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Adaptive Mesh Refinement for Hyperbolic Systems based
on Third-Order Compact WENO Reconstruction

M. Semplice · A. Coco · G. Russo

Abstract In this paper we generalise to non-uniform grids of quad-tree type the
Compact WENO reconstruction of Levy, Puppo and Russo (SIAM J. Sci. Comput.,
2001), thus obtaining a truly two-dimensional non-oscillatory third order recon-
struction with a very compact stencil and that does not involve mesh-dependent
coefficients. This latter characteristic is quite valuable for its use in h-adaptive
numerical schemes, since in such schemes the coefficients that depend on the dis-
position and sizes of the neighbouring cells (and that are present in many existing
WENO-like reconstructions) would need to be recomputed after every mesh adap-
tion.

In the second part of the paper we propose a third order h-adaptive scheme
with the above-mentioned reconstruction, an explicit third order TVD Runge-
Kutta scheme and the entropy production error indicator proposed by Puppo
and Semplice (Commun. Comput. Phys., 2011). After devising some heuristics
on the choice of the parameters controlling the mesh adaption, we demonstrate
with many numerical tests that the scheme can compute numerical solution whose
error decays as 〈N〉−3, where 〈N〉 is the average number of cells used during the
computation, even in the presence of shock waves, by making a very effective use
of h-adaptivity and the proposed third order reconstruction.
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1 Introduction

We consider numerical approximations of the solution of an initial value problem
for hyperbolic system of m conservation laws in a domain Ω ⊂ Rd

∂tu+∇ · f(u) = 0 (1)

with suitable boundary conditions. The finite volume formulation of (1) reads

d

dt

∫
Ωj

u(t, x)dx+

∮
∂Ωj

f(u(t, x)) · n dl = 0, (2)

where {Ω1, Ω2, . . . , ΩN} denotes a partition of Ω. A semidiscrete finite volume
scheme tracks the evolution in time of the cell averages

Uj =
1

|Ωj |

∫
Ωj

u(t, x) dx

and, in order to approximate the boundary integrals in (2) one would need to know
the point values of the approximate solution at suitable quadrature points along
the boundary of each cell Ωj . This is accomplished by a reconstruction procedure
that computes point values of u at quadrature nodes along ∂Ωj from the cell
average Uj and the cell averages of the neighbours of Ωj .

In order to obtain a convergent scheme, the reconstruction procedure must
satisfy requirements of mass conservation, accuracy (on smooth data) and have
some non-oscillatory property, controlling the boundedness of the total variation
(on non-smooth data).

A robust method that yields high order accuracy and possesses non-oscillatory
properties is the so-called WENO reconstruction. In its original formulation [35],
in the case of a uniform grid in one space dimension, one starts by considering all
the possible k + 1 stencils (from downwind, to central, to upwind) of width k + 1
containing the cell Ωj and the corresponding polynomials p1(x), . . . , pk(x) of degree
k that interpolate the data in the sense of the cell averages on each of the stencils.
One can also determine the so-called linear weights α±γ such that

∑
γ α
±
γ pγ(x)

yields 2k+ 1 order accuracy when evaluated at cell boundaries xj±1/2 (that is the
accuracy given by interpolating in the sense of the cell averages Uj−k, . . . , Uj+k
with a single polynomial of degree 2k). The reconstruction is then taken to be a
convex linear combination p(x) =

∑
γ α̃γpγ(x), where the nonlinear weights α̃γ are

chosen according to the smoothness of the data in the γ-th stencil and in such
a way that, α̃γ ' αγ for all values of γ if the solution is smooth in the union of
all the stencils and α̃γ ' 0 if the solution is not smooth in the γ-th stencil. Note
that there will be two different sets of linear weights

{
α+
γ

}
and

{
α−γ
}

respectively
for the right- and left- boundary of the cell Ωj = [xj−1/2, xj+1/2], but this can be
handled efficiently in one space dimensions or even in higher dimensional setting
if one has a Cartesian grid and employs dimensional splitting [35].

The situation is far more complicated for non-Cartesian grids, especially for
higher order schemes. In fact, in two or more dimensions, in order to approximate
the boundary integral in (2), one uses a suitable quadrature formula for each face
of ∂Ωj . Up to schemes of order 2, the midpoint rule can be employed, but for
schemes of higher order, one has to use a quadrature formula with more than one
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node per face and this increases the cardinality of the sets of linear weights that
should be used.

One approach, typical of the ClawPack software, is to build the computational
grids from regular Cartesian patches. We point out that ClawPack now includes
higher order solvers (SharpClaw) [20], but their code has been so far released only
in one space dimension [26]. The more traditional approach is to employ a single
grid composed of cells of different sizes. In this framework, WENO schemes on
arbitrary triangular meshes were constructed in [18]. For efficiency, the third order
reconstruction suitable for a two-point quadrature formula on each edge, requires
the precomputation and storage of 90 linear weights and 180 other constants for the
smoothness indicators for each triangle in the mesh. Moreover, upon refinement
or coarsening, one would have to recompute all the above mentioned constants
in all cells that include the newly-created one in their stencil (usually 10 cells).
Additionally, in the general case, the linear weights are not guaranteed to be
positive: see [34] for the adverse effects of this non-positivity and for ways to
circumvent this. Similar issues are expected to arise when using locally refined
quadrangular grids, like those of Fig. 2 as there are many possible configurations
for the number, size and relative position of the neighbours. More recently [13]
considers a WENO scheme that combines central and directional polynomials of
degree k, requiring very large stencils.

Many of these difficulties are linked to the otherwise desirable aim of achieving
enhanced accuracy of order 2k+ 1 at the quadrature nodes. Relaxing this require-
ment, a reconstruction of order k + 1 can obviously be achieved by combining
polynomials of order up to k on each stencil using a single set of linear weights for
every quadrature node of every face and for all disposition of cells in the neigh-
bourhood. In fact, this procedure gives a k-degree polynomial that represents a
uniform approximation of order k + 1 on the cell and thus can just be evaluated
at all quadrature nodes. The accuracy would thus be similar to the accuracy of
a ENO procedure, but using a nontrivial linear combination of all polynomials
avoids the difficulties of ENO reconstructions on very flat solutions [32].

Another problem arising is related to the stencil widths. In fact, in order to
compute a polynomial of degree k interpolating the cell averages of the numerical
solution using a fully upwind stencil in some direction, one needs to use data that
is quite far away from the cell Ωj . This poses a question on how efficiently one
can gather the information of the local topology of the triangulation and, since
this may change at every timestep in an adaptive mesh refinement code, it would
be a clear advantage to employ a reconstruction that can achieve order k + 1 on
smooth solutions by using a compact stencil.

A step in this direction was set by [23], that introduced the Compact WENO
(CWENO) reconstruction of order 3 for regular Cartesian grids. The main idea is
to consider a central stencil composed only by the cells that share at least a vertex
with Ωj and to construct an “optimal” reconstruction polynomial POPT of degree
2 that interpolates exactly the cell averages in this stencil. In order to control the
total variation increase possibly caused by the presence of a discontinuity in the
stencil, this polynomial is decomposed as

POPT = α0P0 +

D(d)∑
γ=1

αγPγ ,
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where the Pγ ’s for γ > 0 constitute a finite set of D(d) = 2d first degree poly-
nomials interpolating in the sense of the cell averages in a directional sector of
the central stencil in the direction of each of the 2d vertices of the d−dimensional
cubic cell. P0 is a second degree polynomial computed by difference from POPT.
The reconstruction polynomial is then given by

P = α̃0P0 +

D(d)∑
γ=1

α̃γPγ ,

where the coefficients α̃γ are computed from the linear weights αγ as usual, with
the help of smoothness indicators. This procedure allows to obtain third order ac-
curacy in smooth regions, degrades to a linear reconstruction near discontinuities,
but employs a very compact stencil. Notice that a natural choice is to take the
αγ = (1 − α0)/D(d) for each γ = 1, . . . , D(d). Therefore the set of linear weights
depends on a single parameter α0 ∈ (0, 1). In practice we use α0 = 1/2 in the
whole paper. In our experience, the use of higher values of α0 are beneficial only
in problems without discontinuities.

This reconstruction does not aim at computing directly the point values at
specific quadrature points on the cell boundary, but gives a single reconstruction
polynomial that can then be evaluated at any point in the cell with uniform
accuracy. The degree of accuracy is of course the same than the one achievable by
the standard WENO technique with the same stencils, but this approach seems
more suitable in the context of non-uniform and adaptive grids, because it requires
a single set of linear weights. This feature turns out to be quite useful in the case
of balance laws with source terms, where the reconstruction at quadrature points
inside the cell is required for the well-balanced quadrature of the source term, see
[31].

In order to construct a third order scheme suitable for an adaptive mesh re-
finement setting, in this paper we extend the idea of the CWENO reconstruction
to nonuniform meshes. In one space dimension the extension is straightforward,
while in higher dimensions complications arise due to the variable cardinality of
the set of first neighbours of a given cell. These are solved in Section 2 by con-
sidering an interpolation procedure that enforces exact interpolation of the cell
average in the central cell but only a best fit in the least squares sense of the other
cell averages in the stencil. Section 3 is devoted to analysing the behaviour of an
adaptive scheme based on some error indicator and the employment of cells of
sizes between H and H/2L, in order to provide guidance on the number of “levels”
L that need to be used and on the response of the scheme to the choice of the
refinement threshold. The case of global timestepping is considered in this paper.
Finally, Section 4 presents numerical tests in one and two space dimensions that
demonstrate both the properties of the reconstruction introduced in Section 2 and
corroborate the ideas on the behaviour of adaptive schemes illustrated in Section
3. Section 5 contains the conclusions and perspectives for future work.

2 Third order, compact stencil reconstruction

In our approach, we try to combine the simplicity of the Cartesian meshes, the
compactness of the CWENO reconstruction and the flexibility of the quad-tree
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local grid refinement for the construction of h-adaptive schemes. We thus restrict
ourselves to grids where each cell Ωj is a d−dimensional cube of edge hj and

may be refined only by splitting it in 2d equal parts. Such grids are saved in
binary/quad-/oct-trees. Let us introduce some notation. Let Ω be the entire do-
main,

{
Ωj , j = 1, . . . , N

}
the set of all cells, xj the centre of cell Ωj , and |Ωj | = hdj .

2.1 One space dimension

In one space dimension the reconstruction is a straightforward extension of the
reconstruction described in [23] to the case of non-uniform grids. Let u(x) be a
function defined in Ω = [a, b] and let us suppose we know the mean values of u in
each cell Ωj , i.e. we know

Uj =
1

hj

∫
Ωj

u(x)dx, j = 1, . . . , N,

with hj =
∣∣Ωj∣∣. Now let us fix a cell Ωj . In order to compute the reconstruction

in that cell, we use a compact stencil, namely we use only the mean values of u in
that cell, Uj , and in the first neighbours, Uj−1 and Uj+1. If u(x) is locally smooth,
one may choose the third order accurate reconstruction given by the parabola that
interpolates the data Uj+i in the sense of cell-averages to enforce conservation. We
shall call such a parabola the optimal polynomial POPT(x):

1

hj+i

∫
Ωj+i

POPT(x)dx = Uj+i, i = −1, 0, 1.

The optimal polynomial POPT(x) is completely determined by these conditions,
and its expression is given by:

POPT(x) = Uj + px(x− xj) +
1

2
pxx

(
(x− xj)2 −

hj
12

)
,

with

px =
(hj + 2hj−1)U [j − 1; j] + (hj + 2hj+1)U [j; j + 1]

2(hj−1 + hj + hj+1)
,

pxx =
3(2hj + hj−1 + hj+1)U [j − 1; j; j + 1]

2(hj−1 + hj + hj+1)
,

where

U [j − 1; j] =
Uj − Uj−1

xj − xj−1
, U [j; j + 1] =

Uj+1 − Uj
xj+1 − xj

U [j − 1; j; j + 1] =
U [j; j + 1]− U [j − 1; j]

xj+1 − xj−1
.

If u(x) is not smooth in ∪1i=−1Ωj+i, then this reconstruction would be oscillatory.
Following the idea of [23], we compute two linear functions Pγ , γ = 1, 2 in such a
way Pγ matches the cell averages Uj and Uj+2γ−3, namely:

Pγ(x) = Uj + U [j − 2 + γ; j − 1 + γ](x− xj), γ = 1, 2,
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and a parabola P0 determined by the relation:

POPT = α0P0 +
2∑

γ=1

αγPγ ,

where the coefficients αγ can be chosen arbitrarily, provided αγ > 0 and
∑2
γ=0 αγ =

1. In practice we use α0 = 1/2 and αγ = 1/4, γ = 1, 2. The final reconstruction
polynomial is:

P = α̃0P0 +
2∑

γ=1

α̃γPγ (3)

with
α̃γ =

ωγ∑2
δ=0 ωδ

, ωγ =
αγ

(ε+ βγ)2
, γ = 0, 1, 2.

The smoothness indicators, βγ , are responsible for detecting large gradients or
discontinuities and to automatically switch to the stencil that generates the least
oscillatory reconstruction in such cases. On the other hand, if u(x) is smooth
the smoothness indicators should be expected to be close to each other and thus
α̃γ ≈ αγ and P (x) ≈ POPT(x) for every set of coefficients αγ . Following [35,23],
we define the smoothness indicators as:

βγ =
2∑
l=1

∫
Ωj

|Ωj |2l−1(P
(l)
γ (x))2dx, γ = 0, 1, 2. (4)

Let us rewrite the central polynomial P0 as:

P0 = Uj + p0x(x− xj) +
1

2
p0xx

(
(x− xj)2 −

h2j
12

)
.

A direct computation of (4) yields:

β0 =
13

12
h4j (p

0
xx)2 + h2j (p

0
x)2,

β1 = U [j − 1; j]2h2j , β2 = U [j; j + 1]2h2j .

It is known that the role of ε goes beyond the simple avoidance of zero denom-
inators in the computation of the nonlinear weights, but its choice can influence
the order of convergence of the method. In fact, a fixed value of ε is not suitable
to achieve the theoretical order of accuracy both on coarse and fine grids. Namely,
a high value for ε may yield oscillatory reconstructions, while low ε values yields
an estimated order of convergence that matches the theoretical one only asymp-
totically and often only for very fine grid spacings. Among the different solutions
proposed in the literature, the mappings of [17,14] do not apply in a straight-
forward way to our compact WENO reconstruction technique, while taking an
h-dependent ε as in [2] yields an improvement of the reconstruction, but we found
experimentally that the scaling ε ∝ h works best in our situation (see the numeri-
cal tests). Our choice is further supported by the work of Kolb [22] that analysed
the optimal convergence rate of CWENO schemes depending on the choice of ε(h)
on a uniform mesh. While on a uniform grid one can choose a constant value of ε
that guarantees good numerical results, when using adaptive grids, with cell size
h varying of several orders of magnitude, selecting the proper dependence ε(h) is
of paramount importance. For a more detailed analysis of the non-uniform grid
setting, see [11].
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2.2 Higher space dimension

Although our reconstruction can be performed in any space dimension, we describe
here for simplicity the two-dimensional case, giving hints for its generalisation. We
start describing the structure of the adaptive grid.

2.2.1 Quad-tree grid in 2D

The adaptive grid is recursively generated starting by a coarse uniform Cartesian
mesh of grid size H at level l = 0. Then each cell is possibly (according to some
criterion) recursively subdivided into four equal squares. At the end of the recursive
subdivision, the grid structure is described by a quad-tree.

Two examples of subdivision of an original cell with L = 3 levels of refine-
ment are illustrated in Fig. 1, together with the corresponding quad-tree. The cell

l=0

l=3

l=2

l=1

l=0

l=3

l=2

l=1

Fig. 1: Two examples (left and right) of subdivision of an original cell with L = 3
levels of refinement: quad tree (up) and grid (down).

corresponding to the level l = 0 is the root of the quad-tree. Each cell of level
l ∈ {1, . . . , L} has a father cell, which corresponds to its neighbour node in the
quad-tree at level l − 1. The four nodes connected to the father node are called
the children of the node. The children of each subdivided cell are given some pre-
scribed ordering (e.g. counter-clockwise starting from the upper-right as in the
Figure).
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2.2.2 CWENO reconstruction in 2D adaptive grid

In two dimensions the extension of the reconstruction described in [23] to the case
of adaptive grids is not straightforward, so we describe it here in some detail. First,
we define the set Nj of neighbours of Ωj as (see two examples in Fig. 2):

Nj =
{
k 6= j : ∂Ωk ∩ ∂Ωj 6= ∅

}
. (5)

18
7
6 5 4

3
2

1

5 4 3
2

Fig. 2: Two particular configurations of the grid around a cell Ωj . Cell Ωj is colour-filled, while
the neighbours are numbered. In these examples cell Ωj has eight (left panel, uniform grid)
or five (right panel, adaptive grid) neighbours, the latter being the case with the minimum
number of neighbours.

The optimal polynomial POPT is chosen among the quadratic polynomials
matching the cell average Uj :

POPT = Uj + px(x− xj) + py(y − yj)

+
1

2
pxx

(
(x− xj)2 −

h2j
12

)
+

1

2
pyy

(
(y − yj)2 −

h2j
12

)
+ pxy(x− xj)(y − yj). (6)

The coefficients px, py, pxx, pxy and pyy are determined imposing that POPT fits
the cell averages of the cells in Nj in a least-square sense. This can be realised if
|Nj | ≥ 5. Such condition is always satisfied in a quad tree mesh. In fact, cell Ωj
has at least 3 neighbours among the children of its father cell and two edges on
the boundary of the father cell and thus at least two more neighbours outside the
father cell (see Fig. 2, in particular the figure on the right for the case in which the
cardinality of Nj is as minimum as possible). This result can be generalised in d

dimensions, where a cell has at least 2d−1 neighbours among its brother cells and
shares at least d neighbours with its father cell, making the minimum number of
neighbours equal to 2d + d− 1, while the unknown coefficients of a second degree

polynomial in d variables matching the cell average Uj are

(
2 + d

d

)
− 1. It can be

easily proved that 2d + d− 1 ≥
(

2 + d

d

)
− 1 for all d ≥ 1.
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The equations to be satisfied in a least-square sense are:

1

h2k

∫
Ωk

POPT dx = Uk, k ∈ Nj . (7)

From (6) and (7) we obtain the possibly over-determined system Ac = r, where
c = [px, py, pxx, pxy, pyy]T , rk = Uk−Uj denotes the component of r corresponding
to neighbour k, while A is a |Nj |×5 matrix whose row corresponding to neighbour
k is: 

xk − xj
yk − yj

1
2

(
(xk − xj)2 + 1

12 (h2k − h
2
j )
)

(xk − xj)(yk − yj)
1
2

(
(yk − yj)2 + 1

12 (h2k − h
2
j )
)


T

We note in passing that the idea of employing least squares fitting of the data in
the same context has been exploited, in different fashions, at least in [1,15,24].

Following the same procedure as in the one dimensional case, we introduce four
linear functions Pγ , γ = 1, . . . , 4 in such a way that Pγ matches the cell average
Uj exactly

Pγ = Uj + pγx(x− xj) + pγy(y − yj) (8)

and the cell averages of a suitable subset of Nj in a least-square sense. In practice,
we choose these four subsets (stencils) along the direction of each of the four
vertices of the central cell. Let us start describing the choice of these stencils made
in [23] for the uniform grid case. We introduce the following sets:

NEj =
{
k ∈ Nj : xk ≥ xj

}
, NWj =

{
k ∈ Nj : xk ≤ xj

}
,

NNj =
{
k ∈ Nj : yk ≥ yj

}
, NSj =

{
k ∈ Nj : yk ≤ yj

}
.

(9)

and define the four stencils:

Nαβj = Nαj ∩N
β
j , with α ∈ {N,S} , β ∈ {W,E} . (10)

Referring to the left grid of Fig. 2, sets (9) are:

NEj = {Ωk : k = 1, 2, 3, 4, 5} , NWj = {Ωk : k = 1, 5, 6, 7, 8} ,

NNj = {Ωk : k = 1, 2, 3, 7, 8} , NSj = {Ωk : k = 3, 4, 5, 6, 7} ,

and stencils (10) are:

NNEj = {Ωk : k = 1, 2, 3} , NNWj = {Ωk : k = 1, 7, 8} ,

NSEj = {Ωk : k = 3, 4, 5} , NSWj = {Ωk : k = 5, 6, 7} .

Observe that if we apply the same procedure in the case of adaptive grids, we could
have some stencil with only one cell. In fact, referring to the adaptive structure of
the right grid of Fig. 2, we would have:

NEj = {Ωk : k = 2, 3, 4} ,NNj = {Ωk : k = 1, 2} =⇒ NNEj = {Ωk : k = 2} .
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Since having only one cell in a stencil is not enough to determine a linear function
(8), we slightly modify the definition of the four sets (9) (in such a way we include
cell Ω1 in the NEj stencil of the right grid of Fig. 2). The new definition is:

NEj =

{
k ∈ Nj : xk +

hk
2
≥ xj

}
, NWj =

{
k ∈ Nj : xk −

hk
2
≤ xj

}
,

NNj =

{
k ∈ Nj : yk +

hk
2
≥ yj

}
, NSj =

{
k ∈ Nj : yk −

hk
2
≤ yj

}
.

and the four stencils are defined as in (10). Now, referring to the adaptive structure
of the right grid of Fig. 2, we have:

NEj = {Ωk : k = 1, 2, 3, 4} ,NNj = {Ωk : k = 1, 2, 5} =⇒ NNEj = {Ωk : k = 1, 2} .

Let us rename the four stencils as N γj , γ = 1, . . . , 4. The pairs of coefficients

pγx and pγy of (8) are determined solving the system Aγcγ = rγ in a least-square
sense, with cγ = [pγx, p

γ
y ]T , rγ = [Uk − Uj , k ∈ N

γ
j ], and Aγ is a |N γj | × 2 matrix

whose k−th row is: (
xk − xj
yk − yj

)T
We observe that also in this case the least-square problem is well-determined
because |N γj | ≥ 2, since we have at least one cell on the other side of each cell’s

edge (see Fig. 2).

Remark 1 We observe that in the uniform grid case the scheme does not reduce to
the 2D CWENO described in [23]. In fact here each plane is obtained solving an

over-determined system of four equations (in an adaptive grid
∣∣∣N γj ∣∣∣+ 1 equations,

but
∣∣∣N γj ∣∣∣ = 3 in the uniform case) and three coefficients, while in [23] each plane

was obtained by imposing only three conditions.

The parabola P0 is determined by the relation:

POPT = α0P0 +
4∑
i=1

αγPγ . (11)

By the same argument of the one dimensional case, the choice of coefficients αγ
is arbitrary. In practice we use α0 = 1/2 and αγ = 1/8, γ = 1, . . . , 4. The final
reconstruction is:

P = α̃0P0 +
4∑

γ=1

α̃iPγ (12)

with
α̃γ =

ωγ∑4
δ=0 ωδ

, ωγ =
αγ

(ε+ βγ)2
, γ = 0, . . . , 4.

The smoothness indicators, βγ , are [23]:

βγ =
2∑

|α|=1

∫
Ωj

h
2(|α|−1)
j (Pαγ )2dΩ, γ = 0, . . . , 4. (13)
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where α = (αx, αy) is a multi-index denoting the derivatives. Let us rewrite the
polynomials Pγ , γ = 0, . . . , 4 as:

Pγ = Uj + pγx(x− xj) + pγy(y − yj) +
1

2
pγxx

(
(x− xj)2 −

h2j
12

)

+
1

2
pγyy

(
(y − yj)2 −

h2j
12

)
+ pγxy(x− xj)(y − yj).

A direct computation of (13) yields:

βγ = h2j (p
γ
x)2 + h2j (p

γ
y)2 +

13

12
h4j (p

γ
xx)2 +

7

6
h4j (p

γ
xy)2 +

13

12
h4j (p

γ
yy)2.

Observe that pγxx = pγxy = pγyy = 0 for γ = 1, . . . , 4.

2.3 Treatment of the boundaries

Boundary conditions are treated as follows. We create one layer of ghost cells
around the computational domain. The size of each ghost cell matches the size
of the adjacent cell in the domain Ω. The value of the cell average of the field
variables in the ghost cell is determined by the boundary conditions (e.g. free flow
BC, reflecting BC, and so on). Because of the compactness of the scheme, only
one layer is necessary in order to perform the reconstruction in the physical cell
near the boundary. The field variable on the outer side of the physical boundary,
necessary to compute the numerical flux, is computed from the field variable on
the inner side by applying the boundary conditions again. For example, in free
flow boundary conditions the inner and outer values of the field variables are the
same, while for reflecting BC in gas dynamics, density, pressure and tangential
velocity on both side are equal, while the outer value of the normal velocity is the
opposite of the inner one.

3 Fully discrete scheme and adaptivity

In this section we describe the fully discrete scheme that we use to test the CWENO
reconstruction, that is we specify the time integration procedure and the strategy
for adaptive mesh refinement. First we introduce some notation for semidiscrete
schemes.

Denote with Unj the approximate cell average of the solution at time tn in cell
Ωj . Then a first order (in time) scheme for system (2) may be written as

Un+1
j = Unj −

∆t

|Ωj |
Q(∂Ωj ;F)

where Q is a suitable quadrature formula and F are the numerical fluxes. Let NAj
denote the set of adjacent neighbours of cell j (cells that share a segment with Ωj).
Then we split the boundary ∂Ωj as

∂Ωj =
⋃

i∈NA
j

∂Ωj ∩ ∂Ωi.
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Fig. 3: Location of quadrature points for the computation of the numerical fluxes.
The coloured cell has five adjacent neighbours, and therefore uses the fluxes com-
puted in the ten quadrature nodes marked by small circles.

We choose a Gauss quadrature on each segment of this decomposition and compute
the numerical fluxes at each quadrature node as F(f · n;U(x)in, U(x)out), where
f : Rd → Rm is the exact flux function, U(x)in is the reconstruction in cell j
evaluated at x and U(x)out is obtained evaluating at x the reconstruction in the
nearby cell. Each numerical flux computed on a quadrature node is used on the
two adjacent cells it belongs, thus automatically guaranteeing conservation. Note
that the concept of nearby cell is unambiguous if the quadrature nodes are not
on the vertices of the cell, as is the case for Gauss-type formulas. An example is
depicted in Fig. 3.

An important issue in the construction of an efficient adaptive method con-
cerns the time stepping: because of hyperbolic CFL restriction, time step has to be
of the order of the local mesh size, therefore one would have ∆t = O(H) in smooth
regions, and ∆t = O(h) near singular regions. Time advancement procedures that
can employ different time step length in different regions of the computational do-
main are called local timestepping schemes. Originally local time stepping methods
have been developed on uniform grids, for problems with highly non uniform prop-
agation speeds, in order to guarantee an optimal CFL condition on the whole do-
main (see [28]). Later they have been adopted to improve the efficiency of schemes
based on non uniform grids. Different strategies have been adopted to implement
local time stepping. In CLAWPACK, for example, the computational domain is
discretized with a coarse uniform grid of mesh size H, which contains patches of
more refined grid where necessary. At macroscopic time step ∆t = O(H) the solu-
tion is updated on the coarse grid, and refined on the finer grid and on the coarse
cells adjacent to the fine grid region, making sure that conservation is guaranteed
(see [7] for details). More direct second order AMR methods with adaptive time
step have been adopted, see for example [21,10], where a detailed analysis is per-
formed of second order local time step methods, [30] for an application of local
timestepping in a very similar setting, or [25], where an asynchronous time step
strategy is adopted, in which the cell with the smallest time is the one that is
advanced first.
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In the present paper we shall not discuss local time step, since the main point
of the paper is to extend and analyse Compact WENO discretization to adaptive
grids. Local time stepping for third order schemes is non-trivial, and will be the
subject of a future paper. The time step ∆t will thus be chosen in order to satisfy
the CFL condition everywhere in the domain of the PDE. Thus our fully discrete
scheme will be written as

Un+1
j = Unj −

∆t

|Ωj |

σ∑
i=0

biQ(∂Ωj ;F(i)) (14)

where the stage fluxes F(i) are computed by applying the same formula as above
to the stage values of the explicit Runge-Kutta scheme

U
(i)
j = Unj −

∆t

|Ωj |

i−1∑
k=0

aikQ(∂Ωj ;F(k))

Here (aij , bi) denote the coefficient of the Butcher tableaux of a Strong Stability
Preserving Runge-Kutta scheme with σ stages (see [16]). In all the tests of this
paper we employ the Local Lax-Friedrichs numerical fluxes.

3.1 Error estimators/indicators

Several techniques can be adopted to decide where refine or derefine locally the
mesh. Most of them are based on the use of local error indicators, such as, for exam-
ple, discrete gradients and discrete curvature [3], interpolation error [7], residuals
of the numerical solution [19] or of the entropy [27,29]. In the present paper we
employ the numerical entropy production, that was introduced in [29] for cen-
tral schemes and later extended in [30] to unstaggered finite volume schemes of
arbitrary order. The motivation for this choice is that the numerical entropy pro-
duction is naturally available for any system of conservation laws with an entropy
inequality, it scales as the truncation error in the regular regions, and its behaviour
allows to distinguish between contact discontinuities and shocks.

In order to construct the indicator, one considers an entropy pair (η, ψ) and
chooses a numerical entropy flux Ψ compatible with the exact entropy flux ψ in
the usual sense that Ψ(u, u) = ψ(u) and Ψ is at least Lipshitz-continuous in each
entry. Then one forms the quantity

Snj =
1

∆t

[
〈η(Un+1)〉j − 〈η(Un)〉j +

∆t

|Ωj |

σ∑
i=0

biQ(∂Ωj ;Ψ
(i))

]
(15)

where we have denoted with 〈·〉j the operation of averaging on the cell Ωj and Ψ (i)

denote the numerical entropy fluxes computed using the reconstruction of the i-th
stage value.

In one spatial dimension, [30] show that, if the solution is locally smooth,
Snj = O(hr) with r equal to the minimum between the order of the scheme and the
order of the quadrature formulas used to compute the cell averages of the entropy;
on the other hand, Snj = O(h) (resp. O(1/h)) if there is a contact discontinuity
(resp. shock) in Ωj . Of course, for a second order scheme it is enough to employ the
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x

xtn

tn+1

Fig. 4: Recomputation after refinement. The top row depicts the tentative com-
putation of the time advancement after which the shaded cell is marked for re-
finement. Circles represents the cell averages and the arrows the numerical fluxes
computed during the three Runge-Kutta stages. The bottom row depicts the re-
computation performed after splitting the shaded cell. The dashed line indicates
the numerical domain of dependence originating from the split cell. The stage
values of the Runge-Kutta scheme that are recomputed are indicated by empty
circles. The other stage values are not indicated for easier reading.

midpoint rule 〈η(un)〉j = η(Unj ) as in [30], whereas in order to observe a third order
scaling of Snj as h → 0, one has to employ a quadrature formula of higher order

and thus evaluate the reconstructions of un and un+1 at the quadrature points.
Since the CWENO reconstruction yields a polynomial with uniform accuracy in
the whole Ωj , this entails simply an evaluation of the already computed polynomial
and does not involve other reconstruction steps or extra sets of weights. Of course
the reconstruction of un is already available and the reconstruction of un+1 would
be computed in any case at the beginning of the next time step.

Following ideas from [30] and extending them to the case of d space dimensions,
we construct an adaptive mesh refinement scheme as follows:

– we start from a uniform coarse grid with N0 cells, called the level-0 grid.
– any single cell of the grid may be replaced by 2d equal cells and this operation

may be performed recursively, obtaining a computational grid that is conve-
niently stored in a binary, quad- or oct-tree depending on d. Note that these
grids will have in general hanging nodes, but this poses no problem to finite-
volume discretizations. Let’s call level of a cell its depth in the tree; obviously
a cell of level l has diameter 2l times smaller than its level-0 ancestor.

– at the end of each timestep, the quantity Snj is computed in every cell. If it is
bigger than a threshold Sref and if the level of refinement of Ωj does not equal
the maximum refinement level allowed in the grid, the cell is refined. The cell
averages in the newly created cells are set by averaging the reconstruction of
{Un· }1 and the timestep recomputed locally, i.e. Un+1

i is recomputed only in
the numerical domain of dependence of the cell Ωj (see Fig. 4).

– the solution {Un+1
j } is accepted when no refinement is required nor possible

by the conditions on the size of Snj and on the level of the cells. Note that since

1 As an exception, during the first time step, if the initial condition is known analytically,
it is more accurate to use the analytic expression to set the cell averages in the newly created
cells.
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Snj diverges on shocks when the grid is refined, fixing a maximum refinement
level is necessary.

– a coarsening pass checks if all 2d direct children of a previously refined cell have
an entropy production lower than a given coarsening threshold, i.e. Snj < Scoa

and if so, replaces the 2d children with their ancestor cell, where it sets Un+1
j

equal to the average of the cell averages in the children. As in [30] we employ
Scoa = Sref/2

p+1. At this point a new timestep starts.

Our code makes use of the DUNE interface [6,5,4] to achieve grid-independent
and dimension-independent coding of the numerical scheme in C++. Such in-
terface is able to adopt several kinds of grid packages, including the ALUGRID
library [8], which is the one that has been adopted in the two dimensional simula-
tions. More precisely, a dune-module called dune-fv was written by the first author
to provide generic interfaces to explicit Runge-Kutta, numerical fluxes, adaptive
strategy, reconstructions, as well as the implementation of the classical schemes;
the CWENO reconstruction was incorporated in dune-fv by the second author.
The source code, licensed under GPL terms, allows to build adaptive mesh refine-
ment schemes in one or two space dimensions, with spatial and temporal order
up to three. Most components are easily interchangeable and the source allows for
easy experimentation with different combinations of time-stepper, reconstructions,
numerical fluxes, error indicator, etc [33]

4 Order of accuracy

In this section we provide a scaling argument in support of the use of the third
order scheme. We distinguish between the computation of regular solutions and
piece-wise smooth solutions. In the case of regular solutions, the observed order
of accuracy of the method should be equal to the theoretical one, giving an error
that scales like N−r/d, where N is the total number of cells, r is the (space and
temporal) order of the scheme and d the number of space dimensions.

In this case, h-adaptivity helps by automatically refining in the regions of
smaller space scales (see e.g. the tests of Fig. 7 for one space dimension and Fig.
8 in two space dimensions). The ratio between the largest and the smallest mesh
size depends on the ratio between the largest and the smallest macroscopic scale
of the physical system. The CFL condition implies that the time discretization is
bounded by the space mesh scale, which suggest that the optimal choice is obtained
by using the same order of accuracy in both space and time.

The situation is very different when discontinuities are present. Let us discuss
separately the cases of one and of higher spatial dimensions.

4.1 One dimensional case

Let us assume that we want to solve a problem whose solution is piece-wise smooth.
For simplicity, we assume that the spatial and temporal order of accuracy are the
same. More precisely, let us assume that we want to solve a generalised Riemann
problem:
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ut + f(u)x = 0,

u(x, 0) = u0(x) +H(x)δu(x),

where u0 and δu are smooth functions and H is the Heaviside function

H(x) =

{
1 if x ≥ 0
0 if x < 0

.

For some time the solution of such problem will consist of a piece-wise smooth
function, in which singularities are localised in a few points. For example, for
Euler equations in gas dynamics we have a jump in all quantities at the shock, a
jump in density at contact discontinuity and a jump in the first space derivatives
at the end of the rarefaction region induced by the initial discontinuity.

Let r denote the order of the scheme employed, H the mesh size of the grid
that we would use on a smooth region, h the smallest mesh that we allow by
refinement. During the evolution, the adaptive algorithm will refine around the
singularity points. We can identify two regions: a smooth region, bounded away
from singularities, and a singular region, whose size is O(H) around the singu-
larities. Assume that a non adaptive scheme resolves each singularity in ν grid
points.2 Then the size of the singular region is Ls = νH. Near the singularity
the method reduces to first order. If we want that the lack of accuracy caused by
the low order scheme does not pollute the solution in the smooth region, we have
to require that h = O(Hr). The motivation for this choice is the following. The
solution in the regular region is affected by the presence of the singularity, with
an error which is the maximum between the truncation error of size O(Hr) due to
the method and the error induced by the first order treatment of the singularity,
which is O(h). Therefore the error, even in smooth regions, is max(O(Hr), O(h)),
which is the motivation for suggesting the optimal choice O(h) = O(Hr).

In this way the overall accuracy of the solution in the regular regions should
not be affected by the presence of the singularity, in the sense that the error
introduced by the singularity is of the same order of the local truncation error
and one expects that the error after a finite time is O(Hr). This is true in local
timestepping schemes where ∆tmax = O(H) and even more so in the present case
where we employ global time stepping, i.e. ∆t = O(h).

Let us check the dependence of the error on the total number of cells. Let
L be the length of the computational domain. Then the number of cells in the

large region is NR =
L −NsνH

H
=
L
H
− Nsν, where Ns denotes the number of

singular points. The number of cells in the singular region depends on the number

of refinement levels L = log2
H

h
. In fact, if we assume that we have a shock located

at a given point, we keep refining the cells until we reach the minimum cell size.
From the numerical experiments (see Fig. 5 for the case of the Burgers equation
after shock formation) it appears that the number of refined cells around one shock
is approximately equal to L plus a number of smallest cells located at the shock.
Such a number appears to be mildly increasing with L, so that the total number

2 For simplicity we assume ν is independent on the nature of the singularity, which of course
is not true in general.
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largest ∆X smallest ∆x no. of levels
H1 = H h1 = h L1 = log2(H/h)
H2 = H/2 h2 = h/2r L2 = log2(2r−1H/h) = (r − 1) + L1

Table 1: How the maximum number of levels has to change when we increase the
resolution on the coarse grid by a factor 2.
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Refinement pattern around the shock in the Burgers test
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Fig. 5: Refined cells around the shock at x = 0 for the Burgers test with standing
shock (at the final time of the simulation). Cell size vs index when using L = 9
refinement levels (left); number of cells involved in refinement vs refinement levels
(right).

of points cells refined due to the presence of a shock is much smaller than the total
number of cells. Since h = cHr + h.o.t. for some constant c, we have:

L ' log2
H

cHr
= log2

1

c
− (r − 1) log2H.

The number of cells in the singular region NI is therefore negligible with respect
to the number of cells in the smooth region, NI = O(L) � NR. Therefore, the
total number of cells N = NR + NI ≈ L/H. As a consequence, the loglog plot of
Errors vs. N should show the classical slope close to −r. Notice, however, the slight
dependence of the number of levels on H. In practice, if we change H with H/2,
in order to obtain an error decay rate of r, we also have to increase the number of
levels by an amount r− 1. This is because the error in the smooth region becomes
2r times smaller, so h has to be divided by 2r (Table 1).

4.2 Higher dimensional case

The situation is different in more space dimensions. Let us first analyse in detail
the two dimensional case, which is the one relevant to the numerical tests of
this paper. Let us assume that the singularities are concentrated on a line that
evolves (see e.g. Fig. 12). Let N denote the number of cells per direction on the
coarsest grid. Without refinement there would be a total of NTOT = N2 cells.
Assume now that we adopt a grid refinement until the finest cell becomes of size
h. The cell size on the coarsest grid is H = L/N . Since near the discontinuity
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Smooth test, ε = hj
N ‖E‖1 rate ‖E‖∞ rate
20 5.63e-03 2.17e-02
40 5.04e-04 3.48 1.49e-03 3.87
80 4.97e-05 3.34 1.20e-04 3.64

160 5.40e-06 3.20 1.32e-05 3.18
320 6.22e-07 3.12 1.65e-06 3.00
640 7.43e-08 3.07 2.06e-07 3.00

1280 9.07e-09 3.03 2.57e-08 3.00
2560 1.12e-09 3.02 3.22e-09 3.00

Smooth test, ε = 10−6

N ‖E‖1 rate ‖E‖∞ rate
20 1.30e-02 4.17e-02
40 2.26e-03 2.53 1.02e-02 2.03
80 3.55e-04 2.67 2.52e-03 2.02

160 4.95e-05 2.84 5.89e-04 2.10
320 4.96e-06 3.32 5.44e-05 3.44
640 4.36e-07 3.51 2.25e-06 4.60

1280 3.91e-08 3.48 1.31e-07 4.10
2560 3.27e-09 3.58 8.95e-09 3.87

Table 2: Reconstruction errors for the smooth function us on a uniform grid.

the accuracy degrades to first order, it is natural to choose h = cHr for some
constant c. The number of cells of size h2 is proportional to the length of the
discontinuity line divided by h, so NI = O(1/h), while NR = O(1/H2). The total
number of cells, is thus NTOT ≈ CI/h + CR/H

2, for some constants CI and CR.
Hence NTOT ≈ CI/(cHp) + CR/H

2 and we have the following scaling:

r < 2: most cells lie in the regular region;
r = 2: the number of cells in the regular and in the singular region have the same

scaling;
r > 2: most cells are near the singular line.

This argument suggests that, in the presence of discontinuities, it is not possible
to observe an asymptotic behaviour of the error better than O(1/NTOT) even
using higher order reconstruction in the smooth region. However, although the
asymptotic behaviour is the same, the use of a higher order reconstruction may
produce, as we shall see, a considerably smaller error for the same coarsest mesh, or,
alternatively, the same error can be obtained with a considerably smaller number
of cells. That this is the case in practical tests can be appreciated in Fig. 8 for a
smooth test and in Figures 12 and 13 in the presence of shocks.

In three dimensions the singularities are in general concentrated on a two
dimensional manifold. Therefore, even with a second order accurate method most

of the cells will be of size h, since NTOT ≈
CI
h2

+
CR
H3

=
CI
cH2r

+
CR
H3

. Therefore

if r = 1 most cells will be in the regular region, while with r = 2 the majority of
cells will be near the singular surface.

5 Numerical tests

In the first set of tests we want to assess the convergence order of the CWENO
reconstruction and of the fully discrete numerical scheme on uniform and non-
uniform grids. We focus mainly on the choice of the parameter ε and on its depen-
dence on the local grid size h. At variance with the case of a uniform grid, in which
one can use a constant value of ε, here it is crucial to incorporate its dependence
on the local grid size, which may vary by orders of magnitude.

One-dimensional reconstruction tests We set up Uj with the cell averages of the
smooth function us(x) = sin(2πx − sin(2πx)/π) on the domain [0, 1] and of the

discontinuous function ud(x) = e−x
2

+ 0.1H(x) on [−0.5, 0.5], where H(x) is the
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Discontinuous test, ε = hj
N ‖E‖1 rate ‖E‖∞ rate
20 5.14e-03 7.51e-02
40 2.70e-03 0.93 7.98e-02 -0.09
80 9.69e-04 1.48 4.74e-02 0.75

160 4.51e-04 1.11 4.99e-02 -0.08
320 2.08e-04 1.11 5.28e-02 -0.08
640 4.37e-06 5.57 9.82e-04 5.75

1280 6.36e-07 2.78 2.84e-04 1.79
2560 8.59e-08 2.89 7.64e-05 1.89

Discontinuous test, ε = 10−6

N ‖E‖1 rate ‖E‖∞ rate
20 5.42e-03 1.02e-01
40 2.56e-03 1.08 1.00e-01 0.02
80 7.29e-04 1.81 5.78e-02 0.80

160 3.61e-04 1.01 5.77e-02 0.00
320 1.80e-04 1.00 5.77e-02 0.00
640 6.42e-09 14.78 1.63e-06 15.11

1280 6.91e-10 3.22 4.06e-07 2.00
2560 8.12e-11 3.09 1.01e-07 2.01

Table 3: Reconstruction errors for the discontinuous function ud on a uniform grid.
The discontinuity is on a grid interface from N=640 onward.

Smooth test, quasi-uniform grid
N ‖E‖1 rate ‖E‖∞ rate
20 5.63e-03 2.17e-02
40 8.65e-04 2.70 3.85e-03 2.50
80 1.08e-04 3.01 5.26e-04 2.87

160 1.26e-05 3.10 5.36e-05 3.30
320 1.47e-06 3.09 7.00e-06 2.94
640 1.75e-07 3.08 8.85e-07 2.98

1280 2.11e-08 3.05 1.11e-07 3.00
2560 2.59e-09 3.03 1.39e-08 3.00

Smooth test, random grid
N ‖E‖1 rate ‖E‖∞ rate
20 5.36e-03 1.87e-02
40 4.97e-04 3.43 1.35e-03 3.79
80 5.07e-05 3.29 1.35e-04 3.32

160 5.46e-06 3.22 1.67e-05 3.02
320 6.25e-07 3.13 2.08e-06 3.01
640 7.46e-08 3.07 2.64e-07 2.98

1280 9.11e-09 3.03 3.15e-08 3.07
2560 1.12e-09 3.02 4.19e-09 2.91

Table 4: Reconstruction errors for the smooth function us on non-uniform grids.
The quasi uniform grids have cell centres at xj = j/N + 0.1 sin(20πj/N)/10 and
the random ones at xj = j/N + 0.25/Nrj where the rj are uniformly distributed
in [−0.5, 0.5].

Heavyside function. Then boundary extrapolated data U±
j+1/2

are computed with

the reconstruction and compared with limits of the function us (resp. ud) for
x→ x±

j+1/2
.

Table 2 compares the choice ε = h and the classical choice ε = 10−6 in the case
of the smooth function. It is clear that our choice yields lower errors at all grid
resolutions and a much more regular convergence pattern. The results for ε = h2

(not reported) are in between the two.
Table 3 is about the same test for the discontinuous function. Here we can

observe two very different regimes, depending on whether the discontinuity is
located exactly at a grid interface or not. In our tests the discontinuity is located at
x = 1/320, so that it is located exactly at a cell interface only from N=640 onward,
while being inside a cell for coarser grids. The convergence rates are obviously
degraded to 1 and 0 (resp. in the 1- and the ∞-norm) when the discontinuity is
not located exactly at a cell interface. We notice that both choices for ε yield very
similar errors in both norms, until N = 320. From N = 640 onward, since the
discontinuity is located exactly at an interface, the errors improve greatly. In this
regime, ε = 10−6 can exploit more the favourable situation and produce very small
errors. This situation is however quite rare in an evolutionary problem and thus we
can conclude that the choice ε = h is a better one, on the grounds that it is more
accurate for the smooth parts and comparable to ε = 10−6 around discontinuities.

Finally, in Table 4, the CWENO reconstruction with ε = hj , i.e. the local
mesh size, is tested on non-uniform grids, both of quasi-regular and random type
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Uniform grid, ε = 10−6

N ‖E‖1 rate ‖E‖∞ rate
82 7.19e-02 3.11e-01

162 1.36e-02 2.41 9.61e-02 1.69
322 2.16e-03 2.65 2.51e-02 1.94
642 2.72e-04 2.99 4.11e-03 2.61

1282 2.68e-05 3.34 4.33e-04 3.25

Uniform grid, ε = hj
N ‖E‖1 rate ‖E‖∞ rate
82 5.32e-02 1.90e-01

162 8.51e-03 2.64 3.74e-02 2.34
322 9.56e-04 3.15 3.79e-03 3.30
642 9.45e-05 3.34 2.55e-04 3.89

1282 1.09e-05 3.12 3.20e-05 3.00

Table 5: Reconstruction errors for a smooth function on a uniform grid. The aver-
age order of accuracy is 2.84 for ‖E‖1 and 2.35 for ‖E‖∞ with ε = 10−6, and 3.10
for ‖E‖1 and 3.23 for ‖E‖∞ with ε = h.

(see the caption of Table 4 for the definition of these grids), showing remarkable
robustness in the order of convergence and errors very close to those obtained
on uniform grids, suggesting that the choice ε ∝ h is a good one, and that the
reconstruction algorithm works very well even on non-uniform grids.

Two-dimensional reconstruction tests We apply the reconstruction to the exact cell
averages of the smooth function uexa(x, y) = sin(πx) cos(πy) on the unit square,
with periodic boundary conditions. The error E is computed by comparing the
reconstructed function urec with uexa on a uniform grid of reference Gref, in both
the 1-norm and the∞-norm. The reconstruction urec is defined by urec|Ωj

= P , for
j = 1, . . . , N , with P being the reconstruction polynomial (3) and (12) on the cell
Ωj . Cell averages Uj are set using the exact computation of the integral, namely
Uj =

∫
Ωj
uexadΩ. In details:

‖E‖q =

(∑
G∈Gref |u

rec(G)− uexa(G)|q

|Gref|

)1/q

, q = 1,∞.

The reference grid Gref is a uniform grid such that each cell is finer than the smallest
cell allowed by the adaptive algorithm. Although it is sufficient to have an accurate
reconstruction only on the boundary of each cell (since the reconstruction is needed
to compute numerical fluxes on quadrature points, see Fig. 3), by choosing this
grid we show that the method indeed provides a uniform accuracy all over the
domain.

Table 5 reports the reconstruction errors observed on uniform grids. Next, an
h-adapted grid with 3 levels of refinement was generated by recursively refining the
cells of a NSTART ×NSTART uniform grid where ‖P 1

OPT − POPT‖22 > 0.01h2j , with

P 1
OPT being the optimal first degree polynomial computed with the same least

square procedure of POPT. We choose NSTART = 8 and denote this grid as G0.
From this grid we generate grids Gk, for k = 1, . . ., by subdividing each cell of G0
into 4k equal cells. For each grid Gk, k = 0, . . ., we define NC = NSTART ·2k = 23+k.
The result of the convergence test on non-uniform meshes are reported in Table
6. The two-dimensional results are in line with those obtained in one dimension,
confirming the good quality of the choice ε ∝ h.

Convergence tests on adaptive grids: notation The following tests will compare the
numerical schemes on uniform and adaptive grids. We will consider a second order
scheme (minmod reconstructions, Heun timestepping, numerical entropy evaluated
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Adaptive grid, ε = 10−6

NC ‖E‖1 rate ‖E‖∞ rate
82 6.19e-02 3.11e-01

162 1.11e-02 2.48 9.61e-02 1.69
322 1.75e-03 2.67 2.53e-02 1.93
642 2.33e-04 2.91 6.40e-03 1.98

Adaptive grid, ε = hj
NC ‖E‖1 rate ‖E‖∞ rate
82 4.48e-02 1.90e-01

162 7.00e-03 2.68 3.74e-02 2.34
322 8.16e-04 3.10 3.79e-03 3.30
642 8.91e-05 3.20 2.55e-04 3.89

Table 6: Reconstruction errors for a smooth function on an adaptive grid. The first
column shows the number of cells on the coarsest grid. For each test we choose
L = 3 levels of refinement. The average order of accuracy is 2.68 for ‖E‖1 and 1.87
for ‖E‖∞ with ε = 10−6, and 3.00 for ‖E‖1 and 3.19 for ‖E‖∞ with ε = h.

on the cell averages) and the third order scheme described in this paper (CWENO
reconstruction, three-stage third order SSP-RK and numerical entropy indicator
computed with Gauss quadrature with two points per direction). The order will
be denoted in the legends with the letter r.

In all tests the numerical fluxes are the Local Lax Friedrichs ones, i.e.

F (u, v) =
1

2
[f(u) + f(v)− α(u− v)]

where α is the largest eigenvalue among those of f ′(u) and f ′(v). The numerical
entropy fluxes are chosen accordingly as

Ψ(u, v) =
1

2
[ψ(u) + ψ(v)− α(η(u)− η(v)]

with the same value for α (see [30]). For the computation of the numerical entropy
production we have employed η(u) = u2 for scalar tests and the physical entropy
for the gas-dynamics tests.

The convergence tests are conducted by performing sequences of computations
with a coarse grid of size N0 = M2k for k = 0, . . . ,K for some integer M . We say
that a simulation employs ` cell levels if the scheme is allowed to chose among `

different cell sizes, i.e. H,H/2, . . . , H/2`−1, where H is the size of the uniform coarse
mesh. Let `(k) be the number of levels employed in the k-th test of a sequence.
In the legends of the convergence graphs, the number of levels is indicated by
an integer L if `(k) = L, by L+ (respectively L + +) if `(k) = L + k (respectively
`(k) = L + 2k). Obviously L = 1 corresponds to uniform grids. The refinement
threshold is set to Sref = S0s−k in the k-th computation for some scaling factor
s ≥ 1, where S0 is the threshold used in the coarsest computation of the sequence.
The choice of the parameter s should be guided by the features of the solution
on which one wants h-adaptivity to act. Since the numerical entropy production
scales as O(hr) on smooth flows (see Section 3), we conduct the tests using s = 2r

if the solution is smooth everywhere and h-adaptivity is expected to distinguish
between high and low frequency regions. On the other hand, the numerical entropy
production scales as O(1/h) on shocks, O(1) on contacts and O(h) on corner points
and thus we take s = 2 on flows with singularities so that h-adaptivity acts on
rarefaction corners and stronger discontinuities. These choices for s ensure that
the level of refinement induced by the choice of S0 on the first grid is replicated
in the k-th test. Since in h-adaptive tests the number of cell is variable during the
evolution, in the graphs for the convergence tests we employ the time-average of
the number of cells employed in each timestep.
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Fig. 6: Norm-1 errors for uniform and adaptive grids for the linear transport test
(1). The number of levels is kept fixed, while the coarse cell size and the refinement
threshold are progressively lowered. The symbols in the legend refer to the order
of the scheme (r), the number of different cell sizes (L) and the scaling of the
refinement threshold between runs (s).

One-dimensional linear transport test (1) We evolve the initial data u(x, 0) = sin(πx−
sin(πx)/π) on [−1, 1] up to t = 1.0 with the linear transport equation ut + ux = 0
and periodic boundary conditions.

The purpose of this test is to ensure that, on a single scale smooth solution,
with a proper choice of the parameter s, the behaviour of the adaptive scheme is
similar to that of a uniform grid method.

In the set of runs, the number of grid refinement levels was kept at L = 3,
while the coarse grid size and the refinement threshold have been diminished (see
Fig. 6). The refinement threshold for the coarsest run in the series (S0) is taken
to be 10−1 for the second order scheme and 10−2 for the third order scheme. As
it appears from the figure, the behaviour of the adaptive scheme with the choice
s = 2r is similar to the one given by the uniform grid method. We observe a slight
improvement of the adaptive scheme for r = 3, while for r = 2 there is really no
advantage in using an adaptive mesh in such a simple test case.

One-dimensional linear transport test (2) Next, we want to test the situation in
which the adaptive scheme may compute on a finer grid the rapidly varying regions
of a smooth solution. To this end, we evolve the initial data u(x, 0) = sin(πx) +
1
4 sin(15πx)e−20x2

on [−1, 1] up to t = 2.0 with the linear transport equation
ut + ux = 0 and periodic boundary conditions (see Fig. 7, left). The top graph
shows an example of numerical solution obtained with the adaptive scheme (N0 =
64,L = 3,Sref = 2 × 10−5), while the bottom one shows the cell levels in use at
final time, revealing that small cells are selected in the central region where the
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Fig. 7: Norm-1 errors for uniform and adaptive grids for the linear transport test
(1). On the left, an example of a solution (top) with the grid levels employed
(bottom). In the top panel the dashed red line is the error of the numerical solution
and should be read against the logarithmic scale on the right vertical axis. On the
right, the convergence test.

solution contains higher frequencies. The dashed red line in the top graph is the
error of the adaptive solution and should be read against the logarithmic scale
on the right. It reveals that no spurious oscillations or other defects occur at grid
discontinuities.

The results of the convergence tests are shown on the right in Fig. 7. First,
note that the runs on uniform grids cannot resolve the high frequencies in the
central area and thus they do not show convergence until N0 ≥ 128. For example,
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the convergence rates estimated from the errors shown in the figure for the third
order scheme are 0.44, 0.01, 1.09, 2.61, 3.02 and 2.98.

For the adaptive grid tests we used N0 = 16 · 2k and L = 4, so that even in the
coarsest run the scheme was able to use some cells of size 1/128-th of the domain.
S0 was set to 0.005, 0.001 for the schemes of order r = 2, 3 respectively. These
values were chosen in such a way that, for k = 0, only cells in the region of the
4 central peaks ([−0.2, 0.2] in the initial/final data shown in the left panel of the
figure) had a chance to be refined to the 4-th level. With respect to the previous
test, obviously here an adaptive scheme has much room for improvement over
uniform grid ones and all tested sequences show improvements over the uniform
case.

Since the solution is smooth everywhere, we expect that scaling the refinement
threshold with s = 8 in the scheme with r = 3 would cause every run to use
the same refinement pattern. As a matter of fact this choice leads to the best
convergence rates (1.06, 2.62, 2.99, 2.97).

A two-dimensional scalar test with smooth solution Next we consider a scalar prob-
lem in two space dimensions with a smooth solution which is known in closed form,
originally presented in [12]. It is sometimes referred to as “atmospheric instability
problem”, as it mimics the mixing of a cold and hot front. The equation is

ut +∇ · (v(x, y)u) = 0 on Ω = [−4, 4]2 (16)

with initial data u0(x, y) = − tanh(y/2) and velocity

v(x, y) =
[
−yr

f
0.385 ,

x
r

f
0.385

]
,

where r =
√
x2 + y2 and f = tanh(r)/(cosh(r))2. The exact solution at t = 4 is

u(4, x, y) = − tanh
(
y
2 cos

(
4f

0.385r

)
− x

2 sin
(

4f
0.385r

))
Fig. 8 shows the solution at final time and the results of the convergence test

conducted with M = 16, S0 = 10−2 for both s = 2, 3. It is clear that third order
schemes achieve far better efficiency, by computing solutions with lower errors and
using fewer cells. Note that even the uniform grid third order scheme outperforms
the second order adaptive scheme, which yields lower errors but also slightly lower
convergence rates than the second order uniform grid scheme. The third order
adaptive scheme shows a lower error constant than the corresponding uniform
grid one.

The most striking difference between second and third order schemes, however,
is the different refinement pattern employed. The bottom graphs of Fig. 8 show
the meshes at final time for both schemes in the run with N0 = 64, L = 4, Sref =
6 × 10−4. Clearly the third order scheme is able to employ small cells in much
narrower regions, thus leading to additional computational savings.
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Fig. 8: Results of the 2d smooth test of equation (16). Norm-1 errors (top-left),
solution at final time (top-right), grid refinement level at final time with the second
and third order scheme with N0 = 64, L = 4, Sref = 6× 10−4 (bottom).

One dimensional Burgers equation The first tests involving shocks employ Burgers’
equation

∂tu+ ∂x(1
2u

2) = 0 (17)

on the domain [−1, 1] with periodic boundary conditions. The results in Fig. 9 are
relative to the initial data u0(x) = − sin(πx) and final time t = 0.35, that gives
rise to a standing shock located at x = 0, while those of Fig. 10 refer to the initial
condition u0(x) = − sin(πx) + 0.2 sin(5πx), that gives rise to two moving shocks.

In the error plot of Fig. 9 first we note that the schemes with uniform meshes
tend to become first order accurate, since most of the error is associated to the
shock. For the adaptive runs we chose M = 16 and S0 = 10−2 for both r = 2, 3.
Adaptive schemes with a fixed number of levels do not improve much with respect
to the uniform mesh ones: they give a smaller error, asymptotically approaching
first order convergence, although with an error 2L−1 times smaller than a uniform
grid with the same number of cells. Allowing more levels when refining the coarse
mesh yields an experimental order of convergence (EOC) of 2.0 (left). The third
order scheme gives an EOC of 2.7 when increasing L by two every time the coarse
mesh is refined (right). Note that the scaling factor for the refinement threshold
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Fig. 9: Burgers equation after shock formation (t = 0.35): error versus number of
cells. Second order (left) and third order (right) scheme. The errors were computed
by comparing with the exact solution computed with characteristics.
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Fig. 10: Burgers equation with moving shocks: solution (left) and errors (right),
obtained by comparing with a reference solution computed by the third order
scheme on a uniform grid composed of 262144 cells.

can be taken as s = 2, since here one is interested in refining only in the presence
of the shock. For comparison purposes, we also show the result of using s = 4 in
the third order scheme, which gives a poorer work-precision performance due to
excessive refinement.

Fig. 10 refers to a more complex situation, since in this case the shocks are
moving (and thus also coarsening comes into play) and there is a richer smooth
structure away from the shocks. Here the advantage of third order schemes is more
clear, even on uniform grids. This better performance is confirmed by the adaptive
codes (M = 16, S0 = 0.5 for the second order case and S0 = 0.1 for the third order
one) and the situation is quite similar to the smooth test cases, except that the
best convergence rates are obtained, similarly to the previous test with a shock,
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Fig. 11: Shock-acoustic interaction problem. (Top-left) Norm-1 errors versus aver-
age number of cells, using a reference solution computed by the third order scheme
on a uniform mesh of 262144 cells. The solution on an h-adapted grid is shown with
the cell levels (top-right) and with a zoom in the oscillatory region (Bottom-right).
For comparison we show two uniform grid solutions (bottom-left).

with scaling factor s = 2 instead of 8 (the EOC of the adaptive schemes are 1.7
and 2.6).

One dimensional gas-dynamics: shock-acoustic interaction Next we consider the in-
teraction of a shock wave with a standing acoustic wave from [36]. The conservation
law is the one-dimensional Euler equations with γ = 1.4 and the initial data is

(ρ, v, p) =

{
(3.857143, 2.629369, 10.333333) , x ∈ [0, 0.25]

(1.0 + 0.2 sin(16πx), 0.0, 1.0) , x ∈ (0.25, 1.0]

The evolution was computed up to t = 0.2. As the right moving shock impinges in
the stationary wave, a very complicated smooth structure emerges and then gives
rise to small shocks and rarefactions (see Fig. 11).

The top-left panel of Fig. 11 shows the 1-norm of the errors versus the average
number of cells used during the computation. Due to the high frequency of the
waves behind the shock, uniform grid methods starts showing some convergence
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only when using more than 1000 cells: before that they lack the spatial resolution
required to resolve the smooth waves in the region x ∈ [0.65, 0.85].

In the adaptive tests, the number of levels is 6 when the coarse grid has N0 = 32
cells, so that even the smallest h-adaptive runs have the chance of using cells of
size 1/1024, and we took S0 = 10−1 for both r = 2, 3. As in the case of Burg-
ers’ equation, in order to observe high convergence rates, one has to increase the
number of refinement levels each time that the coarse grid is doubled. Here we
additionally observe that the scaling factor s = 4 gives better results than s = 2;
although, given the presence of the shock, this is somewhat unexpected, it can
be understood by looking at the refinement pattern in the top-right panel of the
Figure, which is representative of the grids employed in the h-adaptive tests. The
smallest cells are used only at the shocks, but behind the main shock, there is a
non-negligible smooth region where mid-sized cells are employed. These h-adapted
grids are an hybrid situation between grids refined only at shocks (which would
call for the choice s = 2) and grids refined in the smooth regions (which would
favour the choice s = 8 in the case of the third order scheme). Despite the afore-
mentioned difficulties in selecting optimal parameter values, we point out that the
second order h-adaptive scheme gives convergence rates similar to those of the
uniform grid case, but with lower error constants, while the third order also shows
improved error decay rates: the EOC for the two segments shown in the Figure
for the run with L=6++, s=4 are 1.6 and 3.0.

In the lower part of Fig. 11 we compare the reference solution with those com-
puted on uniform grids (left) and with the adaptive algorithm (right), restricted to
the interval x ∈ [0.2, 0.85]. Solutions computed on uniform grids converge rather
slowly, lacking resolution for both the frequency of the waves behind the shock
and their amplitude. The adaptive solution captures perfectly the frequency of
the small waves behind the shock and approximates reasonably well their ampli-
tude even with 656 cells (on average during the time evolution), by making an
effective use of adaptivity. In fact the cell sizes are distributed in the computa-
tional domain (top-right panel) by concentrating them around shocks and high
frequency waves, while using larger cells in smooth regions, where the solution is
efficiently resolved by the third order scheme.

2D Riemann problem For a two-dimensional test involving shocks, contact discon-
tinuities and a smooth part, we consider the Euler equation of gas dynamics in two
spatial dimensions and set up a Riemann problem in the unit square with initial
data given by:

ρ = 0.8, u = 0.1, v = 0.1, p = 1.0 x < 0.5, y < 0.5

ρ = 1.0222, u = −0.6179, v = 0.1, p = 1.0 x < 0.5, y > 0.5

ρ = 1.0, u = 0.1, v = 0.8276, p = 1.0 x > 0.5, y < 0.5

ρ = 0.531, u = 0.1, v = 0.1, p = 0.4 x > 0.5, y > 0.5

The solutions were compared to a reference one computed with the third order
scheme on a uniform grid with 2048 × 2048 cells and the results are presented in
Fig. 12, whose top-right panel depicts the density at final time. In the error versus
number of cells graph (top-left), we can observe that, due to the presence of the
shocks, the performance of the two uniform grid schemes have little differences,
with the third order one being characterised by approximately the same error
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Fig. 12: Two dimensional Riemann problem for the Euler equations: errors (top-
left), density at final time (top-right), grid refinement levels with N0 = 128, L = 4,
Sref = 2 · 10−3 (bottom).

decay rate of the second order scheme (1.0), only with a better error constant.
The adaptive schemes (M = 16, S0 = 10−3) yield better results that the uniform
grid ones, by exploiting small cells to reduce the error in the region close to the
shocks, where the numerical scheme are obviously only first order accurate. The
EOC are 1.0 and 1.2 for the r=2, L=4+ series and 1.5 for the r=3, L=4++ segment.
We note however that the third order scheme is much more effective also due
to its ability to employ much coarser grids, as it is evident comparing the two
computational grids in the lower panels of Fig. 12, that refer to the solutions
computed with N0 = 128, L = 4 and Sref = 2 · 10−3. As a result the third order
scheme can compute a solution with error in the 10−3 range with 6.18× 104 cells,
whereas the uniform grid ones requires 1.05 × 106 and the second order adaptive
scheme 6.14× 105.

Shock-bubble interaction in 2D gas-dynamics For the final test we consider again
the 2d Euler equations of gas dynamics and set up an initial datum with a right-
moving shock that impinges on a standing bubble of gas at low pressure, as in
[9]. In particular, the domain is [−0.1, 1.6] × [−0.5, 0.5] and in the initial datum
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Scheme norm-1 error CPU time

r = 2,L = 1, N0 = 480× 1632 2.97 · 10−2 20h36′

r = 3,L = 1, N0 = 240× 816 3.67 · 10−2 19h12′

r = 2,L = 4, N0 = 60× 204 2.97 · 10−2 18h44′

r = 3,L = 4, N0 = 60× 204 9.60 · 10−3 18h35′

Table 7: Comparison of norm-1 errors and CPU-times for the computation of the
shock-bubble interaction problem. These tests were run on a workstation equipped
with a 2.60GHz Intel Xeon processor.

we distinguish three areas: the left region (A) for x < 0, the bubble (B) of centre
(0.3, 0.0) and radius 0.2, the right region (C) of all points with x > 0 that are not
inside the bubble. The initial datum is
ρ = 3.6666666666666666, u = 2.7136021011998722, v = 0.0, p = 10.0 (x, y) ∈ A
ρ = 0.1, u = v = 0.0, p = 1.0 (x, y) ∈ B
ρ = 1.0, u = v = 0.0, p = 1.0 (x, y) ∈ C

Boundary conditions are of Dirichlet type on the left, free-flow on the right, re-
flecting on y = ±0.5. Due to the symmetry in the y variable, the solution was
computed on the half domain with y > 0, with reflecting boundary conditions on
y = 0.

In this tests we used coarse grids with multiples of 15×51 square cells. Fig. 13
shows a comparison of the solution at t = 0.4 and the h-adapted computational
grid at final time. Each panel depicts a solution in the whole domain, using data
from the third order scheme in the upper half and data from the second order one
in the lower half. Both solutions depicted in the Figure have been computed with
a coarse grid of 204 × 60 cells, L = 4 and Sref = 2.5 · 10−2. The CPU times were
comparable (18h44m for r = 2 and 18h35m for r = 3), but we can appreciate the
much increased sharpness of the solution computed with the third order scheme:
note for example the regions close to y = 0.5 and just behind the main shock, the
region of the vortex and the areas just behind it. Also in this case, this better
quality solution is obtained using a much coarser grids, i.e. using h-adaptivity in
much smaller areas, quite concentrated around the problematic features of the
solution. In fact the computation with the second order scheme employed almost
twice as much cells than the third order one: 141539 versus 71895 cells on average
and 2214934 versus 123114 at final time. Table 7 show that the computation times
compare favourably with the uniform grid schemes. Extra saving in CPU time may
be achieved by implementing a local timestepping scheme for time advancement.

6 Conclusions

In this work we extended the Compact WENO reconstruction of [23] to the case of
non-uniform meshes of quad-tree type and used it to build a third order accurate
numerical scheme for conservation laws. Indications on how to extend the result
to three-dimensional oct-tree grids are provided. Even in one space dimension,
there are two advantages of the Compact WENO reconstruction over the stan-
dard WENO procedure. First, the reconstruction provides a uniformly-accurate
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Fig. 13: Schlieren plots of the solutions (top) of the shock-bubble interaction prob-
lem computed with an adaptive grid with 4 levels from a coarse grid of 204 × 60
cells. The grids at final time are shown in the bottom graph. Since the solution is
symmetric, each plot is split in two parts, with the third order solution in the top
half and the second order one in the bottom half.

reconstruction in the whole cell, which was exploited e.g. in [31] for the integra-
tion of source terms, and it is not obtained through dimensional splitting, thus
including also the xy terms. Secondly, the linear weights do not depend on the rel-
ative size of the neighbours and thus the generalisation to two-dimensional grids
does not need to distinguish among very many cases of local grid geometry.
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The simplicity in computing the reconstruction on non-uniform grids was ex-
ploited for coding an h-adaptive scheme that relies on the numerical entropy pro-
duction as an error indicator. Our tests show that the third order scheme works
better than second order ones, not only in the sense that a smaller error is pro-
duced in each cell, but also in the sense that, when employed in the h-adaptive
scheme, it gives rise to much smaller meshes, that are refined only in a narrow
region around shocks.

In order to evaluate the effectiveness of the adaptive schemes we presented
some heuristics for the relation between error and number of cells in an h-adaptive
scheme in the presence of isolated shocks. In one space dimension we can observe
the predicted third order error decay rate, while in the two dimensional case we
observe convergence rates slightly higher than those predicted by the heuristics.

Future work of this subject should certainly look at analysing more deeply
the role of the parameter ε appearing in the nonlinear weights of the CWENO
reconstruction on non-uniform grids, extending the reconstruction techniques to
quad-tree grids composed of triangles split by baricentric subdivision and finally at
improving the CPU-time efficiency by a third order local timestepping technique.
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25. Lörcher, F., Gassner, G., Munz, C.D.: A discontinuous Galerkin scheme based on a space-
time expansion. I. Inviscid compressible flow in one space dimension. J. Sci. Comput.
32(2), 175–199 (2007). DOI 10.1007/s10915-007-9128-x

26. Mandli, K.T., Ketcheson, D.I., et al.: Pyclaw software (2011). URL http://numerics.
kaust.edu.sa/pyclaw

27. Ohlberger, M.: A review of a posteriori error control and adaptivity for approximations
of non-linear conservation laws. Int. J. Numer. Meth. Fluids 59, 333–354 (2009). DOI
10.1002/fld.1686

28. Osher, S., Sanders, R.: Numerical approximations to nonlinear conservation laws with
locally varying time and space grids. Math. Comp. 41(164), 321–336 (1983). DOI 10.
2307/2007679

29. Puppo, G.: Numerical entropy production for central schemes. SIAM J. Sci. Comput.
25(4), 1382–1415 (electronic) (2003/04)

30. Puppo, G., Semplice, M.: Numerical entropy and adaptivity for finite volume schemes.
Commun. Comput. Phys. 10(5), 1132–1160 (2011)

31. Puppo, G., Semplice, M.: Well-balanced high order 1d schemes on non-uniform grids
and entropy residuals. Submitted to Journal of Scientific Computing. Preprint
http://arxiv.org/abs/1403.4112 (2014)

32. Rogerson, A., Meiburg, E.: A numerical study of the convergence properties of eno schemes.
J. Sci. Comput. 5(2), 151–167 (1990)

33. Semplice, M., Coco, A.: dune-fv software (2014). URL http://www.personalweb.unito.
it/matteo.semplice/codes.htm

34. Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in weno schemes. J.
Comput. Phys. 175(1), 108–127 (2002)

35. Shu, C.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for
hyperbolic conservation laws. In: Advanced numerical approximation of nonlinear hyper-
bolic equations (Cetraro, 1997), Lecture Notes in Math., vol. 1697, pp. 325–432. Springer,
Berlin (1998)

36. Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-
capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

http://numerics.kaust.edu.sa/pyclaw
http://numerics.kaust.edu.sa/pyclaw
http://www.personalweb.unito.it/matteo.semplice/codes.htm
http://www.personalweb.unito.it/matteo.semplice/codes.htm

	JSC.pdf
	Introduction
	Third order, compact stencil reconstruction
	Fully discrete scheme and adaptivity
	Order of accuracy
	Numerical tests
	Conclusions


