8,982 research outputs found

    Smart energy, and society?

    Get PDF

    Using dynamic optimal power flow to inform the design and operation of active network management schemes

    Get PDF
    Active Network Management (ANM) schemes are providing the communications and control infrastructure to allow the integration of energy storage and flexible demand in distribution networks. These technologies can be characterised as intertemporal in that their operation at different points in time is linked. This paper provides a discussion of the issues created when optimising an ANM scheme containing intertemporal energy technologies. A technique called Dynamic Optimal Power Flow is discussed and a case study is presented. The requirement to use forecasts of renewable energy resources such as wind power is discussed together with the issues that this creates

    Benchmarking Utility Clean Energy Deployment: 2014

    Get PDF
    This report assembles data from more than 10 sources, including state Renewable Portfolio Standard (RPS) annual reports, U.S. Securities and Exchange Commission 10-K filings and Public Utility Commission reports, to show how 32 of the largest U.S. investor-owned electric utility holding companies stack up on renewable energy and energy efficiency

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.
    • 

    corecore