
4 SA-T3 20 .4.0.1.4 w

0 50 100

P(False Alarm)

Rank Program 50% Quartiles
1 TAR3 1 .9.3.6.9w
2 SA-T3 9 .8.5.6.8 w
3 TAR4.1 25 .4.4.6.4 w
4 QN 34 .3.5.4.3 w
4 SA-T4 71 .3.0.9.3 w

0 50 100

Precision

Rank Program 50% Quartiles
1 TAR3 90 .8.0.9.8 w
2 TAR4.1 44 .3.8.5.3 w
2 SA-T3 42 .0.8.3.0 w
3 QN 24 .5.1.9.5 w
3 SA-T4 11 .2.5.1.2 w

0 50 100

Fig. 7.1. Results on several criterion, sorted by Mann-Whitney rank, for the RSE Project 1.
In each quartile chart, the horizontal lines (if any) show the 25 to 75 percentile range, and the black
dot represents the median point. The ranks come from a Mann-Whitney rank-sum test at a 95%
confidence level. For recall and precision, higher values are better. For the probability of false alarm,
lower values are desired.

• Recall: (TAR4.1, QN), SA-T4, TAR3, SA-T3
• Probability of False Alarm: TAR3, SA-T3, TAR4.1, SA-T4, QN
• Precision: TAR3, SA-T3, TAR4.1, (SA-T4, QN)

While these rankings do not show a single ”winner,” they do present a clear
victory for the two treatment learning techniques. Either TAR3 or TAR4.1 is ranked
at the top in every category, and neither of them are ranked worst in any category.

The Simulated Annealer acted in accordance with its objective function. When
using the TAR3 objective function, it tends towards high precision and low recall.
Likewise, when using the TAR4.1 objective function, Simulated Annealing returns
treatments with higher recall and low precision. In both cases, it performed more
weakly than its treatment learner counterpart. Both the weaker results and slower
runtime can be explained by the very design of Simulated Annealing: because it makes
a single initial guess and mutates it, it is unable to try as many combinations as TAR3
or TAR4.1. It must keep trying to make its guess better, and only resets after certain
timers expire. It keeps resetting until a certain score threshold is met, which is why
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Metric Project 2

Runtime

Rank Program 50%
1 TAR4.1 0.1
2 TAR3 0.2
3 QN 3.3
4 SA-T3 2.5
5 SA-T4 3.1

Recall

Rank Program 50% Quartiles
1 TAR4.1 48 .9.0.9.9 w
1 QN 44 .1.8.2.1 w
2 SA-T4 27 .3.1.9.3 w
3 TAR3 23 .9.1.9.9 w
4 SA-T3 19 .8.2.8.8 w

0 50 100

P(False Alarm)

Rank Program 50% Quartiles
1 SA-T3 3 .5.8.7.5 w
2 TAR3 6 .6.4.9.6 w
3 SA-T4 23 .2.2.9.2 w
3 TAR4.1 28 .0.0.3.0 w
4 QN 40 .4.9.3.4 w

0 50 100

Precision

Rank Program 50% Quartiles
1 TAR3 58 .9.0.9.9 w
1 SA-T3 53 .8.5.5.8 w
2 TAR4 37 .1.9.5.1 w
3 SA-T4 25 .6.5.8.6 w
3 QN 25 .8.7.4.8 w

0 50 100

Fig. 7.2. Results on several criterion, sorted by Mann-Whitney rank, for RSE Project 2.

it is slower than the other algorithms. If its initial guess is particularly poor, it will
never be able to mutate it into something that scores highly. Thus, it will reset until
it is able to find a good mutation.

Quasi-Newton performs very well on recall, even tying with TAR4.1 in the rank-
sum test. However, it also has the worst probability of selecting false positives. In
fact, its false positive rate exceeds its true positive rate on the bicycle dataset. Quasi-
Newton is extremely imprecise, it tries to suggest treatments that contain most of
the data rather than making any attempt to fit the treatment to the data. As with
Simulated Annealing, Quasi-Newton returns results that are highly dependent on the
initial conditions. This is because the data has a tendency to be discrete, while Quasi-
Newton assumes continuous conditions. In these situations, the algorithm is likely to
become stuck in local minima.

Both Simulated Annealing and Quasi-Newton require favorable initial conditions.
This weakness is not shared by the treatment learners because of their highly ran-
domized nature. They do not make any single initial guess, and they do not try to
manipulate their findings. The use of stochastic search algorithms has been criti-
cized because their results may not be optimal; they may miss potentially powerful
treatments because they randomly skip around the space of possible solutions. How-
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Metric Bicycle

Runtime

Rank Program 50%
1 TAR4.1 0.18
2 TAR3 0.23
3 QN 8.3
4 SA-T4 158.1
4 SA-T3 398.5

Recall

Rank Program 50% Quartiles
1 TAR4.1 40 .7.7.5.7 w
1 QN 30 .4.5.2.4 w
2 SA-T4 24 .0.2.6.0 w
3 TAR3 21 .4.6.6.4 w
4 SA-T3 19 .2.5.8.2 w

0 50 100

P(False Alarm)

Rank Program 50% Quartiles
1 TAR3 6 .9.7.0.9 w
2 SA-T3 11 .1.5.0.1 w
3 SA-T4 22 .1.9.9.1 w
4 TAR4.1 31 .2.6.1.2 w
5 QN 33 .4.9.4.4 w

0 50 100

Precision

Rank Program 50% Quartiles
1 TAR3 54 .0.2.5.0 w
2 SA-T3 32 .2.9.9.2 w
3 TAR4 30 .1.8.7.1 w
4 SA-T4 23 .2.6.2.2 w
4 QN 22 .0.3.9.0 w

0 50 100

Fig. 7.3. Results on several criterion, sorted by Mann-Whitney rank, for the bicycle dataset.
In each quartile chart, the horizontal lines (if any) show the 25 to 75 percentile range, and the black
dot represents the median point. The ranks come from a Mann-Whitney rank-sum test at a 95%
confidence level. For recall and precision, higher values are better. For the probability of false alarm,
lower values are desired.

ever, the problem that we are trying to solve is inherently not smooth (much less not
convex), which means that gradient-based optimization techniques are also likely to
miss the optimal solution. This effect is somewhat mitigated by TAR3 and TAR4.1
because they form treatments from a cumulative probability distribution that favors
high-scoring ranges.

8. Discussion. While the results show the advantage for using treatment learn-
ing algorithms for these kinds of problems, they do not answer which one to use.
TAR3 and TAR4.1 excel in different areas, and there is a notable tradeoff between
the two. This makes it difficult to clearly recommend one over the other.

TAR3 is extremely specific in its recommendations. It tends to produce treat-
ments that maximize the lift calculation while just meeting the support requirement.
The result of this are treatments with a low recall value and a very high level of
precision. While the recall values are weak, reflecting the lower support, the false
alarm rate is nonexistent. This alone may be a reason to favor TAR3’s treatments.
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TAR3 will not give you all of the sources of failure, but it will suggest very few false
positives.

TAR4.1, on the other hand, is prone to suggesting treatments with a very high
level of support, leading to a higher probability of detection. The problem with
TAR4.1’s results is that its treatments are not well-fitted to the data, they do a poor
job of filtering out noisy factors or unnecessary information. This results in a much
higher false alarm rate then that seen in TAR3’s predictions.

Both the data mining and information retrieval fields have weighed in on the
tradeoff between precision and recall on numerous occasions [2,3,10,24,25]. The final
recommendation on which treatment learner to use comes down to the priorities of a
particular project. It may even be advisable to use both and compare the treatments
that emerge, and the average runtime of < 10 seconds for each easily allows for this
scenario.

The results for both treatment learners when asked to solve the problems as
designed by the RSE group, regardless of their respective strengths, tend to be low
when compared to the results of standard data mining problems in the literature.
Note that, in most cases, every single algorithm used in this experiment returned
performance values below 50%. This effect is largely due to the type of problem being
solved within the RSE group. In standard use at RSE, these treatment learners are
being asked to look for any failure type in addition to specific failure types. The
experiment run for this paper was trying to solve the significantly harder problem of
looking for the causes of any failure type. This has a tendency to blur the results
because the learners must correlate back to a wide range of inputs, perhaps with
disjoint ranges, and there is no guarantee that key inputs for an some individual
failure are in the dataset.

To gain a clearer look at their potential performance, both the treatment learning
and optimization algorithms were used to look at a specific failure type in isolation
for the second RSE project. Those results can be seen in Figure 8.1. Both TAR3
and TAR4.1 are better able to fit their treatments to the specific problem, resulting
in a much lower false alarm rate and almost 100% precision. Interestingly, TAR3
and TAR4.1 performed almost identically, with TAR4.1 maintaining a slightly higher
recall and TAR3 a slightly higher precision. TAR3’s recall rose significantly, from a
23% median to 36%, while TAR4.1’s dropped roughly the same amount, from 48% to
39%.

This experiment in looking at a specific failure type is an even clearer example
of why treatment learning techniques should be used. While there was an increase in
precision across the board due to the more precise nature of the problem, the perfor-
mance of the optimization methods was far below the treatment learners. When the
TAR3 objective function was used by the simulated annealer, it performed similarly
to the actual TAR3. However, its results were poorer and its runtime was slower. Sim-
ulated annealing with the TAR4.1 objective function and the Quasi-Newton method
showed particularly poor results. For both of these algorithms, the false alarm rate
was higher than the median detection rate.

9. External Validity. These experiments were conducted at NASA Ames Re-
search Center with assistance from NASA contractors and civil servants. Additionally,
two of the primary sources of data were from large-scale NASA project simulations.
Therefore, a possible threat to validity exists from the data and environment used
for this experiment. The external validity of NASA-based research has been debated
by other authors [26, 41]. Basili et al. [5] have argued that conclusions derived from
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Metric Project 2 (error: angle of attack)

Runtime

Rank Program 50%
1 TAR4.1 0.01
2 TAR3 0.02
3 SA-T3 2.6
3 QN 3.1
4 SA-T4 3.0

Recall

Rank Program 50% Quartiles
1 TAR4.1 39 .5.5.9.5 w
2 QN 34 .2.8.7.2 w
3 TAR3 36 .0.1.4.0 w
3 SA-T4 24 .1.5.3.1 w
4 SA-T3 21 .1.8.5.1 w

0 50 100

P(False Alarm)

Rank Program 50% Quartiles
1 TAR3 0 .0.0.0.0w
1 SA-T3 0 .0.3.0.0w
2 TAR4.1 7 .7.3.7.7 w
3 SA-T4 30 .7.3.0.7 w
4 QN 43 .3.3.7.3 w

0 50 100

Precision

Rank Program 50% Quartiles
1 TAR3 100 .0.0.0.0 w
2 TAR4.1 97 .9.1.9.9 w
2 SA-T3 97 .2.6.7.2 w
3 SA-T4 81 .9.1.5.9 w
3 QN 82 .5.6.0.5 w

0 50 100

Fig. 8.1. Results on several criterion, sorted by Mann-Whitney rank, for a specific error type
in the second RSE project. In each quartile chart, the horizontal lines (if any) show the 25 to 75
percentile range, and the black dot represents the median point. The ranks come from a Mann-
Whitney rank-sum test at a 95% confidence level. For recall and precision, higher values are better.
For the probability of false alarm, lower values are desired.

NASA data are relevant to the overall software industry because NASA contractors
are obliged to demonstrate an understanding and adherence to modern industrial
best practices. These same contractors service numerous industries. For example,
Rockwell-Collins builds systems for both defense contractors and civilian aerospace
corporations.

However, the work of other authors is not enough to completely dispel the issue
of external validity. It was for this reason that the bicycle dataset was included in this
experiment. The data, recorded during the operation of a bicycle, was not collected
using NASA hardware or at a NASA facility. Despite this separation, the same trends
occurred and each of the algorithms performed at a similar efficiency. This replication
of trends shows that treatment learning is not a task that has been tuned to NASA
data; it, in fact, has applications for both large-scale and small-scale industrial testing.

10. Conclusions and Future Work. Building a large-scale industrial system
is a difficult task. It can cost millions of dollars and require months to years of testing.
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Early simulation makes a large difference, cutting both the cost and time to market
[36]. However, this early simulation does nothing if there is not a way to tell which
specific factors led to system failures. Experts are expensive and their time is limited,
they cannot waste hours sorting through gigabytes of simulation logs. They need a
way to limit the number of possible combinations that they are looking at.

Treatment learning, formally a subset of minimal contrast-set learning, is one
method of accomplishing this task. A treatment learner gathers evidence from labeled
simulation instances and determines the smallest rule that, when imposed, makes it
most likely that a specific outcome will occur.

This research benchmarked two different treatment learning techniques against
two standard optimization algorithms—a Quasi-Newton BFGS method and Simulated
Annealing. Three sets of data were used, two from large NASA projects and one from
the operation of a bicycle. Each algorithm was used multiple times on each dataset
and performance statistics were collected. The results show that treatment learning
shows better performance when compared to standard optimization algorithms for
these sorts of problems.

The immediate research direction for the treatment learners will center around
improvements to the internal heuristics. One idea proposed has been to change the
discretization technique. Currently, both TAR3 and TAR4.1 use a simple equal-
bin scheme. This naive approach is likely to miss important curves in the data space.
Experiments are being conducted with various alternative schemes, including recursive
cliff-based methods [14]. Other planned improvements center around optimization of
the source code. There are still numerous memory issues that should be addressed
and the code should be re-engineered to follow the highest industrial programming
standards.

The current research directions for the overall Margins Analysis project with the
RSE group are aimed at increasing the number of tested states without losing the
wide applicability of the technique. The next step for the tool is to include unit-
level symbolic execution tools to aid in test case generation. The proof-of-concept
for this hybrid technique found a serious bug in a flight software component [31].
If the performance of this technique with the Margins Analysis is comparable to
the performance in the proof-of-concept, we should be able to guarantee much greater
percentage of execution of the code while still completing in a reasonable time. Specific
avenues of approach for this analysis include using the symbolic execution to weed out
duplicate test vectors or to create the initial seeds for the statistical analysis; using
the symbolic analysis as extra information to improve the machine learning steps;
instrumenting parts of the code to develop the symbolic analysis during statistical
simulation; and using the symbolic analysis of some component of the code to inform
code coverage of the entire system during statistical analysis.

One abstraction that the Margins Analysis is currently making is that it ignores
the time-dependency of data in the post-processing step. The analysis will consider
extreme or mean values over some period of time, it can determine if a particular
mode was ever entered into, or it will look at all the data at some key event. A goal
for this analysis is to find a way to use sequential data within the machine learning
techniques in order to automatically identify more kinds of interesting behavior. This
is likely to involve adding a Markov Model or Linear Dynamical System capability
into the clustering step [7].

Another potential set of improvements to the Margins Analysis come from incor-
porating techniques to simulate rare events. There is an obvious relationship between
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uncovering potential errors at long run times and finding the behavior in the system
in rare events. Much of the current rare-event simulation is being done to maintain
reliability in petascale computing. Current simulation-based testing research includes
optimal splitting [37] and a hybrid method developed by the University of Illinois
and IBM that simulates discrete events on different timescales by switching numer-
ical methods [33]. A variation on either of these techniques may be integrable with
our current techniques and create a greater guarantee of reliability of safety-critical
software.
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