7 research outputs found

    Development of Multiple Behaviors in Evolving Robots

    Get PDF
    We investigate whether standard evolutionary robotics methods can be extended to support the evolution of multiple behaviors by forcing the retention of variations that are adaptive with respect to all required behaviors. This is realized by selecting the individuals located in the first Pareto fronts of the multidimensional fitness space in the case of a standard evolutionary algorithms and by computing and using multiple gradients of the expected fitness in the case of a modern evolutionary strategies that move the population in the direction of the gradient of the fitness. The results collected on two extended versions of state-of-the-art benchmarking problems indicate that the latter method permits to evolve robots capable of producing the required multiple behaviors in the majority of the replications and produces significantly better results than all the other methods considered

    Action-oriented Scene Understanding

    Get PDF
    In order to allow robots to act autonomously it is crucial that they do not only describe their environment accurately but also identify how to interact with their surroundings. While we witnessed tremendous progress in descriptive computer vision, approaches that explicitly target action are scarcer. This cumulative dissertation approaches the goal of interpreting visual scenes “in the wild” with respect to actions implied by the scene. We call this approach action-oriented scene understanding. It involves identifying and judging opportunities for interaction with constituents of the scene (e.g. objects and their parts) as well as understanding object functions and how interactions will impact the future. All of these aspects are addressed on three levels of abstraction: elements, perception and reasoning. On the elementary level, we investigate semantic and functional grouping of objects by analyzing annotated natural image scenes. We compare object label-based and visual context definitions with respect to their suitability for generating meaningful object class representations. Our findings suggest that representations generated from visual context are on-par in terms of semantic quality with those generated from large quantities of text. The perceptive level concerns action identification. We propose a system to identify possible interactions for robots and humans with the environment (affordances) on a pixel level using state-of-the-art machine learning methods. Pixel-wise part annotations of images are transformed into 12 affordance maps. Using these maps, a convolutional neural network is trained to densely predict affordance maps from unknown RGB images. In contrast to previous work, this approach operates exclusively on RGB images during both, training and testing, and yet achieves state-of-the-art performance. At the reasoning level, we extend the question from asking what actions are possible to what actions are plausible. For this, we gathered a dataset of household images associated with human ratings of the likelihoods of eight different actions. Based on the judgement provided by the human raters, we train convolutional neural networks to generate plausibility scores from unseen images. Furthermore, having considered only static scenes previously in this thesis, we propose a system that takes video input and predicts plausible future actions. Since this requires careful identification of relevant features in the video sequence, we analyze this particular aspect in detail using a synthetic dataset for several state-of-the-art video models. We identify feature learning as a major obstacle for anticipation in natural video data. The presented projects analyze the role of action in scene understanding from various angles and in multiple settings while highlighting the advantages of assuming an action-oriented perspective. We conclude that action-oriented scene understanding can augment classic computer vision in many real-life applications, in particular robotics

    Hormonal Modulation of Developmental Plasticity in an Epigenetic Robot

    Get PDF
    In autonomous robotics, there is still a trend to develop and tune controllers with highly explicit goals and environments in mind. However, this tuning means that these robotic models often lack the developmental and behavioral flexibility seen in biological organisms. The lack of flexibility in these controllers leaves the robot vulnerable to changes in environmental condition. Whereby any environmental change may lead to the behaviors of the robots becoming unsuitable or even dangerous. In this manuscript we look at a potential biologically plausible mechanism which may be used in robotic controllers in order to allow them to adapt to different environments. This mechanism consists of a hormone driven epigenetic mechanism which regulates a robot’s internal environment in relation to its current environmental conditions. As we will show in our early chapters, this epigenetic mechanism allows an autonomous robot to rapidly adapt to a range of different environmental conditions. This adaption is achieved without the need for any explicit knowledge of the environment. Allowing a single architecture to adapt to a range of challenges and develop unique behaviors. In later chapters however, we find that this mechanism not only allows for regulation of short term behavior, but also long development. Here we show how this system permits a robot to develop in a way that is suitable for its current environment. Further during this developmental process we notice similarities to infant development, along with acquisition of unplanned skills and abilities. The unplanned developments appears to leads to the emergence of unplanned potential cognitive abilities such as object permanence, which we assess using a range of different real world tests

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics

    Get PDF
    This Open Access proceedings present a good overview of the current research landscape of industrial robots. The objective of MHI Colloquium is a successful networking at academic and management level. Thereby the colloquium is focussing on a high level academic exchange to distribute the obtained research results, determine synergetic effects and trends, connect the actors personally and in conclusion strengthen the research field as well as the MHI community. Additionally there is the possibility to become acquainted with the organizing institute. Primary audience are members of the scientific association for assembly, handling and industrial robots (WG MHI)

    Interference and Volatility in Evolutionary Agent-Based Systems

    Get PDF
    Agents that exist and pursue individual goals in shared environments can indirectly affect one another in unanticipated ways, such that the actions of others in the environment can interfere with the ability to achieve goals. Despite this, the impact that these unintended interactions and interference can have on agents is not currently well understood. This is problematic as these goal-oriented agents are increasingly situated in complex sociotechnical systems, that are composed of many actors that are heterogeneous in nature. The primary aim of this thesis is to explore the effect that indirect interference from others has on evolution and goal-achieving behaviour in agent-based systems. More specifically, this is investigated in the context of agents that do not possess the ability to perceive or learn about others within the environment, as information about others may not be readily available at runtime, or there may be a distinct lack of capacity to obtain such information. By conducting three experimental studies, it is established that evolutionary volatility is a consequence of indirect interactions between goal-oriented agents in a shared environment, and that these consequences can be mitigated by designing more socially-sensitive agents. Specifically, agents that employ social action are demonstrated to reduce the evolutionary volatility experienced by goal-oriented agents, without aecting the tness received. Additionally, behavioural plasticity achieved via neuromodulation is shown to allow coexisting agents to achieve their goals more often with less evolutionary volatility in highly variable environments. While sufficient approaches to mitigate interference include learning about or modelling others, or for agents to be explicitly designed to identify interference to mitigate its consequences, this thesis demonstrates that these are not necessary. Instead, more socially-sensitive agents are shown to be capable of achieving their goals and mitigating interference without this knowledge of others, simply by shifting the focus from goal-oriented actions to more socially-oriented behaviour
    corecore