
Autom Softw Eng (2010) 17: 439–468
DOI 10.1007/s10515-010-0072-x

Automatically finding the control variables for complex
system behavior

Gregory Gay · Tim Menzies · Misty Davies ·
Karen Gundy-Burlet

Received: 11 November 2009 / Accepted: 18 May 2010 / Published online: 29 May 2010
© Springer Science+Business Media, LLC 2010

Abstract Testing large-scale systems is expensive in terms of both time and money.
Running simulations early in the process is a proven method of finding the design
faults likely to lead to critical system failures, but determining the exact cause of
those errors is still time-consuming and requires access to a limited number of domain
experts. It is desirable to find an automated method that explores the large number of
combinations and is able to isolate likely fault points.

Treatment learning is a subset of minimal contrast-set learning that, rather than
classifying data into distinct categories, focuses on finding the unique factors that
lead to a particular classification. That is, they find the smallest change to the data that
causes the largest change in the class distribution. These treatments, when imposed,
are able to identify the factors most likely to cause a mission-critical failure. The goal
of this research is to comparatively assess treatment learning against state-of-the-art
numerical optimization techniques. To achieve this, this paper benchmarks the TAR3
and TAR4.1 treatment learners against optimization techniques across three complex
systems, including two projects from the Robust Software Engineering (RSE) group
within the National Aeronautics and Space Administration (NASA) Ames Research

G. Gay (!) · T. Menzies
West Virginia University, Morgantown, WV, USA
e-mail: greg@greggay.com

T. Menzies
e-mail: tim@menzies.us

M. Davies · K. Gundy-Burlet
NASA Ames Research Center, Moffett Field, CA, USA

M. Davies
e-mail: misty.d.davies@nasa.gov

K. Gundy-Burlet
e-mail: karen.gundy-burlet@nasa.gov

https://ntrs.nasa.gov/search.jsp?R=20110010887 2019-08-30T15:19:01+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10559689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:greg@greggay.com
mailto:tim@menzies.us
mailto:misty.d.davies@nasa.gov
mailto:karen.gundy-burlet@nasa.gov

440 Autom Softw Eng (2010) 17: 439–468

Center. The results clearly show that treatment learning is both faster and more accu-
rate than traditional optimization methods.

Keywords Contrast-set learning · Search-based software engineering · Simulation ·
Optimization · Monte Carlo filtering

1 Introduction

Large-scale industrial systems, often containing both hardware and software com-
ponents, are expensive to design and expensive to build. The cost of design fail-
ures decreases exponentially the earlier that these faults are discovered in the design
process (Boehm and Papaccio 1988). When a system is expensive (especially when
safety is part of the system cost), it is critical to use the best tools available at each
stage of the design life cycle. Early in the design process, lower-level requirements
(e.g. the center of gravity shall be placed exactly here) are built from higher-level
requirements (e.g. the craft shall not spin about any axis above some rate) using sim-
plified models and a factor of safety. As the complexity of the system grows, the
compounded errors in the simplified models can erode the factor of safety until the
overall system is not as robust as originally intended. As a last line of defense before
a complete prototype is constructed, high-fidelity simulations composed of models
for the entire system—hardware, software and environment—are used to eliminate
potentially costly fault points and estimate the overall system margins to failure.

However, simply simulating the behavior of a system is not enough. Knowing that
something fails in simulation is not the same as knowing why it failed or whether
there are control variables that can be used to eliminate that failure. Once the simu-
lations become high-fidelity enough and complex enough to represent reality, the re-
lationships between the control variables and the eventual system outcomes become
obscured. No matter what domains a system falls into, there are a limited number
of experts and their time is even further limited. It is cost and risk-prohibitive to ask
those experts to sift through gigabytes of simulation settings and outcomes. There-
fore, it is desirable to find methods of eliminating that bottleneck: methods that either
reduce the amount of data that experts need to examine or methods that can identify
the most obvious faults automatically.

For example, consider Monte Carlo Filtering as applied at NASA’s Robust Soft-
ware Engineering (RSE) group. The goal of this filtering is to determine which in-
puts are most likely to determine some portion of the output distributions. The output
space is divided into ‘good’ or ‘bad’ partitions using some mathematical function of
the outputs—for example, a NASA scientist may be most interested in data where the
allowable dynamic pressure on the parachutes is exceeded. For this kind of sensitivity
analysis, the first step is to run a Monte Carlo experiment sampling the input space,
and the second step is to filter the data into two partitions based on the output. In the
first step, model inputs are selected at random. In the second step, some sensitivity
analysis is then used to predict the variables and ranges in the input space most likely
to lead to one of the partitions of the data. A detailed description of Monte Carlo
Filtering including a variety of examples and techniques for this type of sensitivity
analysis is located in Saltelli et al. (2000).

Autom Softw Eng (2010) 17: 439–468 441

The field of data mining uses techniques from statistics and artificial intelligence
to find small, yet relevant, patterns in large sets of data. The standard practice in this
field is to classify, to look at an object and make a guess at what category it belongs to.
As new evidence is examined, these guesses are refined and improved. When testing
a complex hardware system, a scientist might try to classify by assessing whether that
particular simulation succeeded or failed.

Treatment learning (Menzies and Hu 2003) focuses on a different goal. It does not
try to determine what is, it tries to determine what could be (and thus, enables the
practice of Monte Carlo Filtering). Classifiers read a collection of data and collect
statistics that are used to place unseen data into a series of discrete categories (called
classes). Treatment learners work in reverse. They take the classification of a piece of
evidence (that is, the category that it belongs to) and try to reverse-engineer the statis-
tical evidence that led a classifier to assign the data to a particular class. If a scientist
already knows whether a simulation succeeded or failed, the scientist can use treat-
ment learning to determine why it failed. Treatment learners produce a treatment—
a small set of rules that, if imposed, will change the expected classification distrib-
ution. By filtering the data for entries that follow the rules set in the treatment, you
should be able to identify why a particular classification was reached.

Ultimately, classifiers will strive to increase the representational accuracy. They
will assess the data and grow a collection of statistical rules with the goal of making
more and more accurate categorizations. As a result, if the data is complex, the de-
cision tree output by the classifier will also be complex. Treatment learning instead
focuses on minimality: what is the smallest rule that can be imposed to cause the
largest change. Often, these rules may involve only one control variable (e.g. don’t
launch if the wind speed is greater than 45 knots).

To give a simplified example, consider the case of a rocket intended to place a
satellite into orbit. Any number of events could cause this rocket to fail–too long or
too short of a burning time, a faulty timing mechanism, or a crack in the outer fairing.
A common scenario would be to run a series of simulations prior to any actual launch.
Measurements are taken at regular intervals throughout the simulation, noting factors
such as the trajectory, external pressure, temperature, etc. Along with these readings
comes a classification, whether or not any of the system requirements for the rocket
have been violated. After a number of simulation trials, a treatment learner can be
focused upon those trials with a “rocket failed” classification. The treatment learner
will produce a rule set that states definitively the control variables (temperature too
high, fuel level too low) that most often caused a mission-critical failure.

Stated formally, treatment learning is a form of minimal contrast-set association
rule learning. The treatments contrast undesirable situations with the desirable ones
(represented by weighted classes). Treatment learning, however, is different from
other contrast-set methods like STUCCO (Bay and Pazzani 1999) because of its focus
on minimal theories. Conceptually, a treatment learner explores all possible subsets
of the attribute ranges looking for good treatments. Such a search is infeasible in
practice, so the art of treatment learning lies in quickly pruning unpromising attribute
ranges (i.e. ignoring those that, when applied, lead to a class distribution where the
target class is in the minority).

In an industrial setting like NASA, critical mission failures will cost thousands, if
not millions, of dollars. Therefore, it is absolutely crucial to identify the conditions

442 Autom Softw Eng (2010) 17: 439–468

under which a design will fail as early as possible in the design process, so that design
changes may be made before any physical hardware is constructed. Standard opti-
mization techniques can be used to relate the control variables to the outcomes, but
many such algorithms rely on continuous variables (all of which must be controllable
by the simulator). They are ill-equipped to handle many real-world situations where
factors are either discrete or stochastic. Treatment learning has no such restrictions.

While treatment learning (specifically the TAR3 algorithm Hu 2002; Gundy-
Burlet et al. 2007; Gundy-Burlet et al. 2009; Schumann et al. 2009) has been dis-
cussed in prior publications, these algorithms have never been benchmarked against
standard or state-of-the-art optimization algorithms in an industrial setting. This
study utilizes the TAR3 and TAR4.1 treatment learners, which operate similarly
but score treatments in radically different manners, and compares the quality of
the produced treatments against the Simulated Annealing (Metropolis et al. 1953;
Kirkpatrick et al. 1983) and Quasi-Newton (Gill et al. 1981) optimization methods.
Data used in this case study comes from actual simulation trials of projects from
NASA’s Robust Software Engineering (RSE) group, as well as real-world data from
a bicycle ride. Our goal is to show that, in this real-world industrial setting, treatment
learning offers a faster, higher-quality identification of the factors likely to cause a
failure in a complex system than traditional optimization techniques.

The results of this study clearly demonstrate that:

– Treatment learners are orders of magnitude faster than standard methods.
– TAR3’s results are more precise than those from standard techniques.
– TAR4.1’s results demonstrate a higher recall, while maintaining a lower false pos-

itive rate, than the standard techniques (the Quasi-Newton algorithm also demon-
strates a high recall, but at the notable cost of a higher rate of false positives).

2 Data background

NASA often uses high-fidelity physics simulations early in the design process to ver-
ify that flight software will meet the mission requirements. The possible inputs to the
simulation can be design parameters like lift coefficients and center of gravity posi-
tions; they may also be environmental parameters like the average magnitudes and
the standard deviations of wind gusts; they may be flags that indicate the failure of a
hardware component at some critical time; or they may be any of a plethora of other
parameters that specify the bounds on the acceptable flight envelope. Errors in soft-
ware design are much less expensive to fix early in the design process, but the design
space early in the process is very large. To explore all of the parameter combina-
tions exhaustively is infeasible. However, a very large sampling of the configurations
increases the chance that a design error will be caught early, and it allows for the
possibility of identifying trends or anomalies within the data.

Manual inspection of these large datasets requires domain expertise, and is likely
to focus only on absolute compliance with requirements. For systems this complex
many different kinds of failures are possible. For aero-braking scenarios, for instance,
representative failures include skipping out of the Earth’s atmosphere instead of re-
entering and parachutes failing to open. One common heuristic for these analyses is

Autom Softw Eng (2010) 17: 439–468 443

to push the bounds of the flight envelope until between 10 and 30 percent of all of the
attempted cases have failed in one way or another—this kind of analysis allows you
to find the margins of failure within the system. In the probable event that failures
are identified this early in the process, it is a time-consuming task to determine the
cause of those failures; the failures may be associated with environmental factors (e.g.
strong sustained wind gusts overwhelm the control system), they may be associated
with software errors in the unit under test (e.g. the gains on the control system are set
incorrectly for the nominal case), or they may be associated with software errors in
the simulation used to perform the test (that is, a legacy environmental model in the
simulation uses different units than expected). A likely first step towards determining
the cause of any of the failures is to find the input parameters that the failures are
associated with. Even this first step is non-trivial—there are usually hundreds of in-
put parameters associated with each dataset, and those parameters were chosen from
thousands of input parameters to the actual simulation.

Two of the datasets used for this paper were generated using the Advanced NASA
Technology ARchitecture for Exploration Studies (ANTARES) (Acevedo et al. 2007)
simulation tool. ANTARES is composed of high-fidelity physics models that are used
to study Constellation and the International Space Station. The version of ANTARES
used for this work contains over 1 million source lines of code in 15 different pro-
gramming languages. Each individual simulation, however, touches a relatively small
subset of this code. The two ANTARES datasets used for this paper represent the
Monte Carlo simulation trials done for a re-entry study and for a launch abort study.
The collected variables include environmental parameters, internal simulation values
(like random seeds), and spacecraft state specifications—including both continuous
and modal information. Both of these datasets had many different possible failure
types. The third dataset referenced here was collected during a bicycle ride. The data
comes from a bicycle power meter that calculates the power output and collects the
following data at 60 Hz: distance traveled, heart rate, speed, wind speed, cadence,
elevation, hill slope, and temperature. The power calculation for this particular meter
could be very noisy and there was an open question about what measured parameters
were most associated with this noise. Note that, because the bicycle data is real-world
data, the relationships between the measured variables are not explicit.

Failures for the NASA datasets were defined for several phases of flight corre-
sponding to reentry and launch abort scenarios. Some of the specific failure types in-
cluded missed landings, aerodynamic angles or body rates that exceeded thresholds,
excessively high velocity at impact, and dynamic pressures exceeding tolerances for
the parachutes. Any of these failures can lead to loss of life or mission, and are con-
sidered unacceptable. In general use at NASA, this tool is used to find the margins
to failure from nominal launch conditions over all of the mission-critical failures.
In essence, the question is—which of the controllable input parameters need to be
most-closely monitored in order to prevent any of these unacceptable failures? Since
each individual failure type has its own complicated, usually non-smooth, function of
the inputs, the composite of all of the failures creates a non-trivial, almost certainly
non-convex, hypersurface that must be searched.

To decrease the amount of time necessary to isolate suspicious inputs, the Robust
Software Engineering (RSE) group at Ames utilizes a multi-step process (Gundy-
Burlet et al. 2009; Gundy-Burlet et al. 2007; Schumann et al. 2008; Schumann et al.

444 Autom Softw Eng (2010) 17: 439–468

2009) that includes targeting tests with n-factor combinatorial test vectors and sort-
ing the data into clusters with an unsupervised EM algorithm(Fischer and Schumann
2003) in order to find anomalies and to aid visualization. This tool is known as Mar-
gins Analysis. A key component in the Margins Analysis is the use of a treatment
learner to tie behaviors in the dataset to their associated variables and ranges. The
treatment learner is used many times throughout the analysis process. It first is used
to find variables associated with the overall performance; a penalty is built for each
dataset that accounts for all failures and often includes some continuous metric like a
target miss distance. The treatment learner is then used to find the parameters associ-
ated with each individual type of failure. In practice there are 10’s to 100’s of different
possible failure types identified for each dataset. Finally, the treatment learner is used
within a loop to discover the variables associated with each unsupervised cluster. This
analysis aids the researcher in understanding the underlying structure of the dataset
and can uncover details in the dataset that lead to new requirements.

3 Data mining and treatment learning

3.1 Data mining

Data mining is a summarization technique that reduces large sets of examples
into small understandable patterns using a range of techniques taken from the sta-
tistics and artificial intelligence fields (Witten and Frank 1999; Goldberg 1989;
Boetticher 2001). One way to learn such patterns is to split the whole example set
into subsets based on some attribute value test. The process then repeats recursively
on the subsets. Each splitter value becomes the root of a sub-tree. Splitting stops
when either a subset gets so small that further splitting is superfluous, or a subset is
contains examples with only one classification.

A good split decreases the percentage of different classifications in a subset. Such a
good split ensures that smaller subtrees will be generated since less further splitting is
required to sort out the subsets. Various schemes have been described in the literature
for finding good splits. For example, the C4.5 (Quinlan 1992) and J4.8 (Witten and
Frank 1999) decision tree algorithms uses an information theoretic measure (entropy)
to find its splits while the CART (Breiman et al. 1984) decision tree learner uses
another measure called the GINA index.

Decision trees can be large and complex. The problem of explaining the perfor-
mance of these learners to end-users has been explored extensively in the literature
(see the review in Taylor and Darrah 2005). Often, some post-processor is used to
convert an opaque model into a more understandable form:

– Towell and Shavlik generate refined rules from the internal data structures of a
neural network (Towell and Shavlik 1993).

– Quinlan implemented a post-processor to C4.5 called C45 rules that generates suc-
cinct rules from cumbersome decision tree branches via (a) a greedy pruning al-
gorithm followed by (b) duplicate removal then (c) exploring subsets of the rules
relating to the same class (Quinlan 1992).

Autom Softw Eng (2010) 17: 439–468 445

– The first version of our treatment learner (TAR1) was another post-processor to
C4.5 that searched for the smallest number of decisions in decision tree branches
that (a) pruned the most branches to undesired outcomes while (b) retaining
branches leading to desired outcomes (Menzies and Sinsel 2000).

Association rule learners such as APRIORI (Agrawal et al. 1992) find attributes
that commonly occur together in a training set. In the association LHS → RHS, no at-
tribute can appear on both sides of the association; i.e. LHS ∩ RHS = ∅. The rule
LHS → RHS holds in the example set with confidence c if c% of the examples
that contain LHS also contain RHS; i.e. c = |LHS∪RHS|∗100

|LHS| . The rule LHS → RHS
has support s in the example set if s% of the examples contain LHS ∪ RHS; i.e.
s = |LHS∪RHS|∗100

|D| where |D| is the number of examples. Association rule learners
return rules with high confidence (e.g. c > 90%). The search for associations is often
culled via first rejecting associations with low support. Association rule learners can
be viewed as generalizations of decision tree learning since the latter restrict the RHS
of rules to just one special class attribute while the former can add any number of
attributes to the RHS.

An interesting variant of association rule learning is contrast set learning. In-
stead of finding rules that describe the current situation, contrast set learners like
STUCCO (Bay and Pazzani 1999) find rules that differ meaningfully in their distri-
bution across groups. For example, in STUCCO, an analyst could ask “What are the
differences between people with Ph.D. and bachelor degrees?”.

Another interesting variant is weighted class learning. Standard classifier algo-
rithms such as C4.5 or CART have no concept of a good or bad class. Such learn-
ers therefore can’t filter their learned theories to emphasize the location of the good
classes or bad classes. Association rule learners such as MINWAL (Cai et al. 1998)
use weights assigned to each class to focus the learning onto issues that are of partic-
ular interest to some audience.

3.2 Treatment learning

In terms of the above, treatment learning is a weighted contrast set learner that finds
rules that associate attribute values with changes to the class distributions. Menzies
and Sinsel (2000) elaborated the concept of treatment learning while trying to ex-
plain the output of data miners to business users. In one domain, he found that users
never understood the large theories being generated using any of the above tech-
niques. In an extreme example of this, C4.5 was generating trees with 6000 nodes.
The TAR1 prototype (discussed above) achieved some remarkable reductions in that
space; specifically, it found constraints on just four variables that pruned away all
branches except those leading to the most preferred outcome.

The lesson of TAR1 was that, sometimes, a small minority of constraints can con-
trol a much larger space of variables. TAR2 was an experiment in generating tiny
theories using this simplicity assumption; a small number of factors most influence
the outcome. This assumption has two consequences: (1) it implies that the search
for an effective model need not be too elaborate; (2) more importantly (in terms of
explanation) the generated theory is very small.

446 Autom Softw Eng (2010) 17: 439–468

The details of treatment learning are discussed below. Before that, it is insightful to
ask just how general is this simplicity assumption of treatment learning? Empirically,
we can state TAR2, TAR3 and TAR4 have been applied to dozens of data sets and in
all cases, the small rules generated by this method have been sufficient to select for a
large percentage of the preferred outcomes. Other machine learning researchers have
also discovered that simple schemes, using only a subset of the available attributes,
can generate effective theories. For example, Holte (1993) wrote a machine learner
called 1R that was deliberately restricted to learning theories using a single attribute.
Surprisingly, he found that learners that use many attributes perform only moder-
ately better than the simpler 1R solution. It should be noted that we don’t use the 1R
technique—our results show that many of the best treatments will require more than
one attribute (though, generally less than four).

In their work on learning simple theories, Kohavi and John (1997) wrapped their
learners in a pre-processor that used a heuristic search to grow subsets of the available
attributes from a size of one. At each step in this growth, a learner was used to assess
the accuracy of the model learned from the current subset. Subset growth was stopped
when the addition of new attributes failed to improve the accuracy. In their experi-
ments, 83% (on average) of the attributes in a domain could be ignored with only a
minimal lose of accuracy. Again, our learners do not use this technique—relevant fea-
ture selection with wrappers can be prohibitively slow since each step of the heuristic
search requires a call to the learning algorithm. Under treatment learning’s simplicity
assumption, such an exhaustive search is needlessly complex.

3.3 Example output

One reason to recommend treatment learning is that its theories are succinct and easy
to understand. Figure 1 shows the output of a classifier (the j48 tree learner from
the WEKA1 toolkit) as contrasted with the output of a treatment learner (TAR3, as
defined in a following section) in Fig. 2 on housing data from the city of Boston
(a nontrivial dataset with over five hundred examples). The tree output by the j48
classifier is detailed, but difficult to understand. A user must follow the branches of
the tree in order to derive conclusions. The treatment given by TAR3 is much easier to
understand. It only presents three important pieces of information. First, it tells us the
baseline class distribution. It then shows the best treatment—the smallest constraint
that most changes the class distribution. In this case, the best houses had 6.7 to 9.78
rooms, and the optimal parent-teacher ratio was 12.6 to 16. Finally, it shows the class
distribution if that treatment is applied.

These same treatments can be mapped graphically in a way that is even easier to
understand. Figure 3 shows a two-variable treatment for a dataset that represents the
time series operation of a bicycle. Each variable or combination of variables within
the treatment is given a one or two-dimensional plot. All of the possible values for
the noted attributes are plotted, with different shapes to indicate the class. The area
inside of the rectangle is the data that the treatment learner is trying to isolate. Lines
are plotted around the minimum and maximum values of the ranges given by the

1http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/

Autom Softw Eng (2010) 17: 439–468 447

Fig. 1 A decision tree generated by the WEKA’s j48 classifier

treatment. A single glance informs the user that the area contained within these bold
lines is the area of interest. For example, the plot in Fig. 3 shows the values for the
attributes “Hill Slope” and “Cadence” The treatment suggests limiting the values for
these variables to the area enclosed by these lines (about –14% to –1% for Hill Slope
and 1.3 to 2.2 for Cadence). This output is easy to read and understand, especially
when compared to the complex tree output by a classifier (see Fig. 1).

448 Autom Softw Eng (2010) 17: 439–468

Fig. 2 A textual treatment generated by the TAR3 learner

Fig. 3 A graphical
representation of a treatment
generated by the TAR3 learner

Cognitive scientists have demonstrated that humans are far more likely to use sim-
ple models over more complex ones when making decisions (Gigerenzer and Gold-
stein 1996). The simpler the output, the easier it is to implement and the more likely
that designers will make use of it. This is a key point. For treatment learning to make
an effective difference during the design phase of a project, it must produce output
that can be understood in a single glance.

3.4 BORE classification

The raw datasets commonly produced by NASA simulations are not stamped with a
basic classification (such as “failed” or “succeeded”). Instead, each simulation trial
is assigned a score from a continuous distribution (as assigned by a penalty function
unique to each system being simulated). Therefore, before they can be used by the
treatment learner, these scores must be sorted into discrete classes. We assign these

Autom Softw Eng (2010) 17: 439–468 449

classes using a process called BORE, short for best or rest. BORE is a general classi-
fication scheme that—given data and a mathematical function involving one or more
attributes—categorizes a piece of data as “best” or “rest” according to this function.
Commonly, this is not a strict binary split. For example, the scores might be sorted
into four quartiles. The top quartile (0.75 ∗ MAX to MAX) will be classified as “best,”
while the other three quartiles will be classified as rest1, rest2, rest3.

BORE maps the individual factors into a hypercube, which has one dimension for
each scored utility. It then normalizes instances scored on the N dimensions from 0
for “worst” to 1 for “best.” The corner of the hypercube at 1,1, . . . is the apex of the
cube and represents the desired goal for the system. All of the examples are scored
by their normalized Euclidean distance to the apex.

For the purposes of this study, outputs were scored on only one dimension- the
scores assigned to each data instance by that system’s penalty function. For each run
i of the simulator, the n outputs Xi are normalized to the range 0..1 as follows:

Ni = Xi − min(X)

max(X) − min(X)
. (1)

The Euclidean distance of N1,N2, . . . to the ideal position of N1 = 1,N2 = 2, . . . is
then computed and normalized to the range 0..1 as

Wi = 1 −

√
N2

1 + N2
2 + · · ·

√
n

, (2)

where higher Wi (0 ≤ Wi ≤ 1) correspond to better runs. This means that the Wi can
only be improved by increasing all of the utilities. To determine the “best” and “rest”
values, all of the Wi scores were sorted according to a given threshold. Those that fall
above this threshold are classified as “best” and the remainder as “rest” (or, in some
cases, multiple divisions of “rest”).

3.5 TAR3

TAR3 (and its predecessor TAR2 (Menzies and Hu 2003)) are based on two funda-
mental concepts—lift and support. The lift of a treatment is the change that some
decision makes to a set of examples after imposing that decision. TAR3 is given a
set of training examples E. Each example e ∈ E contains a set of attributes, each
with a specific value (which have commonly been discretized into a series of ranges).
These attributes (and the range their values fall within are directly mapped to a spe-
cific classification (stated formally—Ri,Rj , . . . → C). The individual class symbols
C1,C2, . . . are ranked and sorted based on a utility score (U1 < U2 < · · · < UC ,
where UC is the target class). Within dataset E, these classes occur at certain fre-
quencies (F1,F2, . . . ,FC) where

∑
Fi = 1 (that is, each class occupies a fraction of

the overall dataset). A treatment T of size M is a conjunction of attribute value ranges
R1 ∧R2 ∧ · · ·∧RM (these ranges are obtained by discretizing and combining several
of the original continuous attribute values). Some subset of the dataset (e ⊆ E) is con-
tained within the treatment; that is, if the treatment is used to filter E, e ⊆ E is what
will remain. In that subset, the classes occur at frequencies f1, f2, . . . , fC . TAR3

450 Autom Softw Eng (2010) 17: 439–468

seeks the smallest treatment T which induces the biggest changes in the weighted
sum of the utilities multiplied by the frequencies of the classes. This score, the score
of e ⊆ E where T has been imposed, is divided by the score of the baseline (dataset
E when no treatment has been applied). Formally, the lift is defined as

lift =
∑

c Ucfc∑
c UcFc

. (3)

The classes used for treatment learning are assigned a score U1 < U2 < · · · < UC

and the learner uses this to assess the class frequencies resulting from applying a
treatment by finding the subset of the inputs that falls within the reduced treatment
space. In normal operation, a treatment learner conducts controller learning; that is,
it finds a treatment which selects for better classes and rejects worse classes. By
reversing the scoring function, treatment learning can also select for the worst classes
and reject the better classes. This mode is called monitor learning because it locates
the one thing we should most watch for.

Real-world datasets, especially those from hardware systems, contain some
noise—incorrect or misleading data caused by accidents and miscalculations. If these
noisy examples are perfectly correlated with failing examples, the treatment may be-
come overfitted. An overfitted model may come with a massive lift score, but it does
not accurately reflect the general conditions of the search space. To avoid overfitting,
learners need to adopt a threshold and reject all treatments that fall on the wrong side
of this threshold. We define this threshold as the minimum best support.

Given the desired class, the best support is the ratio of the frequency of that class
within the treatment subset to the frequency of that class in the overall dataset. To
avoid overfitting, TAR3 rejects all treatments with best support lower than a user-
defined minimum (usually 0.2). As a result, the only treatments returned by TAR3
will have both a high lift and a high best support. This is also the reason that TAR3
prefers smaller treatments. The fewer rules adopted, the more evidence that will exist
supporting those rules.

TAR3’s lift and support calculations can assess the effectiveness of a treatment,
but they are not what generates the treatments themselves. A naive treatment learner
might attempt to test all subsets of all ranges of all of the attributes. Because a dataset
of size N has 2N possible subsets, this type of brute force attempt is inefficient. The
art of a good treatment learner is in finding good heuristics for generating candidate
treatments.

The algorithm begins by discretizing every continuous attribute into smaller ranges
by sorting their values and dividing them into a set of equally-sized bins. It then
assumes the small-treatment effect; that is, it only builds treatments up to a user-
defined size. Past research (Gundy-Burlet et al. 2007; Gundy-Burlet et al. 2009) has
shown that this threshold should be no higher than four attributes. Note that this is not
hard scientific fact, more of a rule of thumb—larger treatments are harder for humans
to quickly comprehend.

TAR3 will only build treatments from the discretized ranges with a high heuristic
value. It determines which ranges to use by first determining the lift score of each at-
tribute’s value ranges (that is, the score of the class distribution obtained by filtering
for the data instances that contain a value in that particular range for that particular

Autom Softw Eng (2010) 17: 439–468 451

Fig. 4 Probability distribution
of individual attribute scores

attribute). These individual scores are then sorted and converted into a cumulative
probability distribution, as seen in Fig. 4. TAR3 randomly selects values from this
distribution, meaning that low-scoring ranges are unlikely to be selected. To build
a treatment, n (random from 1 . . . max treatment size) ranges are selected and com-
bined. These treatments are then scored and sorted. If no improvement is seen after a
certain number of rounds, TAR3 terminates and returns the top treatments.

3.6 TAR4.1

TAR3, while effective at generating informative treatments, is not a very efficient
algorithm. It stores all examples from the dataset in RAM and requires three scans
of the data in order to discretize, build theories, and rank the generated treatments.
The TAR4.1 treatment learner was designed to address these inefficiencies. Modeled
after the SAWTOOTH (Orrego 2004) incremental Naive Bayes classifier, TAR4.1’s
scoring heuristic allows for an improved runtime, lower memory usage, and a better
ability to scale to large datasets.

Naive Bayes classifiers offer a relationship between fragments of evidence Ei , a
prior probability for a class P(H), and a posteriori probability P(H |E) defined by

P(H |E) =
∏

i

P (Ei |H)
P (H)

P (E)
. (4)

For numeric features, a features mean µ and standard deviation σ are used in a
Gaussian probability function (Witten and Frank 2005):

f (x) = 1/(
√

2πσ)e
− (x−µ)2

2σ2 . (5)

TAR4.1 still requires two passes through the data, for discretization and for build-
ing treatments. These two steps function in exactly the same manner as the corre-
sponding steps in the TAR3 learner. TAR4.1, however, eliminates the final pass by

452 Autom Softw Eng (2010) 17: 439–468

building a scoring cache during the BORE classification stage. As explained pre-
viously, examples are placed in a U -dimensional hypercube during classification,
with one dimension for each utility. Each example e ∈ E has a normalized distance
0 ≤ Di ≤ 1 from an apex, an area where the best examples reside. When BORE clas-
sifies examples into best and rest, that normalized distance is added as a score, called
Di (the Euclidean distance from 0), to the down table and a separate score, 1 − Di

(or, the distance from the best), is entered into the up table.
When treatments are scored by TAR4.1, the algorithm does a linear-time table

lookup instead of scanning the entire dataset. Each range Rj ∈ examplei adds scores
downi and upi to counters F(Rj |rest) and F(Rj |best). These counters are a sum-
mation of scores for a range Rj across the dataset, and represent how often data
examples containing that range appear in the best and rest. These summations are
then used to compute the following probability and likelihood equations:

P(best) =
∑

i upi∑
i upi + ∑

i downi
, (6)

P(rest) =
∑

i downi∑
i upi + ∑

i downi
, (7)

P(Rj |best) = F(Rj |best)∑
i upi

, (8)

P(Rj |rest) = F(Rj |rest)∑
i downi

, (9)

L(best|Rk ∧ Rl ∧ · · ·) =
∏

x

P (Rx |best) ∗ P(best), (10)

L(rest|Rk ∧ Rl ∧ · · ·) =
∏

x

P (Rx |rest) ∗ P(rest). (11)

TAR4.1 finds the smallest treatment T that maximizes

P(best|T) = L(best|T)2

L(best|T) + L(rest|T)
. (12)

Note the squared term in the top of the equation, L(best|T)2. The standard
Naive Bayes design assumes independence between all attributes and keeps single-
ton counts. By not squaring that term, TAR4.1 adds redundant information, which
alters the generated probabilities. In effect, it produced treatments with high scores,
but without the support required by the TAR3 algorithm. By squaring that term, the
likelihood that a range appears in an area of top scores, those treatments that lack
support are pruned in favor of those that have both a good score and support.

4 Optimization techniques

Treatment learning is a relatively unexplored field, limiting the number of algorithms
that TAR3 and TAR4.1 can be benchmarked against. However, the treatment prob-

Autom Softw Eng (2010) 17: 439–468 453

lem is fundamentally an optimization (Dechter 2003) problem. The scoring methods
used are simply mathematical objective functions. Therefore, it becomes possible to
compare the treatment learning tools against the state-of-the-art techniques used to
address optimization problems.

When presented as an optimization problem, the objective function F for TAR3
looks like:

maximize F(x) =
∑

c Ucfc(x)∑
c UcFc

, (13)

where Uc, fc and Fc are defined as for (3), and x is the attributes and ranges for a
suggested treatment. Similarly, the objective function for TAR4.1 is defined as

maximize F(x) = L(apex|x)2

L(apex|x) + L(base|x)
, (14)

where the likelihood functions L are the same as those given in (12). For both (13)
and (14), x is the treatment—the attributes (discrete values) and their ranges (both
continuous and discrete values)—and the size of x will vary based on the number of
attributes that the algorithms choose for that particular treatment. Note that since the
algorithms used by TAR3 and TAR4.1 do not use gradients there is no requirement
for either of the above F(x) to be smooth, and, in practice, both objective functions
are highly non-smooth.

Numerous researchers have warned of the difficulties associated with com-
paring radically different algorithms (Uribe and Stickel 1994; Holzmann 1997;
Gu et al. 1997). Both of these optimization techniques—Simulated Annealing and
a Quasi-Newton method—were chosen because they are well-studied, powerful, and
ubiquitous approaches that could easily use the same objective functions as the TAR3
and TAR4.1 treatment learners (thus rendering the results comparable). Furthermore,
the algorithms that we use are unconstrained (constrained algorithms work towards
a pre-determined number of possible solutions while unconstrained methods are al-
lowed to adjust to the goal space). Simulated Annealing has been used to optimize
similar design models in our own previous work (Gay et al. 2010).

Technically, any gradient-based approach (including the Quasi-Newton method
used in our experiments) is at a disadvantage when addressing these problems; both
the problem and the search space are both a mixture of discrete and continuous vari-
ables and the solution space is often locally discontinuous or highly non-linear. Still,
researchers often choose to use gradient-based optimization for these problems be-
cause, while there is no expectation that they should work, they often (against expec-
tation) do work. When gradient-based methods perform well, they usually do so at
a lower computational cost than standard sampling methods (which require heuris-
tics in order to avoid becoming stuck within local minima). Quasi-Newton methods
make local approximations to the function, and as a result, they don’t require that the
function is locally smooth in order to make their next guess. Furthermore, as they are
constantly rebuilding the Hessian matrix, they do not have the same tendency towards
searching a subspace of a high-dimensional space that Conjugate Gradient methods
tend to have. The particular Quasi-Newton method implemented here utilizes heuris-
tics for jumping away from discontinuities in the solution when those discontinuities

454 Autom Softw Eng (2010) 17: 439–468

are discovered. Thus, of all gradient-based methods, this is the most applicable for
solving the optimization problem presented by these design simulations.

4.1 Simulated annealing

Simulated Annealing (SA) is a classic stochastic search algorithm. It was first de-
scribed in 1953 (Metropolis et al. 1953) and refined in 1983 (Kirkpatrick et al. 1983).
Fundamentally, SA is a hill climber—it starts in a random location and travels to
higher-scoring locations in the immediate neighborhood. Standard hill climbers are
prone to becoming stuck in local maxima. To avoid this, Simulated Annealing bor-
rows a heuristic from its namesake, the metallurgy technique “annealing.” In real-
world annealing, a material is rapidly heated, then cooled. The heat causes the atoms
in the material to rapidly jump around. However, as it cools, the atoms stabilize and
solidify—they transition from large jumps to small wiggles. Similarly, Simulated An-
nealing will jump to sub-optimal solutions at a probability determined by the current
state of the temperature function. At first, it will rapidly jump around the search space
before finding stability.

The Simulated Annealing algorithm used in this experiment begins by making an
initial guess. This guess is a twelve number vector that approximates a four variable
treatment. The exact structure of this vector is {ATTRIBUTE,MIN,MAX} repeated
four times. The algorithm then tries to solve objective functions corresponding to (13)
and (14), except that, in this case x is limited by the algorithm to the structure of the
initial guess. Note that Simulated Annealing only requests that the objective functions
be smooth in a limited region near the final solution. We have no such guarantees for
our problem, but in practice this is a workable approximation.

The algorithm will continue to operate until (a) the number of tries is exhausted,
(b) improvement has not been seen for several rounds, or (c) a certain temperature
threshold (a function of the time) is met. The current worth will then be compared to
a minimum worth threshold and, if that value is not met, the algorithm will reset. The
number of possible resets can be limited, but was not for this experiment.

4.2 Quasi-Newton optimization

The data mining problem posed in this study requests some subset of the variables
and then requests a range for those variables. The best solution to this problem neces-
sarily consists of a combination of integer and (likely nonlinear) continuous values.
What’s more, the search space is large: there are on the order of hundreds of attributes
and on the order of thousands of individual runs. To complicate the problem further,
the possible values for each attribute may themselves be continuous or discrete. As
a final barrier to traditional optimization techniques, the input variables may not be
directly correlated with the output class that is being chosen—either because the ap-
propriate input variables were not selected out of the thousands or (sometimes) tens of
thousands of possible input variables or because of some non-determinism in the so-
lution. These factors cause the objective function to be highly non-smooth—there are
likely to be many discontinuities and there are no guarantees that the neighborhood of
the global solution will be discontinuity-free. Classically, this is the sort of problem

Autom Softw Eng (2010) 17: 439–468 455

that must be solved by direct search optimization methods. However, on a practical
basis, optimization techniques derived by assuming that the optimization function is
smooth tend to be much more efficient, and often work better-than-expected by uti-
lizing a wide array of numerical “tricks” that work to make the objective function act
as if it were more smooth.

The particular optimization technique implemented for this work is a Quasi-
Newton method with a BFGS update (Sims 1999). This O(n2) method builds up
Hessian information as the iterations proceed, and the approximate Hessian is up-
dated with a rank-one matrix. This constant building of the curvature information
tends to avoid the subspace-searching problem that Conjugate Gradient methods
can fall into for large problems like those solved within the RSE group. It also
avoids the uncertainty that comes with parameter tuning for trust-region methods like
Levenberg-Marquardt. However, like all descent methods, the algorithm assumes that
the function it is optimizing is essentially continuous.

Mixed integer-nonlinear problems can be solved in several ways (Gill et al. 1981).
The first such way is a combinatorial approach—solving all possible combinations
and choosing the combination that gives the best answer to the objective function. For
the types of problems solved in practice within the RSE group at NASA Ames, the
combinatorial approach is computationally intractable. One recent example looked
for the best 4 attribute treatment out of 128 attributes; the solution of this prob-
lem would have required almost 11 million separate optimizations. Even limiting
the problem to choose the one best treatment would still require 128 different op-
timizations. Instead, as suggested by Gill et al. (1981), we introduced a new set of
variables ni into the TAR3 objective function where each variable was the percentage
likelihood that the attribute i should be included in the treatment. We then introduced
the term

∑
i ni

2−1 into the objective function to further increase the likelihood of a
single discrete choice being made by the optimizer. The final form of this objective
function is

minimize F(x) =
∑

i

1

n2
i

−∑
c Ucfc(x,ni, δx(ni))∑

c UcFc
, (15)

where Uc and Fc are defined as for (3). The vector x now takes the form {ni , MIN,
MAX, . . .} where all of the components are continuous and is 3 times the number
of attributes N in size. The variable fc is still the frequency of the class within each
subset, but each sum in fc is now modified by ni , the percentage likelihood that
the attribute i should be included in the treatment. The threshold function δx deter-
mines whether a particular attribute has enough of a percentage likelihood of being
included in the treatment by comparing the value of ni to a predetermined threshold.
The initial values of ni are set to the inverse of the number of attributes, 1/N . As the
optimizer shrinks some of the values of ni to maximize the

∑
i ni

2−1 term, some of
the values of ni become less than 1/(N + 1). When ni crosses this threshold, the δx

function removes the attribute from the rule. The optimizer must then choose between
increasing the

∑
i ni

2−1 term by choosing discrete values (this will also increase the
support term) at the cost of reducing the overall worth when attributes are dropped
from the rule. Note that Quasi-Newton BFGS methods have some small advantage
over some other gradient-based methods in this case because they are making local

456 Autom Softw Eng (2010) 17: 439–468

smooth approximations to the curvature of the function. However, the problem it-
self, as mentioned before, is inherently non-smooth. In fact, in this case, the objective
function can have cliffs even with respect to the continuous ranges because the in-
put to the objective function, the data, is also inherently discrete. As a result, it is
very likely that the optimizer will become stuck in local equilibria and that the final
solution will be highly dependent on the initial conditions.

While it is possible that we could have improved the performance of any gradient-
based method by recasting the objective function to one that was more smooth or
(perhaps) by recasting the problem as a constrained minimization problem, no such
solution presented itself after a good-faith effort to discover it. This is a common
limitation of gradient-based methods. While this limitation exists, it does not pre-
vent researchers from trying to use gradient-based optimization methods for non-
smooth problems—when the problem is smooth enough and the initial guess is close
enough to the global minimum there can be a significant performance increase over
direct search methods like polytope or simulated annealing. Treatment learning is, in
essence, a direct search method.

5 Related work

The work being performed here—choosing the inputs and ranges most likely to lead
to some output—can be thought of as a type of sensitivity analysis known as Monte
Carlo Filtering (Rose et al. 1991). The heavy lifting in most sensitivity analyses of
this type is currently being done either with purely linear correlation between the out-
put class and the inputs, a method known as regional sensitivity analysis (RSA) which
relies heavily on standard statistical tests such as the Smirnov two-sample test, or it is
being done using some sort of regression analysis in which the relationships between
the inputs and the outputs are derived from the data (Oakley and O’Hagan 2004;
Austin et al. 2007; Saltelli et al. 2008). Linear correlations fail in models which are
not smooth. For large models, RSA tends to have a very low success rate (Spear et al.
1994). Regression analysis builds a polynomial relationship by finding the correla-
tion coefficients between the inputs and outputs. These correlation coefficients are
then used to solve the original question—which inputs and their ranges most affect
the output—by looking at the magnitudes of the correlation coefficients across the
entire range. Regression analysis is computationally expensive and tends to be lim-
ited to relatively small numbers of theoretically independent inputs. RSA also tends
to assume that relationships between the inputs and outputs are smooth (Oakley and
O’Hagan 2004; Saltelli et al. 2008).

The types of problems being solved in this paper are non-smooth and of high
dimensionality. To overcome the complications involved in finding the correlation
coefficients for this sort of problem, we choose in practice to ignore the correlation
coefficients altogether and use machine learning techniques that sample the space
and solve the original question directly. One example of another existing sensitivity
analysis that uses machine learning is the identification of tool faults in the semicon-
ductor industry. Intel uses a technique similar in spirit to the analysis used by NASA’s
Robust Software Engineering (RSE) group to find spatial fault patterns on silicon

Autom Softw Eng (2010) 17: 439–468 457

wafers (Jing et al. 2007). While the overall goal and appearance of Intel’s method
is comparable to RSE’s, the details for every step of the analysis are very different
and they do not use treatment learning for their analysis (Torkkola and Tuv 2006;
Tuv et al. 2006; Eruhimov et al. 2007). The fact that parametric testing is being used
across widespread applications demonstrates its promise; the massive divergence in
the individual components of the technique is evidence that there is still significant
research to be done to streamline its use for real-world data.

Gay and Menzies recently conducted a similar treatment learning exercise on
NASA Jet Propulsion Lab projects (Gay et al. 2010). These projects were encoded
in the Defect Detection & Prevention format (Cornford et al. 2001; Feather et al.
2008), which is a compiled model representing the requirements of a module, the
risks that could compromise those requirements, and mitigations that can allay these
risks. Their candidate solution, KEYS2, is based on the theory that a small number of
important (“key”) variables control the overall search space. The algorithm generates
a large population of treatments and uses a Bayesian ranking mechanism similar to
that of the TAR4.1 algorithm (presented later in this paper) to score these treatments.
Each round, the top-scoring treatments are used to fix model attributes to specific val-
ues. They benchmarked KEYS2 against Simulated Annealing, MaxWalkSat, and an
A* search and found that their treatment learner proposed solutions that completed a
higher number of requirements on a lower budget than the other optimization tech-
niques. Additionally, KEYS2 executed the largest models in a fraction of the time
that it took for other algorithms.

6 Experiment

Ten Monte Carlo Filtering analyses were run for three different datasets, using five
different methods: TAR3, TAR4.1, Simulated Annealing with the TAR3 objective
function, Simulated Annealing with the TAR4.1 objective function, and a Quasi-
Newton BFGS method with a modified version of TAR3’s scoring function, as shown
in (15). As discussed in Sect. 2, two of the datasets come from actual analyses per-
formed within the RSE group at NASA Ames. The data in these two sets were gath-
ered during Monte Carlo runs using a high-fidelity physics simulation. One of these
datasets represents reentry simulations while the other dataset represents launch abort
simulations. The first dataset contains 191 runs worth of 52 different attributes. The
second dataset contains 1000 runs worth of 249 attributes. The data from these two
projects had complicated penalty functions based on all of the flight requirements—
these requirements include metrics like bounds on miss distances, fuel consumption,
and the stress on the parachutes. Data with the highest penalty function values are said
to have ‘failed’ and data with the lowest penalty function values are considered to be
the ‘best’ data. Note that, because of the complicated penalty function, the ‘failed’
data items are likely to have exceeded the allowed values on more than one require-
ment. An analysis like this gives an overall view of the safest flight conditions given
all of the different possible individual mission-critical failures. While the RSE group
will often go on to look at individual failure types, the purpose of this experiment was
to search for the factors leading to any type of mission-critical failure.

458 Autom Softw Eng (2010) 17: 439–468

To demonstrate the broad applicability of the technique, we also ran a Monte Carlo
Filtering analysis on some data obtained during a bicycle ride. The software that gen-
erated the data gave a particularly noisy power measurement. The penalty function
used in this dataset evaluated each point in real-time as an individual trial and penal-
ized each run by the noise in the power measurement. The goal was to see which of
the other measured parameters was most likely to correspond with the noisy power
measurement. This dataset contained 4435 runs over 11 attributes.

7 Results

During each trial, several statistics were collected in order to assess the treatments
output by that algorithm. Let {A, B , C, and D} denote the true negatives, false nega-
tives, false positives, and true positives. From these measures, we can compute certain
standard formulas.

recall = probability of detection = D

B + D
(16)

probability of false alarm = C

A + C
(17)

precision = D

D + C
(18)

For recall and precision, higher values are better. For the probability of false
alarm, lower values are desired. Those performance measures, along with the run-
time (which should be minimized) were collected for each individual run of each
algorithm, then the averages, medians, and standard deviations were saved for each
trial. After ten repeats, those statistics were combined and used to create quartile
charts. The results for each of our algorithms were combined and ranked using the
Mann-Whitney rank-sum test (Mann and Whitney 1947).

These quartile charts, sorted by the Mann-Whitney ranks, can be seen in Figs. 5,
6, and 7. Note that SA-T3 and SA-T4 refer to the two variants of Simulated Anneal-
ing, using the TAR3 and TAR4.1 objective functions respectively. Where used, QN
refers to the Quasi-Newton gradient-based method. Also note that only the median
values from each individual run were used in the combined results. In each quartile
chart, the horizontal lines show the 25 to 75 percentile range, and the black dot rep-
resents the median point. The ranks come from the Mann-Whitney rank-sum test at a
95% confidence level. Each rank, from one to five, is statistically different and better
than the following rank. If two algorithms have the same rank, their results are not
statistically different.

After looking at the results from all three datasets, a clear ranking emerges for each
of the collected performance statistics (assessed by the Mann-Whitney test). These
rankings are (from best to worst, with parentheses denoting a tie):

– Runtimes: TAR4.1, TAR3, QN, (SA-T4, SA-T3)
– Recall: (TAR4.1, QN), SA-T4, TAR3, SA-T3
– Probability of False Alarm: TAR3, SA-T3, TAR4.1, SA-T4, QN
– Precision: TAR3, SA-T3, TAR4.1, (SA-T4, QN)

Autom Softw Eng (2010) 17: 439–468 459

Fig. 5 Results on several criterion, sorted by Mann-Whitney rank, for the RSE Project 1. In each quartile
chart, the horizontal lines (if any) show the 25 to 75 percentile range, and the black dot represents the
median point. Quartiles are obtained from summarizing data over ten repeats. Row i is ranked higher than
row i − 1 if their value distributions are statistically different (Mann-Whitney 95% confidence level) and
the median of row i is better than row i + 1. For recall and precision, higher values are better. For the
probability of false alarm, lower values are desired

While these rankings do not show a single “winner,” they do present a clear vic-
tory for the two treatment learning techniques. Either TAR3 or TAR4.1 is ranked
at the top in every category, and neither of them are ranked worst in any category.
TAR4.1 ties with the Quasi-Newton method in the recall category when one con-
siders the statistical ranking; however, TAR4.1 does tend to show a higher median
value.

The Simulated Annealer acted in accordance with its objective function. When
using the TAR3 objective function, it tends towards high precision and low recall.
Likewise, when using the TAR4.1 objective function, Simulated Annealing returns
treatments with higher recall and low precision. In both cases, it performed more

460 Autom Softw Eng (2010) 17: 439–468

Fig. 6 Results on several criterion, sorted by Mann-Whitney rank, for RSE Project 2. In each quartile
chart, the horizontal lines (if any) show the 25 to 75 percentile range, and the black dot represents the
median point. Quartiles are obtained by summarizing data over ten repeats. Row i is ranked higher than
row i − 1 if their value distributions are statistically different (Mann-Whitney 95% confidence level) and
the median of row i is better than row i + 1. For recall and precision, higher values are better. For the
probability of false alarm, lower values are desired

weakly than its treatment learner counterpart. Both the weaker results and slower run-
time can be explained by the very design of Simulated Annealing: because it makes a
single initial guess and mutates it, it is unable to try as many combinations as TAR3
or TAR4.1. It must keep trying to make its guess better, and only resets after certain
timers expire. It keeps resetting until a certain score threshold is met, which is why
it is slower than the other algorithms. If its initial guess is particularly poor, it will
never be able to mutate it into something that scores highly. Thus, it will reset until it
is able to find a good mutation.

Quasi-Newton performs very well on recall, even tying with TAR4.1 in the rank-
sum test. However, it also has the worst probability of selecting false positives. In

Autom Softw Eng (2010) 17: 439–468 461

Fig. 7 Results on several criterion, sorted by Mann-Whitney rank, for the bicycle dataset. In each quartile
chart, the horizontal lines (if any) show the 25 to 75 percentile range, and the black dot represents the
median point. Quartiles represent data summarized over ten repeats. Row i is ranked higher than row i − 1
if their value distributions are statistically different (Mann-Whitney 95% confidence level) and the median
of row i is better than row i + 1. For recall and precision, higher values are better. For the probability of
false alarm, lower values are desired

fact, its false positive rate exceeds its true positive rate on the bicycle dataset. Quasi-
Newton is extremely imprecise, it tries to suggest treatments that contain most of the
data rather than making any attempt to fit the treatment to the data. As with Simulated
Annealing, Quasi-Newton returns results that are highly dependent on the initial con-
ditions. This is because the data has a tendency to be discrete, while Quasi-Newton
assumes continuous conditions. In these situations, the algorithm is likely to become
stuck in local minima.

Both Simulated Annealing and Quasi-Newton require favorable initial conditions.
This weakness is not shared by the treatment learners because of their highly ran-
domized nature. They do not make any single initial guess, and they do not try to

462 Autom Softw Eng (2010) 17: 439–468

manipulate their findings. The use of stochastic search algorithms has been criti-
cized because their results may not be optimal; they may miss potentially powerful
treatments because they randomly skip around the space of possible solutions. How-
ever, the problem that we are trying to solve is inherently not smooth (much less not
convex), which means that gradient-based optimization techniques are also likely to
miss the optimal solution. This effect is somewhat mitigated by TAR3 and TAR4.1
because they form treatments from a cumulative probability distribution that favors
high-scoring ranges.

8 Discussion

While the results show the advantage for using treatment learning algorithms for these
kinds of problems, they do not answer which one to use. TAR3 and TAR4.1 excel in
different areas, and there is a notable tradeoff between the two. This makes it difficult
to clearly recommend one over the other.

TAR3 is extremely specific in its recommendations. It tends to produce treatments
that maximize the lift calculation while just meeting the support requirement. The
result of this are treatments with a low recall value and a very high level of precision.
While the recall values are weak, reflecting the lower support, the false alarm rate is
nonexistent. This alone may be a reason to favor TAR3’s treatments. TAR3 will not
give you all of the sources of failure, but it will suggest very few false positives.

TAR4.1, on the other hand, is prone to suggesting treatments with a very high level
of support, leading to a higher probability of detection. The problem with TAR4.1’s
results is that its treatments are not well-fitted to the data, they do a poor job of
filtering out noisy factors or unnecessary information. This results in a much higher
false alarm rate then that seen in TAR3’s predictions.

The results for both treatment learners when asked to solve the problems as de-
signed by the RSE group, regardless of their respective strengths, tend to be low when
compared to the results of standard data mining problems in the literature. Note that,
in most cases, every single algorithm used in this experiment returned performance
values below 50%. This effect is largely due to the type of problem being solved
within the RSE group. In the experiments run in this paper, these treatment learners
were being asked to look for any critical failure (not just specific types of critical
failures). This has a tendency to blur the results, as the learners must correlate back
to a wide range of inputs, perhaps with disjoint ranges, and there is no guarantee that
key inputs for an individual type of failure are in the dataset.

To gain a clearer look at their potential performance, we ran one additional exper-
iment, asking the treatment learning and optimization algorithms to look at a specific
failure type in isolation for the second RSE project. In this case, we chose to look at
the failures in which a critical slideslip angle limit was exceeded. Those results can
be seen in Fig. 8. Both TAR3 and TAR4.1 are better able to fit their treatments to the
specific problem, resulting in a much lower false alarm rate and almost 100% pre-
cision. Interestingly, TAR3 and TAR4.1 performed almost identically, with TAR4.1
maintaining a slightly higher recall and TAR3 a slightly higher precision. TAR3’s re-
call rose significantly, from a 23% median to 36%, while TAR4.1’s dropped roughly
the same amount, from 48% to 39%.

Autom Softw Eng (2010) 17: 439–468 463

Fig. 8 Results on several criterion, sorted by Mann-Whitney rank, for a specific error type in the second
RSE project. In each quartile chart, the horizontal lines (if any) show the 25 to 75 percentile range, and the
black dot represents the median point. Quartiles are obtained by summarizing data over ten repeats. Row i
is ranked higher than row i − 1 if their value distributions are statistically different (Mann-Whitney 95%
confidence level) and the median of row i is better than row i + 1. For recall and precision, higher values
are better. For the probability of false alarm, lower values are desired

This experiment in looking at a specific failure type is an even clearer example
of why treatment learning techniques should be used. While there was an increase in
precision across the board due to the more precise nature of the problem, the perfor-
mance of the optimization methods was far below the treatment learners. When the
TAR3 objective function was used by the simulated annealer, it performed similarly
to the actual TAR3. However, its results were poorer and its runtime was slower. Sim-
ulated annealing with the TAR4.1 objective function and the Quasi-Newton method
showed particularly poor results. For both of these algorithms, the false alarm rate
was higher than the median detection rate.

464 Autom Softw Eng (2010) 17: 439–468

Both the data mining and information retrieval fields have weighed in on the
tradeoff between precision and recall on numerous occasions (Menzies et al. 2007;
Cleland-Huang et al. 2006; Antoniol et al. 2002; Antoniol and Gueheneuc 2005;
Marcus and Maletic 2003), never definitively preferring one over the other. For NASA
use, both values are highly important. The RSE simulators allow for stochastic para-
meters, with the wind values being a classic example. Even on a day in which there
is no wind, there is a chance for a gust. The model tries to mimic measured parame-
ters for the time of year and day in the launch location. The learners used in these
experiments only suggest treatments for parameters we can control or measure, but
these uncontrollable stochastic parameters still exist (note, however, that these para-
meters are likely to be at least loosely correlated with parameters we can control and
measure). As a result, the failure boundaries are not well-defined.

In the particular cases that the RSE group is trying to solve, recall equates to the
percentage of failures contained within the predicted rule. Obviously, a user would
like recall to be high—you want the produced rules to actually predict the failure.
For example, if 95% of all parachute failures happen when the easterly winds exceed
some parameter in combination with a center of gravity (cg) within some given range,
then you would want to know that restricting the allowable wind velocities and cg on
launch day will greatly decrease the odds of that kind of parachute failure (the next
goal, at this point, would be to find a rule that eliminates the odds of the other 5% of
the failures). However, most treatment-finding algorithms can trivially prevent 100%
of launch failures simply by specifying that the launch should never happen at all. If
the learner decides that the failures occur when the wind velocities are greater than
zero, the produced treatment is essentially stating that no launch is safe.

This is why precision is important in addition to recall—high precision values im-
ply that the treatment doesn’t trivially satisfy the constraints. Furthermore, precision
does more than just prevent trivial solutions; it gives the engineers definitive trade
spaces in which to work. In our previous example, we prevented 95% of parachute
failures simply by restricting wind velocities in combination with the cg. The rule
could have prevented the same 95% of failures by just restricting the cg placement
without considering the wind velocities, but would have done so with worse preci-
sion. If restricting the cg of the vehicle becomes too expensive, it may be easier to
move the launch date and time to make sure that the wind velocities are particularly
low on the day of launch.

Given the high importance of both precision and recall on NASA simulations, our
recommendation would be to favor neither TAR3 or TAR4.1, but to run both and
compare the treatments delivered. The runtime advantage that both algorithms have
over standard optimization techniques allows for the use of both to quickly explore
the treatment space.

9 External validity

These experiments were conducted at NASA Ames Research Center with assistance
from NASA contractors and civil servants. Additionally, two of the primary sources
of data were from large-scale NASA project simulations. Therefore, a possible threat

Autom Softw Eng (2010) 17: 439–468 465

to validity exists from the data and environment used for this experiment. The ex-
ternal validity of NASA-based research has been debated by Menzies et al. (2007),
Turhan et al. (2008). Basili et al. (2002) have argued that conclusions derived from
NASA data are relevant to the overall software industry because NASA contractors
are obliged to demonstrate an understanding and adherence to modern industrial
best practices. These same contractors service numerous industries. For example,
Rockwell-Collins builds systems for both defense contractors and civilian aerospace
corporations.

However, the work of other authors is not enough to completely dispel the issue
of external validity. This is one of the reasons that the bicycle dataset was included
in this experiment. The data, recorded during the operation of a bicycle, was not
collected using NASA hardware or at a NASA facility. Despite this separation, the
same trends occurred and each of the algorithms performed at a similar efficiency.
This replication of trends shows that treatment learning is not a task that has been
tuned to NASA data; it, in fact, has applications for both large-scale and small-scale
industrial testing.

10 Conclusions and future work

Building a large-scale industrial system is a difficult task. It can cost millions of dol-
lars and require months to years of testing. Early simulation makes a large difference,
cutting both the cost and time to market (Sendall and Kozacaynski 2003). However,
this early simulation is of limited value if there is not a way to tell which specific
factors led to system failures. Experts are expensive and their time is limited, they
cannot waste hours sorting through gigabytes of simulation logs. They need a way to
limit the number of possible combinations that need to be examined.

Treatment learning, formally a subset of minimal contrast-set learning, is one
method of accomplishing this task. A treatment learner gathers evidence from labeled
simulation instances and determines the smallest rule that, when imposed, makes it
most likely that a specific outcome will occur.

Although the TAR3 learner has been used in prior publications, it has never been
benchmarked against optimization techniques on real-world applications. The goal of
this research is to comparatively assess two different treatment learning techniques
(TAR3 and TAR4.1) against two standard optimization algorithms (a Quasi-Newton
method and Simulated Annealing) on real-world industrial projects. Three sets of
data were used, two from large NASA projects and one from the operation of a
bicycle. Each algorithm was executed multiple times over each dataset and perfor-
mance statistics were collected. The results show that treatment learning shows better
performance when compared to standard optimization algorithms for these sorts of
problems. Both TAR3 and TAR4.1 are orders of magnitude faster than standard tech-
niques. TAR3 demonstrates the lowest false positive rate and highest precision, while
TAR4.1 produces the highest recall. Thus demonstrating the superiority of treatment
learning over standard optimization algorithms for such design improvement. As both
precision and recall are important for such NASA simulations, we favor neither treat-
ment learner; rather, we advocate the use of both TAR3 and TAR4.1 to provide a pool
of design suggestions.

466 Autom Softw Eng (2010) 17: 439–468

The immediate research direction for the treatment learners will center around
improvements to the internal heuristics. One idea proposed has been to change the
discretization technique. Currently, both TAR3 and TAR4.1 use a simple equal-bin
scheme. This naive approach is likely to miss important curves in the data space. Ex-
periments are being conducted with various alternative schemes, including recursive
cliff-based methods (Fayyad and Irani 1993). Other planned improvements center
around optimization of the source code. There are still numerous memory issues that
should be addressed and the code should be re-engineered to follow the highest in-
dustrial programming standards.

Both of our treatment learners ignore the time-dependency of the recorded data.
This is a potential weakness when looking at the failure of a complex system, where
the exact cause of a failure may not always be present at the moment where the effect
of that failure causes the system to cease functioning. A potential avenue for future
research could include incorporating a Markov Model or a Linear Dynamical System
into the data processing steps (Bishop 2007) and modifying TAR3 and TAR4.1 with
the ability to use these models in their analysis. The treatment learners should con-
sider extreme or mean values over some period of time, whether a particular system
mode was ever entered into, and other key events. A goal for this analysis would be
to find a way to use sequential data within the machine learning techniques in order
to automatically identify interesting time-dependent factors.

Acknowledgements This research was conducted at West Virginia University and the Ames Research
Center under a contract with the National Aeronautics and Space Administration. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not constitute or imply its endorsement by the United States Government.

References

Acevedo, A., Arnold, J., Othon, W., Berndt, J.: ANTARES: Spacecraft simulation for multiple user com-
munities and facilities. In: AIAA Modeling and Simulation Technologies Conference and Exhibit,
pp. 2007–6888 (2007)

Agrawal, R., Imeilinski, T., Swami, A.: Mining association rules between sets of items in large databases.
In: Proceedings of the 1993 ACM SIGMOD Conference, Washington, DC, USA (1993). Available
from http://citeseer.nj.nec.com/agrawal93mining.html

Antoniol, G., Gueheneuc, Y.: Feature identification: a novel approach and a case study. In: ICSM 2005,
pp. 357–366 (2005)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links between
code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002)

Austin, P., Grootendorst, P., Anderson, G.: A comparison of the ability of different propensity score models
to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat.
Med. 26, 734–753 (2007)

Basili, V., McGarry, F., Pajerski, R., Zelkowitz, M.: Lessons learned from 25 years of process improve-
ment: the rise and fall of the NASA software engineering laboratory. In: Proceedings of the 24th
International Conference on Software Engineering (ICSE) 2002, Orlando, Florida (2002). Available
from http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/83.88.pdf

Bay, S.B., Pazzani, M.J.: Detecting change in categorical data: mining contrast sets. In: Proceedings of
the Fifth International Conference on Knowledge Discovery and Data Mining (1999). Available from
http://www.ics.uci.edu/pazzani/Publications/stucco.pdf

Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2007)
Boehm, B., Papaccio, P.: Understanding and controlling software costs. IEEE Trans. Softw. Eng. 14(10),

1462–1477 (1988)

http://citeseer.nj.nec.com/agrawal93mining.html
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/83.88.pdf
http://www.ics.uci.edu/pazzani/Publications/stucco.pdf

Autom Softw Eng (2010) 17: 439–468 467

Boetticher, G.: An assessment of metric contribution in the construction of a neural network-based effort
estimator. In: Second International Workshop on Soft Computing Applied to Software Engineering,
Enschade, NL (2001). Available from: http://nas.cl.uh.edu/boetticher/publications.html

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Technical re-
port, Wadsworth International, Monterey, CA (1984)

Cai, C.H., Fu, A.W.C., Cheng, C.H., Kwong, W.W.: Mining association rules with weighted items. In: Pro-
ceedings of International Database Engineering and Applications Symposium (IDEAS 98) (August
1998). Available from http://www.cse.cuhk.edu.hk/kdd/assoc_rule/paper.pdf

Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection and classification of non-functional re-
quirements with application to early aspects. In: RE 2006, pp. 36–45 (2006)

Cornford, S.L., Feather, M.S., Hicks, K.A.: DDP a tool for life-cycle risk management. In: IEEE Aerospace
Conference, Big Sky, Montana, pp. 441–451 (March 2001)

Dechter, R.: Constraint Processing. Morgan Kaufmann, San Mateo (2003)
Eruhimov, V., Martyanov, V., Tuv, E.: Knowledge discovery in databases: PKDD 2007. In: Construct-

ing High Dimensional Feature Space for Time Series Classification, pp. 414–421. Springer, Berlin
(2007)

Fayyad, U., Irani, I.: Multi-interval discretization of continuous-valued attributes for classification learn-
ing. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pp.
1022–1027 (1993)

Feather, M., Cornford, S., Hicks, K., Kiper, J., Menzies, T.: Application of a broad-spectrum quantitative
requirements model to early-lifecycle decision making. In: IEEE Software (2008). Available from
http://menzies.us/pdf/08ddp.pdf

Fischer, B., Schumann, J.: Autobayes: a system for generating data analysis programs from statistical
models. J. Funct. Program. 13, 483–508 (2003)

Gay, G., Menzies, T., Jalali, O., Mundy, G., Gilkerson, B., Feather, M., Kiper, J.: Finding robust solutions
in requirements models. Autom. Softw. Eng. 17(1), 87–116 (2010)

Gigerenzer, G., Goldstein, D.G.: Reasoning the fast and frugal way: models of bounded rationality. Psy-
chol. Rev. 650–669 (1996)

Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, San Diego (1981)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison–Wesley,

Reading (1989)
Gu, J., Purdom, P., Franco, J., Wah, B.: Algorithms for the satisfiability (sat) problem: a survey. In: DI-

MACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 19–152. American
Mathematical Society, Providence (1997)

Gundy-Burlet, K., Schumann, J., Barrett, T., Menzies, T.: Parametric analysis of ANTARES re-entry guid-
ance algorithms using advanced test generation and data analysis. In: 9th International Symposium
on Artificial Intelligence, Robotics and Automation in Space (2007)

Gundy-Burlet, K., Schumann, J., Barrett, T., Menzies, T.: Parametric analysis of a hover test vehicle using
advanced test generation and data analysis. In: AIAA Aerospace (2009)

Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn.
11, 63 (1993)

Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)
Hu, Y.: Treatment learning: implementation and application. Master’s thesis, Department of Electrical

Engineering, University of British Columbia (2003)
Jing, H., George, R., Tuv, E.: Contributors to a signal from an artificial contrast. In: Informatics in Control,

Automation and Robotics II, pp. 71–78. Springer, Berlin (2007)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 4598, 671–680

(1983)
Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)
Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger

than the other. Ann. Math. Stat. 18(1), 50–60 (1947). Available on-line at http://projecteuclid.org/
DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177730491

Marcus, A., Maletic, J.: Recovering documentation-to-source code traceability links using latent semantic
indexing. In: Proceedings of the Twenty-Fifth International Conference on Software Engineering
(2003)

Menzies, T., Hu, Y.: Data mining for very busy people. In: IEEE Computer (November 2003). Available
from http://menzies.us/pdf/03tar2.pdf

Menzies, T., Sinsel, E.: Practical large scale what-if queries: case studies with software risk assessment.
In: Proceedings ASE 2000 (2000). Available from http://menzies.us/pdf/00ase.pdf

http://nas.cl.uh.edu/boetticher/publications.html
http://www.cse.cuhk.edu.hk/kdd/assoc_rule/paper.pdf
http://menzies.us/pdf/08ddp.pdf
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177730491
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177730491
http://menzies.us/pdf/03tar2.pdf
http://menzies.us/pdf/00ase.pdf

468 Autom Softw Eng (2010) 17: 439–468

Menzies, T., Dekhtyar, A., Distefano, J., Greenwald, J.: Problems with precision. IEEE Trans. Softw. Eng.
(September 2007). Available from http://menzies.us/pdf/07precision.pdf

Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect predictors. IEEE
Trans. Soft. Eng. (January 2007). Available from http://menzies.us/pdf/06learnPredict.pdf

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations
by fast computing machines. J. Chem. Phys 21, 1087–1092 (1953)

Oakley, J., O’Hagan, A.: Probabilistic sensitivity analysis of complex models: a Bayesian approach. J. R.
Stat. Soc. B 66(3), 751–769 (2004)

Orrego, A.S.: Sawtooth: Learning from huge amounts of data. Master’s thesis, Computer Science, West
Virginia University (2004)

Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufman, San Mateo (1992). ISBN:
1558602380

Rose, K., Smith, E., Gardner, R., Brenkert, A., Bartell, S.: Parameter sensitivities, Monte Carlo filtering,
and model forecasting under uncertainty. J. Forecast. 10, 117–133 (1991)

Saltelli, A., Chan, K., Scott, E.M.: Sensitivity Analysis. Wiley, New York (2000)
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.:

Global Sensitivity Analysis: The Primer. Wiley, New York (2008)
Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., Barrett, T.: Tool support for parametric analy-

sis of large software systems. In: Proc. Automated Software Engineering, 23rd IEEE/ACM Interna-
tional Conference (2008)

Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., Barrett, A.: Software V&V support by para-
metric analysis of large software simulation systems. In: 2009 IEEE Aerospace Conference (2009)

Sendall, S., Kozacaynski, W.: Model transformation: the heart and soul of model-driven software develop-
ment. IEEE Softw. 20(5), 42–45 (2003)

Sims, C.: Matlab optimization software. QM&RBC Codes, Quantitative Macroeconomics & Real Business
Cycles (March 1999)

Spear, R., Grieb, T., Shang, N.: Parameter uncertainty and interaction in complex environmental models.
Water Resour. Res. 30(11), 3159–3169 (1994)

Taylor, B.J., Darrah, M.A.: Rule extraction as a formal method for the verification and validation of neural
networks. In: IJCNN ’05: Proceedings. 2005 IEEE International Joint Conference on Neural Net-
works, vol. 5, pp. 2915–2920 (2005)

Torkkola, K., Tuv, E.: Ensembles of regularized least squares classifiers for high-dimensional problems.
In: Feature Extraction, pp. 297–313. Springer, Berlin (2006)

Towell, G., Shavlik, J.: Extracting refined rules from knowledge-based neural networks. Mach. Learn. 13,
71–101 (1993)

Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J.: On the relative value of cross-company and within-
company data for defect prediction. In: Empirical Software Engineering (2009). Available from
http://menzies.us/pdf/08ccwc.pdf

Tuv, E., Borisov, A., Torkkola, K.: Best subset feature selection for massive mixed-type problems. In: In-
telligent Data Engineering and Automated Learning—IDEAL 2006, pp. 1048–1056. Springer, Berlin
(2006)

Uribe, T., Stickel, M.: Ordered binary decision diagrams and the Davis-Putnam procedure. In: Proc. of the
1st International Conference on Constraints in Computational Logics, pp. 34–49. Springer, Berlin
(1994)

Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Imple-
mentations. Morgan Kaufmann, San Mateo (1999)

Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan
Kaufmann, San Mateo (2005)

http://menzies.us/pdf/07precision.pdf
http://menzies.us/pdf/06learnPredict.pdf
http://menzies.us/pdf/08ccwc.pdf

	Automatically finding the control variables for complex system behavior
	Abstract
	Introduction
	Data background
	Data mining and treatment learning
	Data mining
	Treatment learning
	Example output
	BORE classification
	TAR3
	TAR4.1

	Optimization techniques
	Simulated annealing
	Quasi-Newton optimization

	Related work
	Experiment
	Results
	Discussion
	External validity
	Conclusions and future work
	Acknowledgements
	References

