3,350 research outputs found

    Transformation of UML Behavioral Diagrams to Support Software Model Checking

    Get PDF
    Unified Modeling Language (UML) is currently accepted as the standard for modeling (object-oriented) software, and its use is increasing in the aerospace industry. Verification and Validation of complex software developed according to UML is not trivial due to complexity of the software itself, and the several different UML models/diagrams that can be used to model behavior and structure of the software. This paper presents an approach to transform up to three different UML behavioral diagrams (sequence, behavioral state machines, and activity) into a single Transition System to support Model Checking of software developed in accordance with UML. In our approach, properties are formalized based on use case descriptions. The transformation is done for the NuSMV model checker, but we see the possibility in using other model checkers, such as SPIN. The main contribution of our work is the transformation of a non-formal language (UML) to a formal language (language of the NuSMV model checker) towards a greater adoption in practice of formal methods in software development.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Analyzing Consistency of Behavioral REST Web Service Interfaces

    Full text link
    REST web services can offer complex operations that do more than just simply creating, retrieving, updating and deleting information from a database. We have proposed an approach to design the interfaces of behavioral REST web services by defining a resource and a behavioral model using UML. In this paper we discuss the consistency between the resource and behavioral models that represent service states using state invariants. The state invariants are defined as predicates over resources and describe what are the valid state configurations of a behavioral model. If a state invariant is unsatisfiable then there is no valid state configuration containing the state and there is no service that can implement the service interface. We also show how we can use reasoning tools to determine the consistency between these design models.Comment: In Proceedings WWV 2012, arXiv:1210.578

    Teaching Model Views with UML and OCL

    Get PDF
    The specification of any non-trivial system is normally composed of a set of models. Each model describes a different view of the system, focuses on a particular set of concerns, and uses its own notation. For example, UML defines a set of diagrams for modelling the structure and behavior of any software system. One of the problems we perceived with our students is that they are able to understand each one of these diagrams, but they have problems understanding how they are related, and how the overall system specifications work when composed of a set of views. This paper presents a simple case study that we have developed and successfully used in class, which permits students developing the principal views of a system, simulate them, and check their relations.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    Modeling with Plausibility Checking: Inspecting Favorable and Critical Signs for Consistency between Control Flow and Functional Behavior

    Get PDF
    UML activity diagrams are a common modelling technique to capture behavioral aspects of system models. Usually, pre- and postconditions of activities are described in natural language and are not formally integrated with the static domain model. Hence, early consistency validation of activity models is difficult due to their semi-formal nature. In this paper, we use integrated behavior models that integrate activity diagrams with object rules defining sets of actions in simple activities. We formalize integrated behavior models using typed, attributed graph transformation. It provides a basis for plausibility checking by static conflict and causality detection between specific object rules, taking into account their occurrence within the control flow. This analysis leads to favorable as well as critical signs for consistency of the integrated behavior model. Our approach is supported by ActiGra, an Eclipse plug-in for editing, simulating and analyzing integrated behavior models. It visualizes favorable and critical signs for consistency in a convenient way and uses the well-known graph transformation tool AGG for rule application as well as static conflict and causality detection. We validate our approach by modeling a conference scheduling system

    UML models consistency management: guidelines for software quality manager

    No full text
    Unified Modeling Language (UML) has become the de-facto standard to design today’s large-size object-oriented systems. However, focusing on multiple UML diagrams is a main cause of breaching the consistency problem, which ultimately reduces the overall software model’s quality. Consistency management techniques are widely used to ensure the model consistency by correct model-to-model and model-to-code transformation. Consistency management becomes a promising area of research especially for model-driven architecture. In this paper, we extensively review UML consistency management techniques. The proposed techniques have been classified based on the parameters identified from the research literature. Moreover, we performed a qualitative comparison of consistency management techniques in order to identify current research trends, challenges and research gaps in this field of study. Based on the results, we concluded that researchers have not provided more attention on exploring inter-model and semantic consistency problems. Furthermore, state-of-the-art consistency management techniques mostly focus only on three UML diagrams (i.e., class, sequence and state chart) and the remaining UML diagrams have been overlooked. Consequently, due to this incomplete body of knowledge, researchers are unable to take full advantage of overlooked UML diagrams, which may be otherwise useful to handle the consistency management challenge in an efficient manner

    Incremental Consistency Checking in Delta-oriented UML-Models for Automation Systems

    Full text link
    Automation systems exist in many variants and may evolve over time in order to deal with different environment contexts or to fulfill changing customer requirements. This induces an increased complexity during design-time as well as tedious maintenance efforts. We already proposed a multi-perspective modeling approach to improve the development of such systems. It operates on different levels of abstraction by using well-known UML-models with activity, composite structure and state chart models. Each perspective was enriched with delta modeling to manage variability and evolution. As an extension, we now focus on the development of an efficient consistency checking method at several levels to ensure valid variants of the automation system. Consistency checking must be provided for each perspective in isolation, in-between the perspectives as well as after the application of a delta.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857
    corecore