4,959 research outputs found

    Power flows and Mechanical Intensities in structural finite element analysis

    Get PDF
    The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN

    Development of rotorcraft interior. Noise control concepts. Phase 1: Definition study

    Get PDF
    A description of helicopter noise, diagnostic techniques for source and path identification, an interior noise prediction model, and a measurement program for model validation are provided

    Effect of Boundary Constraints on the Nonlinear Flapping of Filaments Animated by Follower Forces

    Full text link
    Elastically driven filaments subjected to animating compressive follower forces provide a synthetic way to mimic the oscillatory beating of active biological filaments such as eukaryotic cilia. The dynamics of such active filaments can, under favorable conditions, exhibit stable time-periodic responses that result due to the interplay of elastic buckling instabilities, geometric constraints, boundary conditions, and dissipation due to fluid drag. In this paper, we use a continuum elastic rod model to estimate the critical follower force required for the onset of the stable time-periodic flapping oscillations in pre-stressed rods subjected to fluid drag. The pre-stress is generated by imposing either clamped-clamped or clamped-pinned boundary constraints and the results are compared with those of clamped-free case, which is without pre-stress. We find that the critical value increases with the initial slack--that quantifies the pre-stress, and strongly depends on the type of the constraints at the boundaries. The frequency of oscillations far from the onset, however, depends primarily on the magnitude of the follower force, not on the boundary constraints. Interestingly, oscillations for the clamped-pinned case are observed only when the follower forces are directed towards the clamped end. This finding can be exploited to design a mechanical switch to initiate or quench the oscillations by reversing the direction of the follower force or altering the boundary conditions

    Turbojet engine blade damping

    Get PDF
    The potentials of various sources of nonaerodynamic damping in engine blading are evaluated through a combination of advanced analysis and testing. The sources studied include material hysteresis, dry friction at shroud and root disk interfaces as well as at platform type external dampers. A limited seris of tests was conducted to evaluate damping capacities of composite materials (B/AL, B/AL/Ti) and thermal barrier coatings. Further, basic experiments were performed on titanium specimens to establish the characteristics of sliding friction and to determine material damping constants J and n. All the tests were conducted on single blades. Mathematical models were develthe several mechanisms of damping. Procedures to apply this data to predict damping levels in an assembly of blades are developed and discussed

    The study of the self-damping properties of overhead transmission line conductors subjected to wind-induced oscillations.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Conductors are flexible, elastic structural components of power lines. The relatively high flexibility of the conductors, coupled with the long spans and the axial tension, makes conductors to be highly prone to dynamic excitation such as wind loading. The problem of the dynamic behavior of overhead power transmission line conductors under the action of wind and other forms of excitations is very important, since it proffers the optimal design of the line in terms of its dynamic characteristics. Thus, mechanical vibration of power lines needs to be mitigated, especially from aeolian vibration as they can lead to damage of the lines causing power interruptions. The dynamic behaviour of conductors can be influenced by its damping. However, available tools for the analysis of this phenomenon is scarce. The objective of this study is to evaluate the conductor self-damping. The goal is to characterize and ascertain the influence of various conductors’ parameters on the amount of energy dissipation. In this study, a numerically based investigation of the response of conductors was carried out i.e. finite element analysis (FEA or FEM). This was used to model the conductor using a new modeling approach, in which the layers of its discrete structure of helical strands were modelled as a composite structure. Due to the helical structure of the conductor strands, this give rise to inter-strands contacts. During bending caused by external loading, the stick-slip phenomenon does occur around the contact region resulting in damping of energy out of the system. Characterizing the damping mechanism as hysteresis phenomenon, this resulted from coulomb’s dry-friction with the stick-slip regime at contacts points between the conductor strands. Employing contact mechanics to characterize and the use of FEM to discretize these contact regions, parameters such as the contact forces, strain and stress were established. When the conductor experiences a dynamic excitation in a sinusoidal form, a hysteresis loop is formed. The use of contact region parameters, to evaluate the area of the hysteresis loop and the area of the loop determines the amount of self-damping. Experimental studies were conducted to validate the FEM model. Two forms of experiment were done. The first was the sweep test, done at a specified axial tension i.e. as a function of its ultimate tensile strength. This was used to determine the resonance frequencies for the conductors. In the second test, using the determined resonance frequencies from the first test were used to vibrate the conductors at these frequencies to establish the hysteresis loop at the same specified axial tension. The experiment was conducted with four different conductors with different number of layers. This was used to establish the relation between the numbers of layer and the amount of damping from the conductor. The conductors’ vibration experimental results obtained at a defined axial tension (as percentage of its UTS) correlate with that of FEM model. The results obtained showed a general increase in the resonance frequencies of vibration and a decrease in damping as the axial tension of the conductor is increased. The establishment of the hysteretic constitutive behaviour of strands under specific loading conditions as described in the thesis, using this FEM model, an algorithm was developed to evaluate the conductor self-damping. Based on this algorithm, computer programs have been developed to evaluate the conductor’s dynamic behaviour and implemented in MATLAB environment. Due to the very close relation between damping and conductor fatigue, this model can also be extended to investigate fatigue failure of conductors

    Dynamic analysis and active control of lattice structures

    No full text
    This thesis presents an investigation of the factors controlling the performance of two forms of active vibration control applied to lattice structures, such as those used for space applications. The structure considered is based on a lattice structure assembled by NASA in 1984. It consists of a satellite boom with 93 aluminium members connected rigidly through 33 spherical joints. The structure has two distinct forms of motion which are categorized in terms of short and long wavelength modes. The short wavelength modes occurs when the length of the individual members is a multiple of half wavelength of bending waves. The second category, named long wavelength modes occur when the length of the whole structure is a multiple of half wavelength of waves propagating by longitudinal motion in the structure. Simple expressions are derived to identify the factors that control the frequency bands where short and long wavelength modes occur. It is possible to alter the dynamic behaviour of the system by changing some of the factors in these expressions and thus study the active and passive control of vibration in a variety of such structures. The two strategies of active control considered in the thesis are feedforward control and integral force feedback control. Feedforward control usually requires deterministic forms of disturbance sources while feedback control can be applied to random disturbances. It has been found that short wavelength modes can reduce the performance in the feedback control strategy, while the results of feedforward control are not affected so much. To support this analysis, the energy dissipation and power flow mechanisms in the structure are studied. The results in this thesis are based on numerical simulations and experimental tests which have been used to validate the mathematical model of the structure

    Elastic Wave Transmission at an Abrupt Junction in a Thin Plate, with Application to Heat Transport and Vibrations in Mesoscopic Systems

    Get PDF
    The transmission coefficient for vibrational waves crossing an abrupt junction between two thin elastic plates of different widths is calculated. These calculations are relevant to ballistic phonon thermal transport at low temperatures in mesoscopic systems and the Q for vibrations in mesoscopic oscillators. Complete results are calculated in a simple scalar model of the elastic waves, and results for long wavelength modes are calculated using the full elasticity theory calculation. We suggest that thin plate elasticty theory provide a useful and tractable approximation to the full three dimensional geometry.Comment: 35 pages, including 12 figure

    ACTIVE TENDON CONTROL OF CABLE-STAYED BRIDGES

    Get PDF
    • …
    corecore