239 research outputs found

    Numerical simulation of conservation laws with moving grid nodes: Application to tsunami wave modelling

    Get PDF
    In the present article we describe a few simple and efficient finite volume type schemes on moving grids in one spatial dimension combined with appropriate predictor-corrector method to achieve higher resolution. The underlying finite volume scheme is conservative and it is accurate up to the second order in space. The main novelty consists in the motion of the grid. This new dynamic aspect can be used to resolve better the areas with large solution gradients or any other special features. No interpolation procedure is employed, thus unnecessary solution smearing is avoided, and therefore, our method enjoys excellent conservation properties. The resulting grid is completely redistributed according the choice of the so-called monitor function. Several more or less universal choices of the monitor function are provided. Finally, the performance of the proposed algorithm is illustrated on several examples stemming from the simple linear advection to the simulation of complex shallow water waves. The exact well-balanced property is proven. We believe that the techniques described in our paper can be beneficially used to model tsunami wave propagation and run-up.Comment: 46 pages, 7 figures, 7 tables, 94 references. Accepted to Geosciences. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Three-points interfacial quadrature for geometrical source terms on nonuniform grids

    Get PDF
    International audienceThis paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells' size, for which LpL^p-error estimates, 1p<+1\le p < +\infty, are proven. Besides, a suitable notion of (weak) regularity for nonuniform meshes is introduced in the most general case, to compensate possibly reduced consistency conditions, and the optimality of the convergence rates with respect to the regularity assumptions on the problem's data is precisely discussed. This analysis attempts to provide a basic theoretical framework for the numerical simulation on unstructured grids (also generated by adaptive algorithms) of a wide class of mathematical models for real systems (geophysical flows, biological and chemical processes, population dynamics)

    Adaptive Mesh Refinement for Hyperbolic Systems based on Third-Order Compact WENO Reconstruction

    Get PDF
    In this paper we generalize to non-uniform grids of quad-tree type the Compact WENO reconstruction of Levy, Puppo and Russo (SIAM J. Sci. Comput., 2001), thus obtaining a truly two-dimensional non-oscillatory third order reconstruction with a very compact stencil and that does not involve mesh-dependent coefficients. This latter characteristic is quite valuable for its use in h-adaptive numerical schemes, since in such schemes the coefficients that depend on the disposition and sizes of the neighboring cells (and that are present in many existing WENO-like reconstructions) would need to be recomputed after every mesh adaption. In the second part of the paper we propose a third order h-adaptive scheme with the above-mentioned reconstruction, an explicit third order TVD Runge-Kutta scheme and the entropy production error indicator proposed by Puppo and Semplice (Commun. Comput. Phys., 2011). After devising some heuristics on the choice of the parameters controlling the mesh adaption, we demonstrate with many numerical tests that the scheme can compute numerical solution whose error decays as N3\langle N\rangle^{-3}, where N\langle N\rangle is the average number of cells used during the computation, even in the presence of shock waves, by making a very effective use of h-adaptivity and the proposed third order reconstruction.Comment: many updates to text and figure

    An open and parallel multiresolution framework using block-based adaptive grids

    Full text link
    A numerical approach for solving evolutionary partial differential equations in two and three space dimensions on block-based adaptive grids is presented. The numerical discretization is based on high-order, central finite-differences and explicit time integration. Grid refinement and coarsening are triggered by multiresolution analysis, i.e. thresholding of wavelet coefficients, which allow controlling the precision of the adaptive approximation of the solution with respect to uniform grid computations. The implementation of the scheme is fully parallel using MPI with a hybrid data structure. Load balancing relies on space filling curves techniques. Validation tests for 2D advection equations allow to assess the precision and performance of the developed code. Computations of the compressible Navier-Stokes equations for a temporally developing 2D mixing layer illustrate the properties of the code for nonlinear multi-scale problems. The code is open source

    Adaptive mesh reconstruction: Total Variation Bound

    Full text link
    We consider 3-point numerical schemes for scalar Conservation Laws, that are oscillatory either to their dispersive or anti-diffusive nature. Oscillations are responsible for the increase of the Total Variation (TV); a bound on which is crucial for the stability of the numerical scheme. It has been noticed (\cite{Arvanitis.2001}, \cite{Arvanitis.2004}, \cite{Sfakianakis.2008}) that the use of non-uniform adaptively redefined meshes, that take into account the geometry of the numerical solution itself, is capable of taming oscillations; hence improving the stability properties of the numerical schemes. In this work we provide a model for studying the evolution of the extremes over non-uniform adaptively redefined meshes. Based on this model we prove that proper mesh reconstruction is able to control the oscillations; we provide bounds for the Total Variation (TV) of the numerical solution. We moreover prove under more strict assumptions that the increase of the TV -due to the oscillatory behaviour of the numerical schemes- decreases with time; hence proving that the overall scheme is TV Increase-Decreasing (TVI-D)
    corecore