25 research outputs found

    Behavioral repertoire learning in robotics

    Get PDF
    Behavioral Repertoire Learning in Robotics Antoine Cully ISIR, Université Pierre et Marie Curie-Paris 6, CNRS UMR 7222 4 place Jussieu, F-75252, Paris Cedex 05, France [email protected] Jean-Baptiste Mouret ISIR, Université Pierre et Marie Curie-Paris 6, CNRS UMR 7222 4 place Jussieu, F-75252, Paris Cedex 05, France [email protected] ABSTRACT Learning in robotics typically involves choosing a simple goal (e.g. walking) and assessing the performance of each con- troller with regard to this task (e.g. walking speed). How- ever, learning advanced, input-driven controllers (e.g. walk- ing in each direction) requires testing each controller on a large sample of the possible input signals. This costly pro- cess makes difficult to learn useful low-level controllers in robotics. Here we introduce BR-Evolution, a new evolutionary learn- ing technique that generates a behavioral repertoire by tak- ing advantage of the candidate solutions that are usually discarded. Instead of evolving a single, general controller, BR-evolution thus evolves a collection of simple controllers, one for each variant of the target behavior; to distinguish similar controllers, it uses a performance objective that al- lows it to produce a collection of diverse but high-performing behaviors. We evaluated this new technique by evolving gait controllers for a simulated hexapod robot. Results show that a single run of the EA quickly finds a collection of controllers that allows the robot to reach each point of the reachable space. Overall, BR-Evolution opens a new kind of learning algorithm that simultaneously optimizes all the achievable behaviors of a robot

    Unsupervised Feature Learning through Divergent Discriminative Feature Accumulation

    Full text link
    Unlike unsupervised approaches such as autoencoders that learn to reconstruct their inputs, this paper introduces an alternative approach to unsupervised feature learning called divergent discriminative feature accumulation (DDFA) that instead continually accumulates features that make novel discriminations among the training set. Thus DDFA features are inherently discriminative from the start even though they are trained without knowledge of the ultimate classification problem. Interestingly, DDFA also continues to add new features indefinitely (so it does not depend on a hidden layer size), is not based on minimizing error, and is inherently divergent instead of convergent, thereby providing a unique direction of research for unsupervised feature learning. In this paper the quality of its learned features is demonstrated on the MNIST dataset, where its performance confirms that indeed DDFA is a viable technique for learning useful features.Comment: Corrected citation formattin

    Using Parameterized Black-Box Priors to Scale Up Model-Based Policy Search for Robotics

    Get PDF
    The most data-efficient algorithms for reinforcement learning in robotics are model-based policy search algorithms, which alternate between learning a dynamical model of the robot and optimizing a policy to maximize the expected return given the model and its uncertainties. Among the few proposed approaches, the recently introduced Black-DROPS algorithm exploits a black-box optimization algorithm to achieve both high data-efficiency and good computation times when several cores are used; nevertheless, like all model-based policy search approaches, Black-DROPS does not scale to high dimensional state/action spaces. In this paper, we introduce a new model learning procedure in Black-DROPS that leverages parameterized black-box priors to (1) scale up to high-dimensional systems, and (2) be robust to large inaccuracies of the prior information. We demonstrate the effectiveness of our approach with the "pendubot" swing-up task in simulation and with a physical hexapod robot (48D state space, 18D action space) that has to walk forward as fast as possible. The results show that our new algorithm is more data-efficient than previous model-based policy search algorithms (with and without priors) and that it can allow a physical 6-legged robot to learn new gaits in only 16 to 30 seconds of interaction time.Comment: Accepted at ICRA 2018; 8 pages, 4 figures, 2 algorithms, 1 table; Video at https://youtu.be/HFkZkhGGzTo ; Spotlight ICRA presentation at https://youtu.be/_MZYDhfWeL

    Using Centroidal Voronoi Tessellations to Scale Up the Multi-dimensional Archive of Phenotypic Elites Algorithm

    Get PDF
    The recently introduced Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is an evolutionary algorithm capable of producing a large archive of diverse, high-performing solutions in a single run. It works by discretizing a continuous feature space into unique regions according to the desired discretization per dimension. While simple, this algorithm has a main drawback: it cannot scale to high-dimensional feature spaces since the number of regions increase exponentially with the number of dimensions. In this paper, we address this limitation by introducing a simple extension of MAP-Elites that has a constant, pre-defined number of regions irrespective of the dimensionality of the feature space. Our main insight is that methods from computational geometry could partition a high-dimensional space into well-spread geometric regions. In particular, our algorithm uses a centroidal Voronoi tessellation (CVT) to divide the feature space into a desired number of regions; it then places every generated individual in its closest region, replacing a less fit one if the region is already occupied. We demonstrate the effectiveness of the new "CVT-MAP-Elites" algorithm in high-dimensional feature spaces through comparisons against MAP-Elites in maze navigation and hexapod locomotion tasks

    Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents

    Full text link
    Evolution strategies (ES) are a family of black-box optimization algorithms able to train deep neural networks roughly as well as Q-learning and policy gradient methods on challenging deep reinforcement learning (RL) problems, but are much faster (e.g. hours vs. days) because they parallelize better. However, many RL problems require directed exploration because they have reward functions that are sparse or deceptive (i.e. contain local optima), and it is unknown how to encourage such exploration with ES. Here we show that algorithms that have been invented to promote directed exploration in small-scale evolved neural networks via populations of exploring agents, specifically novelty search (NS) and quality diversity (QD) algorithms, can be hybridized with ES to improve its performance on sparse or deceptive deep RL tasks, while retaining scalability. Our experiments confirm that the resultant new algorithms, NS-ES and two QD algorithms, NSR-ES and NSRA-ES, avoid local optima encountered by ES to achieve higher performance on Atari and simulated robots learning to walk around a deceptive trap. This paper thus introduces a family of fast, scalable algorithms for reinforcement learning that are capable of directed exploration. It also adds this new family of exploration algorithms to the RL toolbox and raises the interesting possibility that analogous algorithms with multiple simultaneous paths of exploration might also combine well with existing RL algorithms outside ES

    Discovering Unsupervised Behaviours from Full-State Trajectories

    Full text link
    Improving open-ended learning capabilities is a promising approach to enable robots to face the unbounded complexity of the real-world. Among existing methods, the ability of Quality-Diversity algorithms to generate large collections of diverse and high-performing skills is instrumental in this context. However, most of those algorithms rely on a hand-coded behavioural descriptor to characterise the diversity, hence requiring prior knowledge about the considered tasks. In this work, we propose an additional analysis of Autonomous Robots Realising their Abilities; a Quality-Diversity algorithm that autonomously finds behavioural characterisations. We evaluate this approach on a simulated robotic environment, where the robot has to autonomously discover its abilities from its full-state trajectories. All algorithms were applied to three tasks: navigation, moving forward with a high velocity, and performing half-rolls. The experimental results show that the algorithm under study discovers autonomously collections of solutions that are diverse with respect to all tasks. More specifically, the analysed approach autonomously finds policies that make the robot move to diverse positions, but also utilise its legs in diverse ways, and even perform half-rolls.Comment: Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022. arXiv admin note: substantial text overlap with arXiv:2204.0982

    Efficient Learning of Locomotion Skills through the Discovery of Diverse Environmental Trajectory Generator Priors

    Full text link
    Data-driven learning based methods have recently been particularly successful at learning robust locomotion controllers for a variety of unstructured terrains. Prior work has shown that incorporating good locomotion priors in the form of trajectory generators (TGs) is effective at efficiently learning complex locomotion skills. However, defining a good, single TG as tasks/environments become increasingly more complex remains a challenging problem as it requires extensive tuning and risks reducing the effectiveness of the prior. In this paper, we present Evolved Environmental Trajectory Generators (EETG), a method that learns a diverse set of specialised locomotion priors using Quality-Diversity algorithms while maintaining a single policy within the Policies Modulating TG (PMTG) architecture. The results demonstrate that EETG enables a quadruped robot to successfully traverse a wide range of environments, such as slopes, stairs, rough terrain, and balance beams. Our experiments show that learning a diverse set of specialized TG priors is significantly (5 times) more efficient than using a single, fixed prior when dealing with a wide range of environments
    corecore