1,006 research outputs found

    Wavelet entropy as a measure of ventricular beat suppression from the electrocardiogram in atrial fibrillation

    Get PDF
    A novel method of quantifying the effectiveness of the suppression of ventricular activity from electrocardiograms (ECGs) in atrial fibrillation is proposed. The temporal distribution of the energy of wavelet coefficients is quantified by wavelet entropy at each ventricular beat. More effective ventricular activity suppression yields increased entropies at scales dominated by the ventricular and atrial components of the ECG. Two studies are undertaken to demonstrate the efficacy of the method: first, using synthesised ECGs with controlled levels of residual ventricular activity, and second, using patient recordings with ventricular activity suppressed by an average beat template subtraction algorithm. In both cases wavelet entropy is shown to be a good measure of the effectiveness of ventricular beat suppression

    Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine

    Get PDF
    Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.Web of Science203art. no. 76

    A study on stability analysis of atrial repolarization variability using ARX model in sinus rhythm and atrial tachycardia ECGs

    Get PDF
    © 2016 Elsevier Ireland Ltd Background The interaction between the PTa and PP interval dynamics from the surface ECG is seldom explained. Mathematical modeling of these intervals is of interest in finding the relationship between the heart rate and repolarization variability. Objective The goal of this paper is to assess the bounded input bounded output (BIBO) stability in PTa interval (PTaI) dynamics using autoregressive exogenous (ARX) model and to investigate the reason for causing instability in the atrial repolarization process. Methods Twenty-five male subjects in normal sinus rhythm (NSR) and ten male subjects experiencing atrial tachycardia (AT) were included in this study. Five minute long, modified limb lead (MLL) ECGs were recorded with an EDAN SE-1010 PC ECG system. The number of minute ECGs with unstable segments (N us ) and the frequency of premature activation (PA) (i.e. atrial activation) were counted for each ECG recording and compared between AT and NSR subjects. Results The instability in PTaI dynamics was quantified by measuring the numbers of unstable segments in ECG data for each subject. The unstable segments in the PTaI dynamics were associated with the frequency of PA. The presence of PA is not the only factor causing the instability in PTaI dynamics in NSR subjects, and it is found that the cause of instability is mainly due to the heart rate variability (HRV). C onclusion The ARX model showed better prediction of PTa interval dynamics in both groups. The frequency of PA is significantly higher in AT patients than NSR subjects. A more complex model is needed to better identify and characterize healthy heart dynamics

    Nonlinear trend removal should be carefully performed in heart rate variability analysis

    Get PDF
    \bullet Background : In Heart rate variability analysis, the rate-rate time series suffer often from aperiodic non-stationarity, presence of ectopic beats etc. It would be hard to extract helpful information from the original signals. 10 \bullet Problem : Trend removal methods are commonly practiced to reduce the influence of the low frequency and aperiodic non-stationary in RR data. This can unfortunately affect the signal and make the analysis on detrended data less appropriate. \bullet Objective : Investigate the detrending effect (linear \& nonlinear) in temporal / nonliear analysis of heart rate variability of long-term RR data (in normal sinus rhythm, atrial fibrillation, 15 congestive heart failure and ventricular premature arrhythmia conditions). \bullet Methods : Temporal method : standard measure SDNN; Nonlinear methods : multi-scale Fractal Dimension (FD), Detrended Fluctuation Analysis (DFA) \& Sample Entropy (Sam-pEn) analysis. \bullet Results : The linear detrending affects little the global characteristics of the RR data, either 20 in temporal analysis or in nonlinear complexity analysis. After linear detrending, the SDNNs are just slightly shifted and all distributions are well preserved. The cross-scale complexity remained almost the same as the ones for original RR data or correlated. Nonlinear detrending changed not only the SDNNs distribution, but also the order among different types of RR data. After this processing, the SDNN became indistinguishable be-25 tween SDNN for normal sinus rhythm and ventricular premature beats. Different RR data has different complexity signature. Nonlinear detrending made the all RR data to be similar , in terms of complexity. It is thus impossible to distinguish them. The FD showed that nonlinearly detrended RR data has a dimension close to 2, the exponent from DFA is close to zero and SampEn is larger than 1.5 -- these complexity values are very close to those for 30 random signal. \bullet Conclusions : Pre-processing by linear detrending can be performed on RR data, which has little influence on the corresponding analysis. Nonlinear detrending could be harmful and it is not advisable to use this type of pre-processing. Exceptions do exist, but only combined with other appropriate techniques to avoid complete change of the signal's intrinsic dynamics. 35 Keywords \bullet heart rate variability \bullet linear / nonlinear detrending \bullet complexity analysis \bullet mul-tiscale analysis \bullet detrended fluctuation analysis \bullet fractal dimension \bullet sample entropy

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Atrial fibrillation detection by heart rate variability in Poincare plot

    Get PDF
    © 2009 Park et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Advances in Digital Processing of Low-Amplitude Components of Electrocardiosignals

    Get PDF
    This manual has been published within the framework of the BME-ENA project under the responsibility of National Technical University of Ukraine. The BME-ENA “Biomedical Engineering Education Tempus Initiative in Eastern Neighbouring Area”, Project Number: 543904-TEMPUS-1-2013-1-GR-TEMPUS-JPCR is a Joint Project within the TEMPUS IV program. This project has been funded with support from the European Commission.Навчальний посібник присвячено розробці методів та засобів для неінвазивного виявлення та дослідження тонких проявів електричної активності серця. Особлива увага приділяється вдосконаленню інформаційного та алгоритмічного забезпечення систем електрокардіографії високого розрізнення для ранньої діагностики електричної нестабільності міокарда, а також для оцінки функціонального стану плоду під час вагітності. Теоретичні основи супроводжуються прикладами реалізації алгоритмів за допомогою системи MATLAB. Навчальний посібник призначений для студентів, аспірантів, а також фахівців у галузі біомедичної електроніки та медичних працівників.The teaching book is devoted to development and research of methods and tools for non-invasive detection of subtle manifistations of heart electrical activity. Particular attention is paid to the improvement of information and algorithmic support of high resolution electrocardiography for early diagnosis of myocardial electrical instability, as well as for the evaluation of the functional state of the fetus during pregnancy examination. The theoretical basis accompanied by the examples of implementation of the discussed algorithms with the help of MATLAB. The teaching book is intended for students, graduate students, as well as specialists in the field of biomedical electronics and medical professionals

    Recent Advances in the Noninvasive Study of Atrial Conduction Defects Preceding Atrial Fibrillation

    Get PDF
    The P-wave represents the electrical activity in the electrocardiogram (ECG) associated with the heart\u27s atrial contraction. This wave has merited significant research efforts in recent years with the aim to characterize atrial depolarization from the ECG. Indeed, the alterations of the P-wave main time, frequency, and wavelet features have been widely studied to predict the onset of atrial fibrillation (AF), both spontaneously and after a specific treatment, such as pharmacological or electrical cardioversion, catheter ablation, as well as cardiac surgery. To this respect, the P-wave prolongation is today a clinically accepted marker of high risk of suffering AF. However, given the relatively low P-wave amplitude in the ECG, its analysis has been most widely carried out from signal-averaged ECG signals. Unfortunately, these kind of recordings are uncommon in routine clinical practice and, moreover, they obstruct the possibility of studying the information carried by each single P-wave as well as its variability over time. These limitations have motivated the recent development of the beat-to-beat P-wave analysis, which has proven to be very useful in revealing interesting information about the altered atrial conduction preceding the onset of AF. Within this context, the main goal of this chapter is to review the most recent advances reached by this kind of analysis in the noninvasive assessment of atrial conduction alterations. Thus, the chapter will introduce and discuss the existing methods of the beat-to-beat P-wave analysis and their application to predict the onset of AF as well as its advantages and disadvantages compared with the signal-averaged P-wave analysis
    corecore