163 research outputs found

    Controlling a remotely located Robot using Hand Gestures in real time: A DSP implementation

    Full text link
    Telepresence is a necessity for present time as we can't reach everywhere and also it is useful in saving human life at dangerous places. A robot, which could be controlled from a distant location, can solve these problems. This could be via communication waves or networking methods. Also controlling should be in real time and smooth so that it can actuate on every minor signal in an effective way. This paper discusses a method to control a robot over the network from a distant location. The robot was controlled by hand gestures which were captured by the live camera. A DSP board TMS320DM642EVM was used to implement image pre-processing and fastening the whole system. PCA was used for gesture classification and robot actuation was done according to predefined procedures. Classification information was sent over the network in the experiment. This method is robust and could be used to control any kind of robot over distance

    A virtual hand assessment system for efficient outcome measures of hand rehabilitation

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control

    Designing a robotic port system for laparo-endoscopic single-site surgery

    Get PDF
    Current research and development in the field of surgical interventions aim to reduce the invasiveness by using few incisions or natural orifices in the body to access the surgical site. Considering surgeries in the abdominal cavity, the Laparo-Endoscopic Single-site Surgery (LESS) can be performed through a single incision in the navel, reducing blood loss, post-operative trauma, and improving the cosmetic outcome. However, LESS results in less intuitive instrument control, impaired ergonomic, loss of depth and haptic perception, and restriction of instrument positioning by a single incision. Robot-assisted surgery addresses these shortcomings, by introducing highly articulated, flexible robotic instruments, ergonomic control consoles with 3D visualization, and intuitive instrument control algorithms. The flexible robotic instruments are usually introduced into the abdomen via a rigid straight port, such that the positioning of the tools and therefore the accessibility of anatomical structures is still constrained by the incision location. To address this limitation, articulated ports for LESS are proposed by recent research works. However, they focus on only a few aspects, which are relevant to the surgery, such that a design considering all requirements for LESS has not been proposed yet. This partially originates in the lack of anatomical data of specific applications. Further, no general design guidelines exist and only a few evaluation metrics are proposed. To target these challenges, this thesis focuses on the design of an articulated robotic port for LESS partial nephrectomy. A novel approach is introduced, acquiring the available abdominal workspace, integrated into the surgical workflow. Based on several generated patient datasets and developed metrics, design parameter optimization is conducted. Analyzing the surgical procedure, a comprehensive requirement list is established and applied to design a robotic system, proposing a tendon-driven continuum robot as the articulated port structure. Especially, the aspects of stiffening and sterile design are addressed. In various experimental evaluations, the reachability, the stiffness, and the overall design are evaluated. The findings identify layer jamming as the superior stiffening method. Further, the articulated port is proven to enhance the accessibility of anatomical structures and offer a patient and incision location independent design

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number
    corecore