33,217 research outputs found

    Knowledge based cloud FE simulation of sheet metal forming processes

    Get PDF
    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions

    Building validation tools for knowledge-based systems

    Get PDF
    The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification

    Modelling the Developing Mind: From Structure to Change

    Get PDF
    This paper presents a theory of cognitive change. The theory assumes that the fundamental causes of cognitive change reside in the architecture of mind. Thus, the architecture of mind as specified by the theory is described first. It is assumed that the mind is a three-level universe involving (1) a processing system that constrains processing potentials, (2) a set of specialized capacity systems that guide understanding of different reality and knowledge domains, and (3) a hypecognitive system that monitors and controls the functioning of all other systems. The paper then specifies the types of change that may occur in cognitive development (changes within the levels of mind, changes in the relations between structures across levels, changes in the efficiency of a structure) and a series of general (e.g., metarepresentation) and more specific mechanisms (e.g., bridging, interweaving, and fusion) that bring the changes about. It is argued that different types of change require different mechanisms. Finally, a general model of the nature of cognitive development is offered. The relations between the theory proposed in the paper and other theories and research in cognitive development and cognitive neuroscience is discussed throughout the paper

    A half century of progress towards a unified neural theory of mind and brain with applications to autonomous adaptive agents and mental disorders

    Full text link
    Invited article for the book Artificial Intelligence in the Age of Neural Networks and Brain Computing R. Kozma, C. Alippi, Y. Choe, and F. C. Morabito, Eds. Cambridge, MA: Academic PressThis article surveys some of the main design principles, mechanisms, circuits, and architectures that have been discovered during a half century of systematic research aimed at developing a unified theory that links mind and brain, and shows how psychological functions arise as emergent properties of brain mechanisms. The article describes a theoretical method that has enabled such a theory to be developed in stages by carrying out a kind of conceptual evolution. It also describes revolutionary computational paradigms like Complementary Computing and Laminar Computing that constrain the kind of unified theory that can describe the autonomous adaptive intelligence that emerges from advanced brains. Adaptive Resonance Theory, or ART, is one of the core models that has been discovered in this way. ART proposes how advanced brains learn to attend, recognize, and predict objects and events in a changing world that is filled with unexpected events. ART is not, however, a “theory of everything” if only because, due to Complementary Computing, different matching and learning laws tend to support perception and cognition on the one hand, and spatial representation and action on the other. The article mentions why a theory of this kind may be useful in the design of autonomous adaptive agents in engineering and technology. It also notes how the theory has led to new mechanistic insights about mental disorders such as autism, medial temporal amnesia, Alzheimer’s disease, and schizophrenia, along with mechanistically informed proposals about how their symptoms may be ameliorated

    Reusing artifact-centric business process models : a behavioral consistent specialization approach

    Get PDF
    Process reuse is one of the important research areas that address efficiency issues in business process modeling. Similar to software reuse, business processes should be able to be componentized and specialized in order to enable flexible process expansion and customization. Current activity/control-flow centric workflow modeling approaches face difficulty in supporting highly flexible process reuse, limited by their procedural nature. In comparison, the emerging artifact-centric workflow modeling approach well fits into these reuse requirements. Beyond the classic class level reuse in existing object-oriented approaches, process reuse faces the challenge of handling synchronization dependencies among artifact lifecycles as parts of a business process. In this article, we propose a theoretical framework for business process specialization that comprises an artifact-centric business process model, a set of methods to design and construct a specialized business process model from a base model, and a set of behavioral consistency criteria to help check the consistency between the two process models. © 2020, Springer-Verlag GmbH Austria, part of Springer Nature

    Kernel arquitecture for CAD/CAM in shipbuilding enviroments

    Get PDF
    The capabilities of complex software products such as CAD/CAM systems are strongly supported by basic information technologies related with data management, visualization, communication, geometry modeling and others related with the development process. These basic information technologies are involved in a continuous evolution process, but over recent years this evolution has been dramatic. The main reason for this has been that new hardware capabilities (including graphic cards) are available at very low cost, but also a contributing factor has been the evolution of the prices of basic software. To take advantage of these new features, the existing CAD/CAM systems must undergo a complete and drastic redesign. This process is complicated but strategic for the future evolution of a system. There are several examples in the market of how a bad decision has lead to a cul-de-sac (both technically and commercially). This paper describes what the authors consider are the basic architectural components of a kernel for a CAD/CAM system oriented to shipbuilding. The proposed solution is a combination of in-house developed frameworks together with commercial products that are accepted as standard components. The proportion of in-house frameworks within this combination of products is a key factor, especially when considering CAD/CAM systems oriented to shipbuilding. General-purpose CAD/CAM systems are mainly oriented to the mechanical CAD market. For this reason several basic products exist devoted to geometry modelling in this context. But these basic products are not well suited to deal with the very specific geometry modelling requirements of a CAD/CAM system oriented to shipbuilding. The complexity of the ship model, the different model requirements through its short and changing life cycle and the many different disciplines involved in the process are reasons for this inadequacy. Apart from these basic frameworks, specific shipbuilding frameworks are also required. This second layer is built over the basic technology components mentioned above. This paper describes in detail the technological frameworks which have been used to develop the latest FORAN version.Postprint (published version

    A planning approach to the automated synthesis of template-based process models

    Get PDF
    The design-time specification of flexible processes can be time-consuming and error-prone, due to the high number of tasks involved and their context-dependent nature. Such processes frequently suffer from potential interference among their constituents, since resources are usually shared by the process participants and it is difficult to foresee all the potential tasks interactions in advance. Concurrent tasks may not be independent from each other (e.g., they could operate on the same data at the same time), resulting in incorrect outcomes. To tackle these issues, we propose an approach for the automated synthesis of a library of template-based process models that achieve goals in dynamic and partially specified environments. The approach is based on a declarative problem definition and partial-order planning algorithms for template generation. The resulting templates guarantee sound concurrency in the execution of their activities and are reusable in a variety of partially specified contextual environments. As running example, a disaster response scenario is given. The approach is backed by a formal model and has been tested in experiment

    The Effect of Microstructural Defects and Geometrical Features on Fatigue Behavior of Superelastic Nitinol Wires

    Get PDF
    Nitinol is an alloy of nickel and titanium, which exhibits outstanding functional properties, such as shape memory and superelastic behavior. Superelastic nitinol wires exhibit recoverable strains that are significantly greater than traditional alloys. In most of its applications, nitinol is exposed to cyclic loads, which results in functional and/or structural fatigue that ultimately leads to failure. The classical fatigue theories do not appropriately address the fatigue performance of superelastic nitinol due to the complex nature of the martensitic transformation. It has been shown that the main fatigue crack initiation sites, other than surfaces, are microstructural inhomogeneities such as voids and non-metallic inclusions. The effect of wire size on fatigue performance of superelastic nitinol is not clearly understood. In this research, nitinol wires with three different sizes are subjected to microstructural analysis and low-cycle fatigue tests to understand the effect of wire size on their phase transformations and fatigue life. For this purpose, advanced non-destructive characterization techniques such as X-ray microtomography (ÎĽCT) and far-field High Energy Diffraction Microscopy (ff-HEDM) were utilized. This allows for the acquisition of a comprehensive 3-D map of the distribution of microstructural defects within a material, determination of the crystallographic orientation of the material surrounding these defects, as well as the lattice strain of the grains before and during fatigue testing.This study indicated that the superelastic properties and fatigue response of the nitinol wires is strongly influenced by their size and microstructure. Comparing the fatigue data of the wires and analyzing the macroscopic scale results of the 3-D Digital Image Correlation (DIC) technique revealed that the smaller wires exhibited a better functional performance, although they were more vulnerable to surface defects. Conversely, larger wires experienced a more significant microstructural damage during cycling, which was linked to their cooling rate effects. Overall, the results of this research suggest that wire size and microstructure are crucial factors that must be carefully controlled in the design and development of nitinol-based devices
    • …
    corecore