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INTRODUCTION 

 

 The development of digital processing of biomedical signals and 

implementation of information technology in medical practice create 

conditions for improvement of diagnostic methods in cardiology. The use 

of special equipment for electrocardiogram registration and digital signal 

processing techniques provide information that can not be obtained by 

analysis of standard electrocardiogram. 

The classic use of high resolution electrocardiography is non-

invasive detection of markers of myocardial electrical instability to predict 

cardiac arrhythmias. It is believed that the first signs of electrical 

instability of the heart reflect the exhaustion of regulatory systems at the 

level of individual cells of the myocardium. Changes in energy and 

metabolic processes that occur in the deterioration of electrical stability 

of the myocardium at the cellular and subcellular levels and 

microstructural violations can not be detected by conventional clinical 

and physiological methods of functional diagnostics. These changes in 

the first stage of the disease often does not manifest clinically.  

The first part of the teaching book focuses on simulation of action 

potential and membrane ionic currents in cardiomyocytes and nerve 

fibers. It presents a mathematical model based on 6 ordinary differential 

equations that describe the ionic currents at the level of cardiomyocyte, 

transmembrane potential with action potential generation, as well as 

activation and inactivation functions for potassium, sodium and calcium 

channels of cardiomyocytes.  

The second part of the teaching book is devoted to development 

of diagnostic ECG systems of new generation, which are characterized 

by the use of complex mathematical transformations for estimation of 
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parameters of electrical potentials considering biophysics and 

electrophysiology of myocardium. The systems of high resolution 

electrocardiography (HR ECG) allow investigation of subtle 

manifestations of cardiac electrical activity. Early diagnosis of 

cardiovascular system state, which developed on the basis of HR ECG 

methods, has essentially new opportunities and begins to be widely 

applied in clinical practice. To the tasks of investigation of subtle 

structure of ECG belongs detection of electrical violations of myocardial 

homogeneity based on registration and analysis of atrial and ventricular 

late potentials by the systems of high resolution electrocardiography. The 

presence of late potentials is associated with an increased probability of 

dangerous cardiac arrhythmias. Particularly difficult is the study of atrial 

late potentials, which occur as high frequency microbursts in terminal 

part of P wave and have nearly the same amplitude as noise 

components of cardiosignal. The amplitude of atrial late potentials is 

much lower than the amplitude of ventricular late potentials. Atrial late 

potentials reflect the presence of fragmented delayed depolarization of 

the atria and are markers of myocardial electrophysiological disorders 

that lead to supraventricular arrhythmias such as atrial fibrillation and 

paroxysmal atrial tachycardia. Detection of late potentials may be based 

on the use of a broad class of algorithms from the conventional analysis 

in the time and frequency domains to the complex procedures of pattern 

recognition.  

Combined method of analysis of low-amplitude components of 

electrocardiosignals is developed. It is intended for detection of late 

potentials representing pathological cardiac electrical activity and based 

on the creation of eigensubspaces of signals and noise at different 
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combinations of wavelet decomposition and decomposition in  

eigenvectors basis.  

The third part of the teaching book is dedicated to detection and 

evaluation of beat-to-beat T wave alternans in electrocardiogram. The 

task of developing of theoretically justified methods and algorithms for 

early prediction of potentially dangerous atrial arrhythmias is very 

important because of the wide spread of cardiovascular diseases and 

their significant contribution to the structure of mortality and disability of 

socially active groups. To reveal diagnostic features related to T wave 

alternans, variations in amplitude and shape of T waves from synthetic 

and clinical recordings were explored by means of time-domain 

analysis, Poincare plots, and principal component analysis together with 

clustering analysis. The proposed methods make it possible to eliminate 

noises and interferences in recorded electrocardiograms, and also to 

detect the morphology changes of T waves. 

The fourth part of the teaching book is focused on noninvasive 

research of atrial electrical activity by its extraction from the surface 

electrocardiogram recordings. Spectral and time-frequency analysis is 

performed for fibrillatory frequency detection and tracking. It is shown 

that atrial electrical activity and ventricular activity can be separated 

from real multichannel recordings with symptoms of atrial fibrillation by 

means of independent component analysis. To identify the source that 

corresponds to atrial electrical activity, the frequency spectrums and 

coefficients of skewness and kurtosis are determined. Also atrial activity 

extraction is performed by average beat subtraction method. The 

comparison of obtained results is carried out. Spectral analysis by Fast 

Fourier Transform and Multiple Signal Classification methods as well as 
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time-frequency analysis are used to find and track dominant atrial 

fibrillation frequency. 

The fifth part of the teaching book demonstrates another 

example of the investigation of subtle structure of ECG, which consists 

in separation of fetal and maternal electrocardiosignals obtained by the 

abdominal recording. Despite significant advances in clinical 

electrocardiography, this direction is still in early stage of development. 

It is caused by lack of necessary databases of fetal ECG in norm and 

with the presence of defects, low amplitude of fetal ECG compared to 

the high-amplitude maternal signal, as well as the presence of 

abdominal noise components in the abdominal ECG signal. The 

proposed method of fetal ECG separation from the abdominal maternal 

electrocardiosignals makes it possible to separate from the noisy 

mixture of signals the low-amplitude component of fetal ECG that is the 

independent source of cardiac electrical activity. This allows 

determination of fetal heart rate variability and morphological 

parameters of fetal cardiac cycles for assessment of fetal condition 

during pregnancy. 

The teaching book presents the research of simulated and real 

electrocardiosignals. It can be useful for students, graduate students, as 

well as for developers of new methods and means of high resolution 

electrocardiography. 
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SECTION 1 

BIOELECTRIC PROCESSES OF CELL MEMBRANE 

 

1.1. Structure and functions of cell membrane 

 

Vital activity of any organism is accompanied by bioelectric 

processes. The appearance of electrical potentials in living cells is 

associated with the physicochemical properties of cell membranes. All 

living organisms consist of cells, which surrounded by biological 

membranes with thickness about 6-10 nm. 

Biological membranes are the limited supramolecular structures, 

which form the cells and their intracellular environment and provide all 

functions of organism. The most important function of biological 

membranes is regulation of ions and substances transport [1]. The 

structure of the membrane composed of lipids, carbohydrates and 

protein components (Fig. 1.1). 

One of the first membrane models is bilayer model of lipid 

membrane ("double sandwich"). In this model lipid molecules are 

arranged in two layers in such a way that the polar heads, which have 

hydrophilic properties, are directed outward, and nonpolar tails, which 

have hydrophobic properties, are directed into the membrane. Protein 

components penetrate the bilayer of the membrane. Lipid layer 

effectively prevents the process of free passage of ions through the 

membrane. 
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Fig. 1.1. Structure of the cell membrane: 

1 ─ hydrophilic lipid head, 2 ─ of hydrophobic lipid molecules, 

3 ─ protein molecule,  4 ─ carbohydrate molecules 

 

Hydrophobic tails form the internal structure of the membrane, which 

behaves like a dielectric with a relative dielectric constant and thickness 

d = 30Å. The capacity Cm of following structure is about 1µF/cm2 [1]. 

The functions of membrane proteins include formation of the 

channels, which enable exchange of ions between intra- and 

extracellular environments. Functional model of membrane channels 

(Fig.1.2) consists of the aqueous pores, through which ions have the 

ability to penetrate the membrane, selectivity filter, which displays 

property of selective permeability channels for different ions and sensor 

with control gates. 

On the base of functional model ion channels can be classified by 

selectivity according to the ions that pass through the channels: sodium, 

potassium, calcium, chloride. 

Also, functional model allows classification of ion channels 

depending on the control facilities: 

- independent channels; 

- potential-dependent channels; 

1 

2 

1 

3 

4 
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- ligand-dependent channels; 

- jointly-controlled channels (activated by ligands and membrane 

potential); 

- stimulus-driven channels (mehano-sensitive, temperature-

sensitive). 

 

 

 Fig. 1.2. Functional model of membrane channels [1] 

 

1.2. Nature and modeling of  membrane resting potential 

 

One of the most characteristic features of living cells at rest is a 

potential difference between the inside part of cell and environment, 

which is known as resting potential. Registration of the resting potential 

is carried out by inserting the electrode into the cell (registered voltage is 

approximately -70 mV). 
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       1.2.1. Nernst-Planck equation and Nernst potential 

 

In all excitable cells intracellular potassium concentration is much 

higher than the potassium concentration outside cell and extracellular 

concentrations of sodium and chlorine are much higher comparing to 

their intracellular concentrations [1]. 

Inequality of ions concentration in the intra- and extracellular space 

cause the diffusion of ions from the region with their high concentration 

to the region with low concentration. Due to the fact that ions have 

electric charges, membrane has a certain electric capacity. The charges 

are collected on the membrane, leading to the emergence of a potential 

difference. This potential difference creates in the thickness of the 

membrane the electric field, which generates forces acting on all the 

charged particles inside the membrane. Thus, the total current of ions 

through the membrane has diffusive and drift components: 




ZNNZDJJJ drdif , 

where Z is ion charge, D is diffusion coefficient, N is ion 

concentration as a function of coordinates, µ is mobility;  φ is potential of 

electric field inside the membrane. 

Then, the full density of the ion current across the membrane can be 

found using Nernst-Planck equation: 

T

Z N
J ZD N

q

 
     

 

  
, 

where φT  is thermal potential, q is electron charge. 

Nernst-Planck equation is used to obtain quantitative estimation of 

the membrane potential. Under the equilibrium conditions the force of the 
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electric field exactly compensates diffusion force, and full density of the 

ion current across the membrane equals zero: 

0
T

c
c c

NZ
J D Z N

q

 
      

 

  
, 

where cD  is diffusion coefficient of cations, cN  is concentration of 

cations. 

From this equation we can find potential difference with regard to 

assumption of integration on the membrane thickness from the 

intracellular space i to the extracellular space e. 

For biological cell membrane potential is determined as the 

difference between internal and external potentials. Thus, the potential 

difference on the membrane is Vm: 

ln
T

Ce
m i e

Ci

Nq
V

Z N
       

The resulting value of the membrane potential is called the Nernst 

potential. It can be regarded as an electrical measure, which 

counterbalances the diffusion force that arises from the difference in 

concentrations on opposite sides of the permeable membrane. 

Nernst potential for cations can be defined as: 

ln
T

Ce
C

Ci

Nq
V

Z N
   

where CeN  is extracellular concentration of cations, CiN  is 

intracellular concentration of cations. 

Nernst potential for anions can be found as: 
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ln
T

Ai
A

Ae

q N
U

Z N
  , 

where 

 
AeN  is extracellular concentration of anions, 

AiN  is 

intracellular concentration of anions. 

 

1.2.2. Goldman equation 

 

Membrane potential is a weighted sum of the Nernst potentials for 

different ions. The weights in this amount depend on on the ability of 

membrane to pass through itself a variety of presented ions. To take into 

account for the influence of membrane permeability for different ions on 

the membrane potential, we have to solve Nernst-Planck equation, 

based on membrane processes. In general, biological membrane can not 

be in the state of equilibrium for all ions.  

Nernst potentials for K+, Na+, Cl- ions under their usual 

concentrations have different values. Thus, none of the membrane 

Nernst potentials can simultaneously balance all ions. Resting potential 

can be found from the condition of equilibrium J = 0. 

 [ ] [ ] [ ] [ ] [ ] [ ] 0
m

T

V

K e Na e Cl i K i Na i Cl ep K p Na p Cl p K p K p Cl e        

where [K]i and [K]e are intra- and extracellular concentrations of 

potassium ions, [Na]i and [Na]e  are  intra- and extracellular 

concentrations of sodium ions, [Cl]I and [Cl]e are intra- and extracellular 

concentrations of chlorine ions,  pK  is permeability of potassium ions,  pNa  

is permeability of sodium ions,  pCl is permeability of chlorine ions. 

 

 



 

- 16- 

 

From this formula we can obtain the resting potential: 

 

[ ] [ ] [ ]
ln

[ ] [ ] [ ]
T

K e Na e Cl i
m

K i Na i Cl e

p K p Na p Cl
V

p K p Na p Cl

  
   

  
. 

This equation is called the equation of Goldman. Goldman equation 

shows that the membrane potential is independent from the absolute 

values of membrane permeability for different ions and depends only on 

their relationship pK : pNa : pCl. If the membrane is permeable only to one 

type of ions (for example, pК>>pNa and pK>>pCl), then the membrane 

potential equals Nernst potential of that type of ions, for which membrane 

is permeable (such as K+ ions). 

The impact of chlorine ions to creation of resting potential in 

comparison with the impact of potassium ions is secondary. This is due 

to the fact that the intracellular concentration of chlorine ions is very 

small and under a small influx or outflow of ions is subjected to large 

relative changes. Consequently, the movement of chloride ions will lead 

its concentration on both sides of the membrane to practically fixed ratio 

of the concentrations of potassium ions. Therefore, in many practical 

problems, it can be assumed, that the chlorine ions are in equilibrium or 

absent. In this case the resting potential is defined as: 

[ ] [ ]
ln

[ ] [ ]
T

e e
m

i i

K Na
V

K Na

 
 

 
, 

where    Na

K

p

p
  . 
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1.2.3. Parallel-conductance model 

 

The assumption of the presence of independent conducting ion 

channels allows construction of a circuitry model of membrane, known as 

the parallel-conductance model [1]. Each of the branches of the electrical 

circuit reflects the contribution of certain type of ions to the total 

membrane current (Fig. 1.3). 

 

Fig. 1.3. The parallel-conductance model of membrane  

(IN = intracellular space, OUT = extracellular space) [1] 

 

Independent conductance channels are presented for K+, Na+ and 

Cl− ions. The voltage sources in the equivalent circuit simulate Nernst 

potentials for each type of ions: 

[ ]
ln ;

[ ]

[ ]
ln ;

[ ]

[ ]
ln .

[ ]

T

T

T

e
K

i

e
Na

i

i
Cl

e

K
E

K

Na
E

Na

Cl
E

Cl

 

 

 

 

Complete membrane current can be defined as: 
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      m
K m K Na m Na Cl m Cl m

dV
J g V E g V - E g V E C

dt
      . 

At equilibrium J = 0 and  0mdV

dt
 . Then 

Na Na K K Cl Cl
m

Na K Cl

g E g E g E
V

g g g

 


 
. 

This equation is known as the equation of parallel conductances. 

According to it, Vm is a weighted average of values EK, ENa, EСl, 

depending on the relative conductivities. 

 

1.3. Nature and modeling of action potential  

1.3.1. Simulation of conductivity of ion channels 

 

A typical current through a single channel consists of discrete 

random jumps. According to experimental data, current fluctuations can 

be explained by opening and closing of the channel, which has a fixed 

conductance. The current switches between two discrete levels and 

durations of open and closed positions are described by random 

variables. The current, which is created by a large number of channels, 

corresponds to the average current of the whole cell. Let's consider 

relationships that describe macroscopic properties of the membrane by a 

total effect of a large number (N) of individual channels, among which 

NO channels are open and NC channels are closed (N = NO + NC). It is 

believed that over time some channels randomly switch from the closed 

position to the open and vice versa [1-3]. 
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If   is the speed of channels switching from closed position to open 

and  is speed of switching from open position into closed, then the full 

speed of changing the open channels is determined as: 

 O
C O O O

dN
N N N N N

dt
          

Suppose that оN
p

N

  is the probability that the channel is open, then 

(1 )
dp

p p
dt

      

The last equation can be rewritten as 

dp p p

dt
 
  

where 



1

 is relaxation period, p    is the steady-state 

value. The decision of the equation is an expression 




 
t

epppp )( 0 , 

where p0 is the probability that the channel is in the open position at 

the moment t=0. Character of the solution depends on the ratio between 

the values of p0 and p (Fig. 1.4). 

 

NO          Nc 

 

 
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Fig. 1.4. Probability function p(t) depending on the ratio between the 

values of p0 and p 

 

If p= p0, then the probability that the channel is in the open state is 

independent from time and corresponds to the steady state. When p>p0, 

function p(t)  increases due to the opening of the channels over time. 

This process is called activation of the channels, and the function p(t) is 

known as activation function. When p<p0, the inactivation of the 

channels occurs and the channels change their state to the closed 

position. In this case, the function p(t)  is called inactivation function. 

Described dependences are fair for so-called individual channels. 

The real ion channels are composed of several subunits, each of which 

can be described as a single channel. The channel is considered to be 

open, if all the subunits are also open. If pi is the probability that i subunit 

is in the open state, then for the channel, which consists of k subunits, 

function p(t), is defined as 

1

( ) ( )
k

i
i

p t p t


  . 

 p 

 p 

 p 

 p0 

 p> p0 

 p< p0 

 p= p0 

 t 
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Biological membranes contain a large number of several types of ion 

channels. With stimulation such electrically active tissues can generate 

an electrical impulse - action potential (AP). Action potential depends on 

the voltage applied to the stimulating electrodes and its polarity. If the 

stimulus amplitude is small, then stimulus artifact can be registered, 

which coincides in time with the stimulus and occurs through direct 

capacitive connection of the stimulator and recording tool. Increasing the 

amplitude of the stimulus we can reach a level at which an answer, 

potential of the cell occurs, indicating the threshold nature of the 

phenomenon. With increasing of the stimulus amplitude above the 

threshold, amplitude of action potential remains unchanged.  

By placing a microelectrode inside the cell, a change in intracellular 

potential relative to extracellular potential can be measured. At rest state, 

the membrane has a negative potential of 60-100 mV. The cycle of the 

action potential consists of fast depolarization (1) that implies increasing 

of the transmembrane potential, then follows the slow repolarization (2) 

of the membrane and return to the resting state of the membrane (3) 

(Fig. 1.5). 

 

Fig.1.5. The main phases of action potential [4] 
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The answer of the excitable membranes does not occur until the 

stimulus reaches a certain level, called the threshold potential. For all 

stimuli, which applied to the cell with amplitude higher than the threshold, 

action potentials have the same amplitude. 

To understand the origin of the action potential we must turn to the 

Goldman equation. In deriving the Goldman equation a key assumption 

implies the existence of a steady state, in which the full density of ion 

flow is equal to zero J=0.  At the top of the action potential 0mdV

dt
 , and 

therefore total current density through the membrane must also be zero 

(quasi-stationary state). However, at the peak value of action potential 

membrane permeability is different from the permeability at rest. 

Experimentally determined, that the peak of action potential is 

approaching the Nernst potential for sodium, but never exceeds it. This 

result is consistent with a possible increase in sodium permeability. 

It has been shown that good match between theory and experiment 

is achieved if accept pK : pNa : pCl = 1.0 : 0.01 : 0.45 at rest and                              

pK : pNa : pCl = 1.0 : 10.0 : 0.45 at the peak of action potential. 

The influence of chlorine on behavior of membrane at rest is negligible. 

As a result, given the difference of permeabilities pK and pNa , as a first 

approximation we can assume that 

at rest  
[ ]

ln
[ ]

e
m K T

i

K
V E

K
   ; 

at the peak of action potential 
[ ]

ln
[ ]

e
m N a T

i

N a
V E

N a

 
    

 
 . 
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1.3.2. Simulation of action potential in cardiomyocytes 

 

Classification of models of heart electrical activity is based on the 

description of bioelectric processes, which take place at different levels 

of organization: cell, tissue and organ. Cellular level models reflect the 

occurrence of action potential in cardiomyocytes. Simulation at the tissue 

level describes AP distribution processes in myocardium, and organ-

level models allow investigation of dynamics of cardiac conduction 

system. 

Cellular-level models are based on a fundamental approach, which 

was proposed by Hodgkin and Huxley in the simulation of ionic currents 

and membrane AP for nerve fiber  [2]. For simulation of action potential 

in cardiomyocyte, it is necessary to take into account that AP of 

cardiomyocyte differs from the AP of nerve fiber due to the presence of 

weighty contribution of calcium current. Duration of AP in axon is 1 ms, 

whereas duration of AP in myocardial contractile cells is 250-300 ms, 

that allows implementation of synchronous excitation and contraction of 

the heart structures for blood ejection. There are important physiological 

differences between nodal cells and atrial or ventricular cells of heart due 

to the specific differences in ion channels and mechanisms of 

repolarization. Therefore, action potentials in cardiomyocytes of various 

heart structures (sinus and atrioventricular node, atrial and ventricular 

cardiomyocytes) are different in shape and duration.  

One of the first modern models of myocardium is a model by 

McAllister R.E., Noble D., and Tsien R.W. [5], which includes all 

membrane currents that were confirmed experimentally, as well as 

intracellular calcium currents, which are closely linked to muscle 

contraction. One of the latest models is the model of the myocardium by 
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Luo and Rudy [6, 7]. Model of Luo and Rudy is a modern model of heart 

membrane, which extends the previous models by using single-channel 

parameter measurements. The fundamental approach of modeling, 

which was proposed more than fifty years ago by Hodgkin and Huxley in 

[2], remains unchanged. 

Improvement of the model was performed taking into account 

experimental data accumulated by many authors by introducing new 

features and functions for membrane currents due to the complexity of 

cardiac membrane and bioelectric processes in cardiomyocytes. 

Arrhythmias, being the most common heart diseases, are caused by 

violations in the formation and/or propagation of the action potential. To 

investigate such violations of the heart electrical activity, experimental 

methods and methods of mathematical simulation are performed, 

complementing each other. Different researchers have created a wide 

variety of models that simulate the appearance of the action potential in 

cardiomyocytes [3]. There are complex detailed models for the 

simulation of action potential with using a large number of gate variables. 

For example, the Luo–Rudy model consists of 14 ODEs [6], the 

Courtemanche et al. model consists of 21 ODEs [8], the Winslow et al. 

model uses 32 ODEs [9], the Puglisi–Bersmode model contains 17 

ODEs [10]. However, the use of the relatively simple model allows us to 

reproduce a variety of forms of action potentials in cardiomyocytes 

without unnecessary complications. 

For simulation of action potential in cardiomyocytes, modification of 

the generalized model of Hodgkin-Huxley was performed by adding a 

branch corresponding to the calcium ion channel [11].  

Model of cell membrane at occurrence of action potential in 

cardiomyocyte is described by the parallel-conductance model (Fig. 1.6), 
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based on the assumption of the presence of independent ion channels 

for K+, Na+ and Ca2+ ions, as well as leakage through the membrane. 

Each branch of the electrical circuit reflects the contribution of one type 

of ions to total membrane current. The membrane of cardiomyocytes has 

selective permeability to ions of various types. The voltage sources in the 

equivalent circuit simulate Nernst potentials for each type of ion.  

 

 

Fig. 1.6. The parallel-conductance model of cardimyocyte’s cell 

membrane. Independent conductance channels are presented for K+, 

Na+, Ca2+ and leakage together with other factors. The battery polarity 

is chosen to show, that usually Nernst potentials of EK and El are 

negative (inside potential is more negative than outside), whereas ENa 

and ECa are positive (inside potential is more positive than outside) 
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Transmembrane potential at any moment of time can be 

represented as  

                                                           0( ) ( )m m mV t V v t                                       (1.1) 

where )(tv m  is the alternating component of membrane potential, 

0mV  is resting potential determined from the parallel-conductance model 

of membrane as 

                ,
000

000
0

lCaNaK

llCaCaNaNaKK
m

gggg

EgEgEgEg
V




                        (1.2)   

where 000 and, CaNaK ggg are the conductances of potassium, sodium and 

calcium ions at rest; CaNaK EEE and,, are electromotive forces of sources, 

which simulate Nernst potential of potassium, sodium and calcium 

respectively; lg  is the leakage conductivity through the membrane; lE  is 

electromotive force of source, which simulates Nernst potential for 

chlorine ions, leakage and other factors that affect the membrane 

potential in rest. Value of lE  in practice is selected so, that for a given 

conductivity lg  resting potential is equal to a predetermined value 0mV . 

As follows from the parallel-conductance model, the variable 

component of the membrane potential during the flow of the depolarizing 

current Id through the membrane must satisfy the differential equation 

              
1

( , ) ( , ) ( , )m
K m Na m Ca m l d

m

dv
I v t I v t I v t I I

dt C
      ,               (1.3) 

where  

0( , )= ( , )( + + )K m K m m m KI v t g v t V v E ,  



 

- 27- 

 

)-+)(,(=),( 0 NammmNam EvVtvgtvI
Na , 

)-+)(,(=),( 0 CammmCamCa EvVtvgtvI  

are time dependences of potassium, sodium and calcium currents 

respectively;  

 )+(= 0 lmmll EvVgI  is the leakage current through the membrane; 










d

dd

d
Tt

TtI
I

,0

0,0  is depolarizing current; Id0 is the amplitude of 

depolarizing current;  

Td is duration of depolarizing pulse. 

During the membrane polarization conductance of potassium, 

sodium and calcium channels can be described by the equations: 

                                     4
max( , ) ( , )K m K mg v t g n v t ,                           (1.4) 

                                3
max( , ) ( , ) ( , )Na m Na m mg v t g m v t h v t ,                        (1.5) 

                               ),(),(),(
max

tvftvdgtvg mmCamCa  ,                           (1.6) 

where max max max, andK Na Cag g g are the membrane conductances for 

potassium, sodium and calcium ions respectively in the case all the 

channels of the membrane for this type of ions are in the open state; n is 

activation function of potassium channels; m is activation function of 

sodium channels; h is inactivation function for sodium channels; d is 

activation function of calcium channels and f is inactivation function for 

calcium channels. 
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Activation and inactivation functions have the meaning of probability, 

that activation or inactivation ion channel subunit is in the open state at 

the moment. These gating variables change from zero to one and they 

are the solutions of the set of nonlinear ordinary differential equations 

(ODE). The proposed model contains ionic currents, which are 

determined by five gating variables n, m, h, d, and f. 
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 dmn and,,  are the steady-state values of activation function for 

potassium, sodium and calcium channels respectively; 
 fh and are the 

steady-state values of inactivation function for sodium and calcium 

channels; minmin and fh are minimum values of inactivation for sodium and 
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calcium channels; hdhmhn VVV and,  are voltages of semi-activation for 

potassium, sodium and calcium channels; SdSmSn VVV and , are voltages of 

activation shape for potassium, sodium and calcium channels; 

hfhh VV and  are voltages of semi-inactivation for sodium and calcium 

channels; SfSh VV and  are voltages of inactivation shape for sodium and 

calcium channels; andh fP P  are degrees of relaxation of inactivation for 

sodium and calcium channels. 

Relaxation periods of activation , , andn m d    for potassium, sodium 

and calcium channels were determined as follows 
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where maxmaxmax and,, dmn   are maximum relaxation periods of 

activation for potassium, sodium and calcium channels; dmn rrr and,,  are 

ratios of minimum relaxation period to maximum relaxation period of 
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activation for potassium, sodium and calcium channels; dhmhnh VVV  and,,  

are voltages of semi-relaxation of activation; dSmSnS VVV  and,,  are 

voltages of relaxation shape of activation; 
dmn PPP  and,,  are degrees of 

relaxation of activation for potassium, sodium and calcium channels, 

respectively. 

Relaxation periods of inactivation andh f   for sodium and calcium 

channels were determined as follows 
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max maxandh f  are maximum relaxation periods of inactivation for 

sodium and calcium channels; fh rr and are ratios of minimum relaxation 

period to maximum relaxation period of inactivation for sodium and 

calcium channels; fhhh VV  and  are voltages of semi-relaxation of 

inactivation; fShS VV  and are voltages of relaxation shape of inactivation; 

fh PP  and  are degrees of relaxation of inactivation for sodium and 

calcium channels, respectively. 

The initial conditions are  
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where 0 0 0 0 0, , ,  andn m d h f can be found as , , ,  andn m d h f      for 

.0mv  

Maximal conductances of the membrane for K+, Na+ and Ca2+   

channels are defined as 
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Equation (1.3), the set of equations for all gating variables (1.7), as 

well as initial conditions (1.8) make Cauchy problem relatively functions 

fhdmnvm and,,,, , which is a set of stiff differential equations. Therefore, 

to solve it, the implicit methods of integration should be used [12]. Using 

the predictor-corrector method, in order to avoid overflow of the 

computer grid, step t in the initial segment of integration should not be 

too large. The initial value should be selected as dTt  , where Td is 

duration of the depolarizing pulse.  

As a simplified, but a rough solution of the Cauchy problem, the 

following method can be used. Suppose that speed of transitions of 
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activation and inactivation subunits of ion channels from closed state into 

open and backwards changes slightly within the integration step. Then 

relaxation periods , , , ,n m h d f      and values , , , ,n m d h f      can be 

considered as slightly changing. Accepting that these values are the 

constants depending only on voltage and not on time, differential 

equations can be solved explicitly. Then 
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Such approach makes it possible to analyze the parameters of the 

model and find their primary approximation in accordance with action 

potential shape. 

The value of El is determined from (1.2). Values 

maxmaxmax
and,, CaNaK ggg  are found from the equations (1.9-1.11) given 

the fact, that 0 0 0 0 0, , ,  andn m d h f are the values of activation and 

inactivation functions , , ,  andn m d h f      for the steady state, when 

.0)0( mv  

Together with transmembrane potential dependence on the time for 

action potential generation, changes of membrane currents for 

potassium ions, sodium, calcium and influence of leakage, chlorine ions, 

and other factors that affect the membrane potential are considered in 

the model using the Hodgkin-Huxley formalism. The model of electrical 

activity in cardiomyocyte simulates action potential dynamics and 



 

- 33- 

 

dynamics of transmembrane currents. 

 

Fig. 1.7. Activation function for potassium channel versus alternating 

component of membrane potential for the voltages of semi-activation 

Vhn = 50 mV and various voltages of activation shape Vsn  

 

To obtain the correct results with the considered model, it is 

necessary to identify the model parameters and the relationships 

between their values. For the occurrence of action potential, the 

condition KNa II 
 
is necessary. In this condition the overall flow of 

cations into the cell causes an increase in potential mV  and starts the 

process, which characterizes the growth phase of action potential. 

Growth of mV  causes growth of Nag , as channel conductivity is a function 

that depends continuously on the transmembrane potential, which in turn 

leads to a further increase of mV , etc. The relaxation period of activation 

of sodium channels m is very small. The action potential can arise, when 
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andm n h    , in case of a state with a low value of n, normal value of 

m and increased value of h. This combination of three parameters leads 

to the fulfillment of the condition Na KI I and excitation may occur in a 

cell.  

Resting membrane potential is mostly determined by high potassium 

permeability (conductance) and its value is close to the Nernst potential 

of potassium EK. Taking this into account, it can be seen from the 

 

 

Fig.1.8. Gating variables, which determine ionic currents in the model: 

 а) activation function (n) of potassium channels; b) activation (m) and 

inactivation (h) functions of sodium channels; c) activation (d) and 

inactivation (f) functions of calcium channels 
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equation (1.2), that conductance of calcium ions at rest 0Cag should be 

small and should not practically affect the resting potential value.  

Meanwhile, in order to make calcium current to contribute to the 

stage of cardiomyocyte membrane repolarization, especially in the 

plateau phase of the action potential, the maximum conductance of the 

membrane for calcium channels maxCag  should be quite large and 

comparable to maxKg . This can be achieved by a very small value of the 

parameter 0d , which in its turn is provided by large value of hdV and small 

value of sdV . Maximum relaxation period of inactivation of calcium 

channels
maxf  defines the duration of repolarization, which is long 

enough in cardiomyocytes.  Therefore, it is necessary to 

specify maх mad f х   .  The equations, listed above, were solved for 

simulation of action potential in ventricular cardiomyocytes using 

parameter values presented in TABLE I.  Gating variables for potassium, 

sodium and calcium channels, obtained by solving the set of differential 

equations, are presented in Fig.1.8, a-c. 

Obtained simulated action potentials for atrial and ventricular 

cardiomyocytes (Fig. 1.9) in accordance with the theoretical information 

[1-4] have three characteristic phases: depolarization, plateau and 

repolarization. Depolarization phase is determined by a sharp increase of 

AP amplitude due to the growth of membrane permeability for sodium 

ions. Plateau phase describes the slow decline of action potential, which 

is explained by the simultaneous work of two types of channels - slow 

calcium channels and potassium channels. Repolarization phase is 

determined by the faster decline in AP amplitude, which is caused by 

closing of calcium channels and strengthening of the outward potassium 

current.  
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TABLE I.  PARAMETERS OF THE MODEL 

 

The model, based on the formalism of Hodgkin-Huxley, should be 

considered as a model describing the average values of membrane 

currents. It assumes, that membrane contains a large number of 

channels, which simultaneously operate in a cardiomyocyte, so the 

description of membrane currents results in averaging over the ensemble 

of channels. 

 

 

Para-
meter 

Value 
Parameter Value Parameter Value 

Cm 1 F/cm2 hmV  40 mV maxd  70 ms 

Vm0 -85 mV hhV  7 mV maxf  260 ms 

EK 80 mV hdV  34 mV nhV   40 mV 

ENa 50 mV hfV  5 mV h mV   40 mV 

ECa 120 mV snV  50 mV h hV   50 mV 

gK0 7.10-7 S/cm2 smV  10 mV h dV   20 mV 

gNa0 5.10-8 S/cm2 shV  -5 mV h fV   75 mV 

gCa0 8.10-10 S/cm2 sdV  2.5 mV s nV 
 20 mV 

gl 15.10-6 S/cm2 sfV  -1 mV s mV   10 mV 

Id0 7.10-5  A/cm2 maxn  50 ms s hV 
 -50 mV 

Td 0.5 ms maxm  0.5 ms s dV 
 20 mV 

hnV  200 mV maxh  2 ms s fV   10 mV 
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Pacemaker signals arise in specialized cardiomyocytes, which able 

to generate periodical oscillations of their membrane potential [1, 13]. 

Pacemaker cells are located in the sinoatrial node (SAN). The 

pacemaker impulses propagate from the SAN through cardiac 

conduction system: the atrioventricular node (AVN), Bundle of His and 

Purkinje fibers network, and cause the contraction of the myocardium. 

The cycle generation of SAN action potential determines the heart rate. 

The spontaneous depolarization (Fig. 1.10) is unique property of 

SAN cells that necessary for SAN pacemaker activity. There is important 

physiological difference between nodal cells and ventricular cells due to 

the specific mechanisms in ion channels. The potential for cardiomyocyte 

action of the working myocardium (atria and ventricles) does not 

normally develop spontaneously. Generation of the action potential is 

caused by a wave of depolarization of neighboring cells of the 

 

Fig. 1.9. Simulated action potentials for atrial and 

ventricular cardiomyocytes 
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cardiomyocyte, and its membrane potential becomes less negative. 

Pacemaker heart cells (or rhythm drivers) do not need external 

stimuls to generate action potential, since they have their own 

automatism, that is, the ability to spontaneously depolarize and to 

develop the action potential. 

The properties of rhythm drivers are possessed by cells of the 

sinoatrial, atrioventricular nodes and Purkinje fibers (natural 

pacemakers). The cells of the ventricular myocardium do not normally 

have automaticity, but they can acquire this ability in myocardial 

ischemia [13]. 

 

 

Fig. 1.10. Membrane  potential Vm for ventricular cells (a)                                     

and SAN cells (b) [1]. 

 

The action potential of pacemaker cells (in contrast to atrial and 

ventricular myocardium cells) has three features: 
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1. The negative potential in pacemaker cells reaches a value of          

-60 mV, which is much less than the resting potential of ventricular 

myocardial cells (-90 mV). The fast sodium channels of pacemaker cells 

remain inactive with such a potential. 

2.  The phase 4 of the action potential for pacemaker cells is not 

horizontal (Fig. 1.10, b), but has an upward character, which reflects a 

gradual, spontaneous depolarization due to pacemaker current, which is 

carried by Na+ ions. The ion channels, through which the pacemaker flow 

passes, differ from the fast sodium channels responsible for the 

depolarization phase of myocardial cells. Penetration of positively 

charged Na+ ions through the pacemaker channels helps the membrane 

potential during phase 4 to become less negative until it reaches the 

threshold potential. In this case, a slow inactivation of the pacemaker 

channels occurs. 

3. The phase 0 of the action potential for pacemaker cells has a 

longer duration and a smaller amplitude than in myocardial cells. This 

can be explained by the fact that the fast sodium channels of pacemaker 

cells are inactive, and the excitation of the action potential is due to the 

flow of Ca2+ currents into the cell through slow calcium channels. 

The repolarization of pacemaker cells occurs in the same way as in 

ventricular myocardial cells. It is due to the inactivation of calcium 

channels, as well as the activation of potassium channels and the 

release of K+ ions from the cell. 

Different currents of the SAN ion channels contribute to the 

generation of action potential, but their functional roles and interactions 

are still not understood [13-15].  

In the recent papers three hypotheses were proposed to explain the 

mechanism underling the cardiac automaticity. Authors [14] discribed the 
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“membrane clock” model of pacemaking, which includes the “funny” 

current (If), an inward Na+/K+ current, activated by membrane 

hyperpolarization at negative voltages. In the “calcium clock” model and 

“coupled-clock” model of pacemaking [15]  the key mechanism in the 

diastolic depolarization was a spontaneous rhythmic phenomenon of 

Ca2+ release from the sarcoplasmic reticulum (SR). And authors [13]  

focused on functional role of voltage gated Ca2+ channels of two families: 

L-type and T-type . 

 Ca2+ currents of L- and T-type were recorded in cells of SAN, AVN, 

and Purkinje Fibers.  The current of L-type (ICa,L ) was defined as a 

“high”-threshold Ca2+ current, activated from about -30 mV and  the  

Ca2+ current of  T-type  (ICa,T) was defined as a “low” threshold 

Ca2+ current, activated at −50 mV, moreover both currents participated at 

the latter half of the slow diastolic depolarization. 

 

1.3.3. Simulation of action potential in nerve fibers 
 

 
Simulation of action potential in the membrane of nerve fiber is 

based on parallel-conductance model (Fig. 1.11), in which independent 

conductance channels are presented for K+, Na+, and Cl− ions (channel 

for Cl− can be replaced on channel for leakage through the membrane). 

Total membrane current is the sum of currents for each branch of the 

electrical circuit. 

To solve the Cauchy problem a system of differential equations is 

constructed. This system contains four equations, that describe 

membrane potential vm, activation function for potassium n, activation 

function for sodium m, inactivation function for sodium h. 
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where  IK(vm, t)  is dependent on time potassium current,  

INa(vm, t) is dependent on time sodium current,     

Il is leakage current through the membrane,  
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potassium channels from open position to closed, 

n nn       is the steady-state value of activation function for potassium 
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  is the relaxation period of activation for sodium channels, 
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  is rate for switching of activation subunits for 
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34 10 exp
0.018

m
m

v 
    

 
 is rate for switching of activation subunits for 

sodium channels from open position to closed, 

m mm     is the steady-state value of activation function for sodium, 

1
h

h h

 
  

 is the relaxation period of inactivation for sodium channels, 

70exp
0.002

m
h

v 
   

 
 is rate for switching of inactivation subunits for 

sodium channels from closed position to open, 

310

0.03
exp 1

0.01

h
mv

 
 

 
 

 is rate for switching of inactivation subunits for 

sodium channels from open position to closed, 

h hh     is the steady-state value of inactivation function for sodium. 

To simulate of action potential in the membrane of nerve a system of 

differential equations is solved with initial conditions: 

                       vm(0) = 0,  n(0) = n0,   m(0) = m0,   h(0) = h0.            (1.16)       

Thus, equations (1.12) - (1.16) are Cauchy problem relatively 

functions vm(t), n, m and h. This Cauchy problem can be presented as: 
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where the functions f1, f2, f3, f4 are determined by the equations 

(1.12) - (1.15) and the initial conditions are determined by the 

expressions (1.16). 

There is the period after appearance of the action potential, during 

which the membrane cannot be excited. This period is called refractory 

period (Fig. 1.11, 1.12). 
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Fig. 1.11. Membrane potential under the excitation by two 

depolarizing pulses with a period less than the refractory period 

 

The presence of this condition can be explained on the basis of the 

behavior of the inactivation function for sodium channels h. After 

appearance of action potential the function h reduces to a very low value, 

which prohibits occurrence of excitation. To return to a normal level of 

function h some time should pass. Also the activation function of 

V, mV 



 

- 44- 

 

potassium channels n have to decrease, since the implementation of 

condition: |INa|> |IK| is necessary for appearance of excitation. 
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Fig. 1.12. Membrane potential under the excitation by two 

depolarizing pulses with a period more than the refractory period 

 

Experimental studies have shown, that excitation of the membrane 

may occur after prolonged hyperpolarization.  Since the electrode in the 

external environment is an anode, this phenomenon is called anode 

break excitation of the cell. The presence of such effect can be explained 

as follows. Immediately before the removal of hyperpolarization the level 

of h goes down, while the levels of m and n rise up. However, after 

restoring of normal Vm, the activation function of sodium channels m 

quickly restores its value, since the relaxation period of activation for 

sodium channels m  is very small.  Consequently, as a result of 

,m n h   ,  there is a state, which is characterized by reduced value 

of n, normal value of m and increased value of h. This combination of 

V, mV 



 

- 45- 

 

three parameters creates a condition |INa| > |IK|, resulting in a possible 

excitation occurrence (Fig. 1.13). 
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Fig. 1.13. Membrane potential under anode break excitation of the cell 

 

1.3.4. Modeling of the circulation of exciting impulse in the 

myocardium 

 

The purpose of modeling of excitation wave circulation in the heart 

structures is the research at the level of myocardial cells of mechanisms 

that cause arrhythmia. Cardiac arrhythmias are basically produced by 

one of three mechanisms: enhanced automaticity, triggered activity, or 

reentry mechanism. Reentry mechanism occurs when a propagating 

impulse does not fade out after normal activation of the heart and 

persists to re-excite the heart after the end of refractory period. This 

electrophysiologic mechanism is responsible for the majority of 

V, mV 
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arrhythmias. 

For one-dimensional modeling of the excitation impulse circulation 

a closed loop for reentry mechanism simulation in the myocardium is 

obtained by connecting the ends of the fiber. The membranes of 

cardiomyocytes have selective permeability for different types of ions. 

Membrane model (MM) for the case of action potential emergence is 

presented by parallel-conductance model, based on the assumption of 

existence of independent channels for K+, Na+ and Ca2+ ions.  

In modeling of excitation impulse circulation by of reentry 

mechanism a modification of the model with leading core and a 

generalized model of Hodgkin-Huxley was performed by creating a one-

dimensional ring model in the form of a closed chain of N 

cardiomyocytes (Fig. 1.14) [16-21], N = 100-120. 

 

Fig. 1.14. Ring model of reentry circle with inhomogeneity of 

  electrophysiological parameters of myocardial cells 
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Membrane potential Vm (z, t) is a function of time t and spatial 

coordinate z taken along the direction of propagation of the action 

potential. In this case, 
0( , ) ( , ),m m mV z t V v z t   where 

0mV  is the resting 

membrane potential, vm (z, t) is the variable component of the membrane 

potential, which is a deviation from the membrane potential. Model of the 

leading core connects the second derivative on the membrane potential 

with current flowing through the membrane and the external excitation 

current:                              
2

2
( ) ,m

i e m p e

v
r r i i r

z


  



 

where im is membrane current per unit length, measured in А/m;  

re and ri are axial resistances of extracellular and intracellular 

environment per unit length, measured in Ohm/m;  

ip is external stimulus, measured in A/m. 

Taking into account the fact that 

2

4ρe
er

D



,  

                                                        
2

4ρi
ir

D



, 

                                                        m mi J D  ,                                                   

we can obtain that 

 2

2 2

4 ρ ρ 4ρ

π
i e em

m p

v
J i

z D D


 


, 

where e and i are resistivities of extracellular and intracellular 

environment, measured in Ohm ∙ m; 

Jm is membrane current density, measured in А/m2;  
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D is diameter of the cylindrical cell. 

The spread of cardiac action potential along the fiber is represented 

as a differential equation:       

   
 

2

2 2

4 ρ ρ 4 ρ ρ 4ρi e i e em m
m K Na Ca l p

v v
C J J J J i

z D t D D

  
     

  
. 

Pathway in myocardium [0, L] is divided by uniform grid with a step 

Δ
L

z
N

 , where L is length of reentry circle, N is number of mesh nodes. 

Cardiomyocytes length ranges from 20 microns for atria to                          

60-140 microns for ventricles and 150-200 microns for cells of Purkinje 

fibers. Simulating reentry loop with length in range of                               

8 – 12 mm, number of mesh nodes zi must be chosen equal to the 

number of cells in the investigated area, for instance N = 100 – 120. 

The second spatial derivative of the membrane potential in the grid 

of nodes can be approximated by using an interpolation polynomial of 

Lagrange and calculated explicitly: 

                      
2

-1 1
2 2

( , ) ( ) - 2 ( ) ( )m i i i iv z t v t v t v t

z z
 


 

,  =2, -1i N .  

Given the fact, that pathway is the reentry circle, the second spatial 

derivative of the membrane potential in the endpoints of the fiber is 

defined as:    

                              
2

1 1 2
2 2

( , ) ( ) - 2 ( ) ( )m Nv z t v t v t v t

z z

 


 
;                                     

2

1 -1
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z z
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
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Determination of membrane potential vm and activation function of 

potassium channels n, activation function of sodium channels m, 

inactivation function for sodium channels h, activation function of calcium 

channels d and inactivation function for calcium channels f was carried 

out by solving the system of differential equations. Numerous parameters 

of the defined functions are vectors that determine the 

electrophysiological properties of each individual cell in the reentry loop. 

The speed of action potential propagation through the cardiac tissue 

significantly varies in different areas of the heart. This speed directly 

depends on diameter of muscle fibers involved in the process. 

Conduction through cells of AV node, which have small diameter, is 

much slower than conduction through cells of Purkinje fibers with large 

diameter. The velocity of conduction also depends directly on the 

intensity of local depolarizing ion current, which in turn directly depends 

on intensity of action potential increase. Rapid depolarization facilitates 

rapid conduction. Differences in capacitance and (or) resistance of cell 

membranes are also the factors, which cause the difference in values of 

speed of action potential propagation at certain areas of the heart. 

The anatomical reentry mechanism is the simplest case for 

modeling the circular motion of the excitation pulse. When excitation 

pulse circulates in anatomically isolated enclosed chain, the path length 

is fixed and determined by perimeter of the anatomical structure, which 

forms the unexcited central part of the closed path. The reentry loop in 

this case is usually characterized by a large size of general perimeter of 

the circle (macro reentry). Modeling this case, we do not need to 

simulate a region with altered electrophysiological parameters. The same 

parameters can be used for all cells in the enclosed chain. 

The functional reentry mechanism is determined by the 
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electrophysiological properties of the myocardial tissue. When these 

properties change, the length of the closed path changes too. The size of 

reentry circuit is not fixed, and its position is not strictly localized. This 

mechanism is usually characterized by a small loop and referred as 

micro reentry (6 - 10 mm in atrial fibrillation).  

Considering that differences in refractoriness period and other 

electrophysiological parameters of neighboring cell groups can cause 

circulation in the tissues of atria, ventricles and Purkinje fibers, the 

mathematical model was constructed in such a way, that the enclosed 

loop was inhomogeneous in its parameters. By varying the range of 

values of the variables that affect appearance and maintenance of 

reentry mechanism, and also changing the size of the loop and the ratio 

of the lengths of sections with different electrophysiological parameters, 

different patterns of propagation of excitation pulse along the 

investigated chain were obtained. 

The results of the simulation showed, that at different ratios of the 

parameters of cardiomyocytes in two sections of enclosed path, the 

existence of such variants is possible: 

    a single passage of the excitation pulse along the loop without 

the occurrence of circulation (Fig. 1.15); 

    occurrence of continuous circulation of the excitation pulse, for 

interruption of which the external intervention is required (Fig. 1.16); 

    several turns of the excitation pulse along enclosed chain with 

following attenuation (Fig. 1.17); 

    propagation of the excitation pulse only along the region with 

normal electrophysiological parameters and instantaneous attenuation in 

the affected region of the loop without the occurrence of circulation. 
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Fig. 1.15. Single passage of the excitation pulse without circulation 

          

 

 

 

 

 

 

 

 

 

Fig. 1.16. Spatio-temporal representation of the continuous 

circulation of the excitation pulse along the loop with delayed 

propagation of action potentials 
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Fig. 1.17. Spatio-temporal propagation of action potential along the 

loop, which contains a region with an increased extracellular 

concentration of potassium ions Ke2 

 

Action potential conduction, i.e. velocity of excitation propagation in 

cardiac structures, depends on the anatomical and physiological factors. 

The anatomical factors are diameter of the muscle fibers (10 – 15 μm for 

cardiomyocytes) and geometric arrangement of the muscle fibers. The 

velocity of conduction along the muscle fiber is greater than in the 

transverse direction. The physiological factors are amplitude of action 

potential, depolarization speed, as well as value of rest potential. 

Normally, the excitation pulse spreads along the tissues of the heart 

at speed of 0.5 - 5 m/s. One of the reasons leading to the development 

of continuous circulation of the excitation pulse is the slow propagation of 

action potentials. Fig. 1.16 shows the simulated results of the excitation 

pulse circulation by reentry mechanism, obtained by decrease in the 

conducting speed to 0.068 m/s, caused by a change in the 
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electrophysiological parameters of cardiomyocytes in the atrial affected 

region. 

The time of the excitation pulse turnover tt  around the loop can be 

defined as: 

t

c

L
t

v
 , 

where L is the length of the circle; 

cv  is the speed of the excitation pulse conduction. 

Propagating at velocity of 0.068 m/s along a loop with L=10 mm, the 

excitation pulse returns to its initial point of motion through 147 ms, i.e. at 

the end of an effective refractory period of 145 ms. The cells, which 

recovered their excitability, reactivate and maintain the circulation of the 

excitation pulse according to reentry mechanism. 

The increase in the action potential on the affected areas occurs 

unevenly. In regions with a notable decrease in the action potential, the 

slow wave excitation can occur. Decrease in the negative value of the 

resting potential as a result of partial depolarization also slows down 

conduction velocity.  

At rest state, the intracellular concentration of potassium ions for 

myocardial cells is approximately 30 times higher than the extracellular 

concentration. Resting potential becomes less negative, when the 

extracellular concentration of potassium ions Ke increases. Changes in 

intracellular potassium concentration Ki are limited and do not 

significantly affect the value of Vm0. Fig. 1.17 depicts the simulation 

results for Ki = 150 mM/l throughout the entire length of the conductive 

path, Ke1 = 4 mM/l in the main region and Ke2 = 12 mM/l in the 

anomalous region. The excitation pulse in this case made 1 complete 
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turnover along the loop with L=12 mm, then again passed through the 

main loop section, equal in this case to 2/3 of the total circumference. 

The attenuation of the excitation pulse occurred at the boundary of the 

region with an increased extracellular concentration of potassium ions.  

 

CONCLUSIONS 

 

The changes of shape, duration, and pathways of action potentials 

propagation in the heart are manifestations of the mechanisms 

underlying the development of arrhythmias. In some cases, spontaneous 

attenuation of the excitation wave and termination of its circulation after 

several turnovers along a closed path are observed, in other cases a 

short strong single electric pulse is required to interrupt the circulation, 

which is used in clinical practice. 

The proposed models can be used to determine the boundary 

conditions, under which the circulation of the excitation pulse leads to a 

breakdown of heart rhythm. 

 

CONTROL QUESTIONS AND TASKS 

 

1. Explain the phenomenon of selective permeability of 

biomembranes. 

2. What concentration is bigger for potassium ions in muscle and 

nerve cells: intracellular concentration Ki or extracellular concentration 

Ke? 

3. What concentration is bigger for sodium ions in muscle and 

nerve cells: intracellular concentration Nai or extracellular concentration 

Nae? 
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4. Explain the Nernst-Planck equation. 

5. Explain how to identify the Nernst potential. 

6. Explain the Goldman equation. 

7. Explain the nature of the resting potential. Which factors does it 

depend on? 

8. How does change the membrane resting potential, in case if 

- intracellular concentration of sodium ions Nai increases (decreases); 

- extracellular concentration of sodium ions Nae increases (decreases); 

- intracellular concentration of potassium ions Ki  increases (decreases); 

- extracellular concentration of potassium ions Ke increases (decreases); 

- permeability of K+ ions increases (decreases); 

- permeability of Na+ ions increases (decreases)? 

9. Draw the parallel-conductance model. 

10.  Explain the phenomena of action potential genesis. 

11.  What condition should be fulfilled between sodium and 

potassium currents (INa and IK ) for the emergence of membrane action 

potential? 

12. How does the amplitude of action potential of the cell membrane 

change, if the intracellular concentration of sodium ions Nai increases? 

13. What is the refractory period and what are the mechanisms of 

this phenomenon? 

14. What is the mechanism of anode break excitation of the cell? 

15.  Explain the system of equations for solving the Cauchy problem 

for the process of propagation of the action potential along cellular fiber. 
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SECTION 2 

IDENTIFICATION AND ASSESSMENT OF LATE POTENTIALS AS 

MARKERS OF CARDIAC ELECTRICAL INSTABILITY  

 

2.1. Electrical conduction system of the heart 

 

It is well-known that vital activity of any organism is accompanied 

by the bioelectric currents passing inside the organism, which emerge 

as a result of the electrical activity of cells. Cardiac electrical activity is 

characterized by an aggregate of electrical phenomena that can be 

registered using different methods of electrocardiography, providing a 

picture of temporal changes of the potential difference on the surface of 

human body. The signal, registered from the surface ECG electrodes, 

reflects the function or dysfunction of ion channels and represents an 

integration of electrophysiological processes of millions of 

cardiomyocytes. 

Сontraction of сardiac cells occurs, when the electrical impulse 

excitation extends along their membranes. Coordination of contractile 

activity of individual cells of cardiac muscle is achieved through the 

spread of action potentials from one cell to another. Action potentials 

propagate along the surface of cells and spread in heart from cell to cell 

through close contact parts of membranes, through which the internal 

local electric current passes. Active depolarization in any part of the 

membrane leads to local streams of intracellular and extracellular fluid, 

resulting in passive membrane depolarization of neighboring areas to 

their maximum voltage and emergence of depolarization. 

Atrial and ventricular myocardium is synchronized in their work by 

specialized system responsible for the processes of excitation in the 
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heart (Fig. 2.1). The main components of the conduction system of the 

heart are the sinoatrial node, atrial interstitial ways, atrioventricular node, 

His bundle (atrioventricular bundle) and Purkinje fibers [1]. 

Sinoatrial node normally functions as an intracardiac pacemaker, 

generating action potentials that spread in cardiac cells, causing 

contraction of the heart. The velocity of signals conduction in atrial cells 

is about 1 m/s, and wave of action potential reaches atrioventricular 

node in about 0.08 s after it occurred. Atrioventricular node is a small 

cluster of specialized cells located on the surface of the right atrial 

septum. The bottom part of atrioventricular node consists of parallel-

oriented fibers, which normally form only a bridge of adjacent cells 

through the formation of the heart that creates support for cardiac 

valves and electrically isolates the atria from the ventricles. Distribution 

of impulse in this region of atrioventricular node is very slow, with the 

velocity 0.05 m/s, so the time between excitation of atria and ventricles 

of the heart is normally about 0.15 seconds. 

 

Fig. 2.1. Electrical conduction system of the heart  

 

In the area, where His bundle entries into the tissue of 

interventricular septum, the bundle splits into left and right branches 
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consisting of Purkinje fibers of large diameter. These specialized fibers 

rapidly (at velocity of 3 m/sec) conduct impulses to the muscle tissue of 

the right and left ventricles. A wave of excitation runs along numerous 

Purkinje fibers and reaches the muscle cells. This leads to rapid, almost 

simultaneous excitation of ventricular muscle cells [1]. 

The electric field, caused by the electrical activity of the heart, can 

be measured by electrodes placed on the surface of the body. 

Electrocardiography method allows registration of potentials difference 

between two points on the body surface, which changes over time as a 

result of electrical processes that occur during the cardiac cycle. 

Due to the fact, that at each moment of time potential at any point 

of the body is defined by a set of elementary dipoles, in a rough 

approximation the potential as a whole can be described by vector sum 

of the individual dipole moments. In this case, the placement of real 

sources in space is neglected, because all elements of dipole sources 

are assumed being located in the same point. As a result, only a total 

dipole is considered, which is called dipole or vector of the heart. It is 

believed that the heart vector changes in modulus and direction rather 

smoothly. The idea to consider the heart as an electric generator with a 

dipole structure is fundamental for ECG simulation and methods of 

clinical interpretation of electrocardiograms. 

The main structural elements of the electrocardiogram are P wave, 

QRS complex and T wave (Fig. 2.2). P wave reflects the depolarization 

of the right and left atria. QRST ventricular complex reflects the 

complex process of propagation (QRS complex) and attenuation (RS-T 

segment and T wave) of excitation in the myocardium of the ventricles 

(ventricular depolarization and repolarization). 
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Fig. 2.2. The main structural elements of the electrocardiogram 

 

Sometimes on ECG, particularly in the right chest leads, 

immediately after the T wave a small positive U wave is registered. It is 

believed that the U wave corresponds to the period of short-term 

increase in the excitability of myocardial ventricles. Amplitudes and the 

ratio of positive (P, R, T) and negative waves (Q and S) in different 

leads are dependent on how the heart vector turns around its axis. 

Modern electrocardiographs allow registration of multi-channel 

ECG, which makes it possible to obtain more accurate information on 

the electric field of the heart by simultaneously recording of several 

different electrocardiographic leads. In clinical practice, the most widely 

used system is 12 standard ECG leads system, which is mandatory for 

every electrocardiographic examination of the patient and includes 3 

standard leads, 3 unipolar enhanced leads from limbs, and 6 chest 

leads. 
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2.2. Atrial arrhythmias and mechanisms of their occurrence 

 

The analysis of the heart rate includes determination of the 

excitation source, investigation of heart rate regularity and evaluation of 

conductivity functions [1-2]. Regularity of heart rate is assessed by 

comparing the length of R-R intervals, measured between the peaks of R 

waves in consecutively registered cardiac cycles. Regular or proper 

heart rhythm is diagnosed, when the durations of R-R intervals are 

approximately the same and variation of the received values does not 

exceed ±10% of the average duration of R-R intervals. In other cases 

incorrect (irregular) heart rate is diagnosed. Improper heart rhythm 

(arrhythmia) may occur in extrasystolia, atrial fibrillation, sinus 

arrhythmia, etc. 

Definition of arrhythmia includes any anomaly of frequency, 

regularity or place of origin of excitement, as well as violations in 

impulses propagation and change of the normal sequence of atrial and 

ventricular activation. Cardiac disorders of rhythm and conduction can be 

caused by different pathologies. But ultimately, any abnormalities and 

arrhythmias are the result of the critical changes in the electrical activity 

of myocardial cells. 

The reasons of arrhythmias include the following factors [1]: 

1) violation of formation of excitation impulse: 

• changes in normal automatism of sinoatrial node; 

• occurrence of abnormal automatism of specialized cells of 

conduction system and cardiomyocytes (ectopic activity); 

•  trigger activity of heart cells (early or late post depolarization); 

2) violation of conduction of excitation impulse: 

• abnormal prolongation of refractory period; 
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• reducing in diastolic resting potential; 

• violation of intercellular interaction; 

• attenuation of conduction of excitation impulse; 

• unidirectional blocking of excitation impulse propagation and 

development of reentry of excitation wave (the reentry mechanism); 

3) combined pathology of formation and conduction of excitation 

impulse. 

 

2.3. Circulation of excitation wave in the myocardium by the                      

reentry mechanism 

 

The major electrophysiological mechanism, which leads to 

arrhythmias caused by the violation of excitation impulse conduction, is 

the reentry mechanism [1-3]. The electric excitation impulse, making 

movement along a closed path (loop), returns to the place of its origin 

and repeats the movement. Normally, after the orderly propagation of 

excitation impulse through the conducting structures of the heart, the 

surrounding areas are prevented from the excitement by refractory state.  

Depending on the factors, which give rise to circulation of excitation 

wave, there are several types of reentry mechanism: anatomical, 

functional and combined.  

The components of anatomical reentry loop are anatomical 

structures of myocardium: 

- atrioventricular node; 

- bundles of fibers of His-Purkinje system; 

- additional abnormal conducting way (bundle of Kent); 

- mouth of hollow veins; 

- tricuspid valve ring; 
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- scar area (the presence of border zone in the area of postinfarction 

scarring); 

- aneurysm. 

The size and shape of functional reentry loop are determined by the 

changes in electro-physiological parameters of myocardial cells such as: 

- heterogeneity of refractoriness; 

- shortening of effective refractory period (difference of refractivity 

periods of myocardial areas); 

- dispersion of conductivity; 

- increase in extracellular potassium concentration; 

- reduction in the speed of impulse conduction; 

- decrease in resting potential of cardiomyocytes; 

- premature activation; 

- anisotropic structure of cardiac muscle. 

The reentry mechanism represents a pathological sign of cardiac 

electrical activity, based on the appearance in a specific myocardial area 

of unidirectional block and reentry of excitation wave (cardiac impulse). 

This process is related to the disorder in conduction of cardiac action 

potentials. The periodic (ordered) “macro-reentry” is typical for 

paroxysmal tachycardias, atrial and ventricular flutters. Aperiodic 

(disordered) “micro-reentry” leads to the chaotic process of pulse 

propagation, which is observed during the atrial and ventricular 

fibrillations. Localization of reentry circles may change over time due to 

the presence of spatial gradients of parameters and characteristics of 

heart tissue. 

Violation of excitation in the heart can be caused by many different 

factors, which lead to changes in excitability and cable properties of the 

membranes of heart fibers. To large extent electrophysiological 
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properties of the cells are determined by the nature of metabolism in the 

myocardium and depend on changes in electrolyte balance, level of the 

resting potential and threshold potential, steepness of depolarization. In 

the absence of severe congenital or acquired diseases of specialized 

heart tissues the most common cause of abnormalities is impulse 

propagation in fibers with low membrane potential. 

Despite the fact that the method of electrocardiography has been 

known for more than 100 years, the electrocardiographic technologies 

undergo continuous refinement. The development of methods and 

techniques of electrocardiography leads to a new direction in ECG 

diagnostics known as non-invasive electrophysiology. This direction is 

based on modern advanced methods of registration, digital processing 

of electrocardiosignals, that make it possible to measure and estimate 

additional data, which is inaccessible by the standard ECG assessment 

methods. The development of diagnostic electrocardiologic systems of 

new generation involves the implementation of mathematical methods 

of ECG analysis, employing complex transformations for the estimation 

of parameters of electric potentials of myocardium, based on biophysics 

and electrophysiology of the heart. Among the systems enabling us to 

investigate and study the subtle signs of cardiac electrical activity, the 

systems of high-resolution electrocardiography should be noted (HR 

ECG) [2-3]. 

Non-invasive high-resolution technologies in ECG make it possible 

to register and detect low-amplitude signals invisible in ordinary 

electrocardiogram by using more sophisticated technical facilities and 

digital processing of electrocardiosignals. These signals with amplitude 

up to 40-50 µV can be located at any part of the cardiac cycle. 
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An important task, aimed at improvement of risk stratification of 

patients, is the search for additional predictors that can detect the fact of 

presence of vulnerable myocardium and predict the possibility of 

malignant arrhythmias. Apart from myocardial imaging techniques 

(magnetic resonance imaging, computed tomography, tissue Doppler), 

such electrocardiographic parameters as alternation of T wave and HR 

ECG with detection of atrial and ventricular late potentials can serve as 

the prognostic markers for the selection of patients for implantation of 

cardioverters-defibrillators [1, 2]. 

The first signs of electrical instability of myocardium reflect changes 

in the electrophysiological processes occurring at the cellular level, which 

does not appear in the initial stage of the disease in the form of 

substantial functional and anatomical changes [1]. The non-invasive 

methods for detection of heart disease enable diagnosis at the early 

stage. Development of the methods for identification and assessment of 

early signs of heart disorders makes it possible to catch the sight of 

disease at its initial stage. Digital processing of electrocardiographic 

signals allows us to extract information, which can not be obtained by 

the visual analysis of the standard electrocardiogram [2, 3]. Therefore, 

improvement of methods and tools for automated detection of low 

amplitude components of electrocardiosignals through development of 

methodological and algorithmic support of high resolution ECG systems 

is an actual task. 

 

 

 

 

 



 

- 68- 

 

2.4. Biophysical bases of genesis of atrial and ventricular late 

potentials 

 

Pathological changes in the functional state of the myocardium 

may occur in the structure of ECG even before the manifestation of 

clinical symptoms. However, low-amplitude ECG components that have 

important diagnostic information do not appear on the background of 

high-amplitude waves and noise in the recording of standard 

electrocardiogram. Non-invasive technology of high-resolution 

electrocardiography, performed by improving of technical facilities and 

digital processing of electrocardiosignals, allows registration and 

identification of low amplitude signals, which are not visible on a 

conventional electrocardiogram. There are micropotentials of different 

types: early and late atrial potentials, early and late ventricular 

potentials. The most extensively studied markers of myocardial electric 

instability are atrial and ventricular late potentials (ALP and VLP) [2]. 

Ventricular late potentials are the low-amplitude (20 - 40 μV from 

the body surface) high-frequency (40 - 250 Hz) electrical signals, which 

are localized at the end of QRS complex or beginning of ST segment 

and have duration of several tens of milliseconds (Fig. 2.3).  

Bioelectrical signals, recorded from a body surface in the form of 

localized at the beginning of QRS complex low-amplitude high-

frequency fragmented electrical activity, are called early ventricular 

potentials. 

By analogy with ventricular late potentials the slowing of the 

activation conduction in atria in patients with atrial fibrillation was 

identified. Atrial late potentials are the low-amplitude high-frequency 

signals (5-20 μV), which are located at the end of P wave or within the 
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isoelectric part of cardiac interval PQ. It is thought that atrial late 

potentials are the markers of atrial tachyarrhythmias and ventricular late 

potentials are the markers of ventricular tachyarrhythmias, which 

develop through the “reentry” mechanism. 

Atrial fibrillation is characterized by disordered activation with many 

microwaves, which simultaneously spread in atria [4-9]. Thus one of the 

main conditions of paroxysmal atrial fibrillation by reentry mechanism is 

the slowing of conduction that causes atrial activation time extension. 

The emergence of reentry in atrium depends on the spatial differences 

in membrane properties and anatomic disorganization of atrial muscle 

tissue, when individual muscle fibers are separated by connective 

tissue, leading to heterogeneity of atrial electrophysiological properties. 

The presence of areas with delayed fragmented conduction of 

excitation impulse in patients with paroxysmal forms of fibrillation and 

atrial flutter is confirmed. Also of great importance is forecasting of 

development of atrial fibrillation in patients after surgery on the heart. 

Currently there are no completely reliable approaches for prediction of 

atrial arrhythmias, though atrial fibrillation/flutter are the most 

widespread forms of cardiac arrhythmias and their prevalence 

increases with age. 

Low-amplitude activity is registered also in the initial part of the P 

wave as early atrial potentials, but their value remains poorly 

understood. It is believed that early atrial potentials reflect the presence 

of areas with fragmented delayed sinoatrial conducting and they are 

markers of sinus node weakness syndrome. 

The presence of atrial or ventricular late (or early) potentials is 

associated with an increased probability of life-threatening cardiac 

arrhythmias.  
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Fig. 2.3. Localization of atrial and ventricular late potentials on ECG 

 

The emergence of late potentials on ECG signal reflects the slow 

and fragmented depolarization associated with the "reentry" circles.  

Inhomogeneity of electrophysiological characteristics of myocardial 

regions results in formation of fragmented electrocardiogram, which can 

be registered directly during the performance of intracardiac 

elecfrophysiological investigations. The reentry phenomenon, resulting in 

the electrical cardiac instability, is characterized by the multifactor nature 

of origination and covers different areas in terms of size and place of 

localization.   

Developing the approaches to identification of low-amplitude ECG 

components, it is necessary to consider that micro-potentials may 

appear on ECG at different time moments. Regular micropotentials are 

present in all cardiac cycles with a permanent time shift concerning the 

reference point, such as R wave. Irregular micropotentials occur in a 

certain part of cardiac cycle in a random moment of time relatively to 

high-amplitude components of ECG. The presence of micro-potentials, 

which do not appear in every cardiac cycle, is also possible. Based on 
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intracardiac studies two cases of non-stationary manifestation of micro-

potentials are distinguished: 

- micropotentials, which repeat their  shape from one cardiac cycle 

to another, but occur at random moment of time (they are not 

synchronized with high-amplitude waves of ECG signal); 

- micropotentials, which do not repeat their shape from one cardiac 

cycle to another (realization of a random process). 

 

2.5. Peculiarities of late potentials detection in the systems of 

high resolution electrography 

 

Establishment of diagnostic and prognostic importance of late 

potentials requires additional research [10-31]. Design and development 

of new methods for investigation of subtle structure of ECG will allow 

revealing of patients at high risk for dangerous arrhythmias and 

optimization of their treatment. 

For the purpose of detection of late potentials, which are the 

markers of tachyarrythmia development, it is necessary to refine the 

methods of registration and processing of electrocardiosignals in HR 

ECG systems. Noninvasive registration from the body surface, 

identification and analysis of late potentials are the challenging tasks 

due to the fact that the amplitude of late potentials may be much 

smaller than the amplitude of noise components of ECG [2, 3, 10-13].  

Noise and interferences occurring in the ECG signal have the 

different nature and include:  

- power line interference;  

- polarization of the electrodes, resulting in a shift of zero signal 

level;  
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- artifacts of electrodes displacement;  

- motion artifacts;  

- muscular activity;  

- baseline drift caused by breathing;  

- noise of electronic equipment. 

In the process of amplification together with increase of amplitude 

of diagnostically important electrocardiosignals noise also increases. To 

eliminate noise and reveal low-amplitude ECG components, computer 

signal averaging is performed. It is based on the property of the 

repeatability of ECG signal and implements the principle of pseudo 

synchronous accumulation (Fig. 2.4). Averaging of multiple cardiocycles 

(from 100 to 400 ECG complexes) forms the basis of high-resolution 

electrocardiogram [1-3, 10, 14-19]. The method allows us to separate 

signal from noise by a significant improvement in signal/noise ratio. 

Since noise is a random process, it is not synchronized with the 

investigated electrocardiosignal. Noise superimposes randomly from 

one complex to another, so averaging leads to the significant reduction 

of its amplitude. In contrast to the noise, diagnostically useful 

cardiosignal repeats with a certain frequency (not chaotically), therefore 

its amplitude stabilizes due to the averaging.  As a result of averaging, 

the signal/noise ratio increases. It is possible to average the cardiac 

cycles with synchronization on P, Q, R waves in implementation of HR 

ECG method.  

One of the conditions of the correct signal averaging is identity 

(similarity) of investigated ECG complexes. Highly noisy cardiac cycles 

must not participate in the averaging. For this purpose a reference 

cardiac cycle is automatically selected. Each subsequent complex is 

compared to the reference cardiac cycle and included in the analysis in 
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case of quite high coefficient of correlation with the reference cardiac 

cycle (at least 0.95). 
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Fig. 2.4. Accumulation of cardiac cycles with the synchronization on 

R wave 

 

According to the standard requirements for analysis of late 

potentials adopted by the European Society of Cardiology, American 

Heart Association, American College of Cardiology [10] in the systems of 

HR ECG for converting the analog signal to digital ECG data must be 

sampled at no less than 1000 Hz frequency and analog-to-digital 

converted with at least 12-bit precision. It is considered  that sampling 

below 1,000 Hz may preclude recovery of potential signals of interest. 

Notch filters for power line interference should not be used.   

One of the first studies of ventricular late potentials detection are 

the works of M.B. Simson [11-13]. The approach to registration and 

methods of analysis of HR ECG are considered in them, as well as the 

connection between the presence of ventricular late potentials with the 
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possibility of future ventricular tachyarrhythmias are considered in these 

papers. 

Implementation of temporal analysis according to Simson method 

involves averaging of cardiosignal in three orthogonal Frank leads X, Y, 

Z, followed by filtration in the frequency range of 40-250 Hz (Fig. 2.5). 

Analysis of their total vector magnitude 2 2 2X Y Z  determines the 

time and amplitude quantitative parameters, based on which conclusion 

about the presence or absence of late potentials is made (Fig. 2.6).  

 

 

 

 

Fig. 2.5. a) accumulation of cardiocycles with synchronization on R 

wave in three orthogonal Frank leads X, Y, Z; b) averaging of 

cardiosignal; c) filtration in the frequency range of 40-250 Hz 

a) b) c) 
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Fig. 2.6. Analysis of total vector magnitude 2 2 2X +Y +Z  

for detection of ventricular late potentials 

 

Standard analysis of ventricular late potentials implies 

determination of the filtered QRS duration, root mean square voltage of 

the terminal 40 msec of the filtered QRS complex, and amount of time 

when the filtered QRS complex remains below 40 µV [10].  

Representative criteria for the presence of ventricular late 

potentials:  

1) the filtered QRS complex is greater than 114 msec,  

2) there is less than 20 µV of signal in the last 40 msec of the 

vector magnitude complex,  

3) the terminal vector magnitude complex remains below 40 µV for 

more than 38 msec. 

The time parameters of the filtered P wave include the following 

indicators: 
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1) duration of the filtered P wave (FiP). 

2) difference between the durations of the filtered 

and unfiltered P waves (FiР — UnFiР). 

3) duration of signals < 5 μV (D5). 

The amplitude parameters of the ALP are the root mean square 

amplitude (RMS) of: 

1) total P wave (RMSP). 

2) last 10-20-30 ms of P wave (Last 10-20-30 or RMS 10-20-30). 

RMS 20 is the most commonly used amplitude parameter.  

The approach with averaging of cardiac cycles eliminates the 

possibility of the detection of irregular late potentials and investigation 

of dynamic changes of their parameters from beat to beat. Variability of 

frequency content, amplitude and localization of late potentials is 

possible. The disadvantages of the signal averaging method include 

likelihood of making errors due to "smoothing" of high frequency signals 

in case of frequency, duration and shape changes of late potentials 

from beat to beat. In case of nonstationarity manifestation of micro-

potentials signal accumulation is possible in principle, but only with 

strongly reduced amplitude and increased duration. 

In the signal-averaged ECG the non-stationary components are 

significantly weakened. Subtraction of the signal-averaged ECG from a 

separate cardiocycle with the presence of irregular micro-potentials 

allows compensation of high-amplitude stationary ECG waves. The 

interval of possible occurrence of potentials of atrial delayed 

depolarization is the terminal part of P wave. Then the difference signal 

in the terminal part of P wave present the amount of atrial late potentials 

and noise, and other intervals of the сardiocycle contain only noise 

(Fig. 2.7). 
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Fig. 2.7. Obtaining of a difference signal between the 

investigated cardiocycle and the signal-averaged ECG 

 

Frequently, in the systems of HR ECG, a spectral analysis of the 

electrocardiogram is performed, in which the changes of the amplitude-

frequency characteristics of a certain part of the average cardiac cycle 

are estimated. For this purpose, the Fourier transform method, by which 

the ECG signal is decomposed into the components of sinusoidal 

oscillations of the different frequencies and amplitudes, is used. The 

accuracy of detection of late potentials is determined by the choice of 

the width of a window function. Choosing a window with small width 

provides more accurate information about the temporal localization of 

the late potentials, but it has a bad effect on the spectral resolution. 

The main power of the QRS complex is concentrated in the 

frequency range of 2-30 Hz with the presence of a maximum at a 

frequency of about 15 Hz. The P and T waves сorrespond to lower 

frequency range. The network interference can be usually seen at 50 or 

60 Hz (Fig. 2.8, 2.9). The presence of atrial or ventricular late potentials 

manifests in the form of the high-frequency components in the range of 
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40 – 250 Hz (according to some sources, up to 1000 Hz). Late 

potentials appear rather as weak harmonics against the background of 

the main spectrum, which complicates their detection. 

 

Fig. 2.8. Characteristics of the relative power spectral density of the 

ECG signal and noise components: 1 - ECG signal, 2 - QRS complex, 3 

- movement artifacts, 4 - P, T waves, 5 - polarization voltage, 6 - noise 

of muscles, 7 - frequency of network interference 

 

Fig. 2.9. Manifestation of network interference with a base frequency of 

50 Hz and its odd harmonics in the spectrum of the electrocardiosignal 

registered in the system of HR ECG  



 

- 79- 

 

The principle of the spectral-time mapping method [32-37], which is 

based on the local Fourier transformation, consists in calculating the 

spectrum using a "window" moving along a time axis in the terminal part 

of P wave for ALP detection or in the terminal part of QRS complex and 

along the ST segment for VLP detection. Such a frequency-time 

transformation of the cardiac signal allows observing the change in its 

spectral content in time. The distribution of the power of the spectral 

components, which reflects the spectrum change in time, is called the 

spectrogram: 

     
2

*, j tP S t g t e dt  






  . 

As a result of the spectral-time analysis, a three-dimensional graph 

of frequency, time and amplitude or power of the spectral components 

is constructed.  

The spectral power in spectral-time mapping method is calculated 

by conducting the fast Fourier transform of 25 segments of 80 ms in 

length, shifted on 3 ms from each other. The degree of correlation 

between the values of the frequency spectrum of 2-25 segments and 

the first segment is determined. Next, the normality factor is calculated 

as the ratio between the mean values of the correlation coefficients of 

the last five segments and others, expressed in percentage terms. The 

criterion for the presence of ALP or VLP is the low value of the 

normality factor (less than 30%). The disadvantage of the method of 

spectral-time mapping is the influence of the various noises on the 

results. 

Thus, the temporal analysis by the Simson method, spectral 

analysis and spectral-time mapping, which are the most widely used in 
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the systems of HR ECG, have a number of shortcomings, which do not 

provide with high accuracy of late potentials detection. The promising 

direction of improvement of HR ECG systems is development of new 

methods for ECG analysis to identify low-amplitude components using 

alternative coordinate bases.  

 

2.6. Simulation of late potentials in ECG 

 

Late potentials, recorded by invasive way from the epicardium 

surface of the infarct zone, are asynchronous multiphase fluctuations, 

reflecting the delayed activation in areas of damaged myocardium. 

Depending on the nature of electrophysiological pathological changes in 

myocardium, late potentials can have different duration, amplitude and 

character of their manifestation on ECG.  

For simulation of late potentials in ECG, it was taken into account 

that late potentials are high-frequency low-amplitude components of 

electrocardiosignal, which usually do not repeat their shape in different 

patients.  Late potentials models can differ in their appearance, but their 

parameters should characterize low-amplitude high-frequency activity in 

the terminal part of P wave for the class "pathology - ALP presence" or in 

the terminal part of QRS complex and along the ST segment for the 

class "pathology - VLP presence". 

The variety of processes, that are sources of signals of late 

potentials, allows applying of different ways for ALP models creation. As 

a model of high-frequency activity in the terminal part of P wave, the sine 

wave can be used with frequency inherent in late potentials (80 Hz in the 

experiment [32]). To obtain more complex shape of late potentials, the 
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test signal of late potentials can be presented as a sum of harmonic 

components with different frequencies in the range of 40 - 250 Hz: 

        1 1 1 2 2 2( )= (2 φ ) (2 φ ) ... (2 φ )n n nx t ASin f t A Sin f t A Sin f t        ,     

where A1 – An are amplitudes of harmonic components; 

f1 – fn and φ1 – φn are frequencies and phases of harmonic 

components. 

  Fig. 2.10 shows simulated ALP signal, which is the sum of three 

sinusoids with frequencies f1 = 80 Hz, f2 = 95 Hz, f3 = 120 Hz and 

amplitudes А1 = 10 µV,  А2 = 5 µV,  А3 = 8 µV. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10. ALP simulation: a) test signal of ALP;  

b) sum of 3 sinusoids in the terminal part of P wave  

 

Taking into account the changes in amplitude of late potentials, as 

their model the different segments of amplitude-modulated signal can be 

added to the terminal of P wave, where carrier signal ( ) (2 )с с сx t A Sin f t   

is modulated by periodic signal ( ) (2 )s s sx t A Sin f t  : 
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( ) ( ( )) (2 ),АМ c s cx t А x t Sin f t    

where Ac  and As  are amplitudes of harmonic components; 

 fc and fs  are frequencies of harmonic components, respectively.  

Fig. 2.11, a shows the amplitude-modulated signal with parameters 

Аc = 1 µV,  Аs = 10 µV,  fc = 5 Hz,  fs = 120 Hz, and Fig. 2.11, b presents 

the simulated signal of P wave with ALP which are a segment of 

amplitude-modulated periodic signal.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.11. ALP simulation: a) amplitude-modulated test signal;  

 b) ALP at the terminal part of P wave 

 

Taking into account the characteristics of electrophysiological 

processes, which underlie the emergence of potential of delayed 

depolarization, the model of late potentials can also be formed as a 

sequence of action potentials with varying amplitude (Fig. 2.12), which 

can be obtained by solving a system of differential equations for parallel-

conductance model and generalized model of Hodgkin-Huxley [38]. 

 

0 50 100 150 200
-0.05

0

0.05

0.1

0.15

0.2

t,мс

U
,м

В

а) b) 

 ALP 

0 0.05 0.1 0.15 0.2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

t,с

U
,м

В 
V, mV 

t, s 

 
V, mV 

t, s 



 

- 83- 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.12. ALP simulation: a) transmembrane action potential;  

 b) ALP in the terminal part of P wave 

 

Changing of the parameters used for the simulation provides a 

different view of late potentials and allows taking into account the 

individual manifestation for different patients and checking the possibility 

of late potentials detection by methods of digital processing of 

electrocardiosignals. 

 

2.7. Analysis of the subtle structure of the electrocardiogram 

 

To assess the state of heart electrical activity and detect early signs 

of atrial tachyarrhythmias, features of ALP, found as P wave parameters 

in time or frequency domain, are used. However, the results of late 

potentials detection, obtained using standard methods of ECG analysis, 

have a low predictive value. An increase in the predictive value of the 

diagnosis can be achieved by identifying additional characteristics of the 

late potentials in alternative coordinate bases. 
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2.7.1. Features of wavelet analysis of electrocardiosignals 

 

The limitation of the spectral analysis is the inability to determine the 

exact localization of a specific frequency component of the cardiosignal 

in time, which is fundamentally important for the early diagnosis of 

violations of the electrophysiological properties of the myocardium. In 

contrast to the Fourier transform, the wavelet transform provides a two-

dimensional analysis, in which the scale and coordinate are considered 

as independent variables, that enables the analysis of signals in two 

spaces - scale and temporal. The results of ECG wavelet analysis 

contain not only information on the distribution of cardiac energy along 

the frequency components, but also information on time coordinates, in 

which certain frequency components are detected or where rapid 

changes in the frequency components of the cardiac signal occur. 

The wavelet transform is a multi-level analysis, effective for 

researching signals that simultaneously contain high-frequency 

components of short duration and long-term low-frequency components. 

This feature is suitable for the task of detection of low-amplitude high-

frequency components of the cardiac signal and their analysis separately 

from high-amplitude low-frequency ECG waves [39-51]. 

Continuous wavelet transformation (CWT) is defined as [51]: 

     

     
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, ,

1
, , , 0,

| |

a b

a b

W a b f t t

t b
f t t dt f t dt a b a
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 

 
 

 

 

 

 
    

 
  R

 

where  < > is the operator of the scalar product; 

* is the operator of complex conjugation; 

 ψa,b is two-parameter family of functions: 
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 ,

1

| |
a b

t b
t

aa
    

  
 

, 

where b is the parameter that determines the displacement along 

the time axis t; 

a is the scaling factor responsible for stretching and compressing of 

the maternal wavelet function ψ(t). 

Thus, a set of wavelet functions   ,a b t  is a set of the scalable 

(stretched or compressed, depending on the value of the parameter a) 

and displaced (depending on the value of the parameter b) copies of a 

single prototype ─ mother wavelet function  t . Mother wavelets are 

functions, which are limited in time and location on the time axis and have 

a spectrum localized in some frequency area. Requirements for mother 

wavelet functions are determined by the possibility of restoration of the 

investigated signal  f t  by its wavelet spectrum  ,W a b . 

Reconstruction of the signal is carried out according to the formula 

of the inverse wavelet transform [51]: 

     , 2

1
, a b

da db
f t W a b t

C a





 

 

   , 

where Сψ is a constant depending on the selected wavelet. 

In order to reconstruct the function  f t  from ( )ψW a, b , function  t  

must meet certain requirements. Wavelets used for CWT are normalized 

functions: 

2
( ) 1t dt





 . 
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To obtain an inverse wavelet transform, the finiteness of the integral 

 
2

C d

 








    is necessary, where     is direct Fourier 

integral transform for a function    2t L  R :     i tt e dt  






  . 

Also for the function  t  the necessary condition is the fulfillment 

of the requirement of zero mean [51]: 

                                                      0 0t dt 




   ,                                           

that at satisfaction of a condition    1t t L  R  becomes a sufficient 

condition for the wavelet function  t used for CWT. 

Often, for analysis of signals it is necessary that not only zero, but all 

the first moments are equal to zero: 

( ) 0mt t dt




 . 

Such a wavelet is called the wavelet of the m-th order. Wavelets with a 

large number of zero moments allow, ignoring the most regular 

polynomial components of the signal, analysis of the small-scale 

fluctuations. 

The coefficients of continuous wavelet transforms contain 

information about the energy of individual components of ECG signal 

and time of their appearance. It allows simultaneous investigation of the 

slow and fast dynamics of changes in the cardiac signal in time, as well 
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as detection of such local features as the presence of late potentials 

(Fig. 2.13).  

 

 

Fig. 2.13. CWT analysis of ECG: a) cardiocycle with the presence of 

simulated ALP in the terminal part of P wave; b) two-dimensional 

scalogram; c) three-dimensional scalogram 

 

In the frequency representation, ECG signal has different 

components: low-frequency and low-amplitude P and T waves, QRS 

complex of higher frequency and larger amplitude, and late potentials, 

characterized by the lowest amplitude and high frequency.  Detection of 

late potentials is complicated by noise components of ECG signal. 
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The possibility of using continuous wavelet analysis for ALP 

detection can be considered on the example of a model experiment in 

the MATLAB system. A model of ECG signal with the presence of ALP in 

the terminal part of P wave was constructed. To the ECG signal 5 

potentials were added, which were obtained by solving the system of 

differential equations for the parallel-conductance model and the 

generalized Hodgkin-Huxley model. 

To detect ALP, it is necessary to choose wavelet function, which is 

similar in form to ALP, and allows the most accurate determination of 

their presence in the terminal part of P wave. On wavelet-scalogram of 

the simulated ECG signal with ALP presence, the best results are 

obtained using such wavelet functions as the Meyer wavelet, Gauss 

wavelet of 4th order, Morley wavelet, Coifman wavelet, symmetric 

wavelet of 4th order. 

To estimate the range of scales of continuous wavelet 

transformation, in which the presence of high-frequency micro-potentials 

can be detected, it is necessary to take into account the length of the 

discrete electrocardiosignal being investigated, as well as the central 

frequency of the wavelet function [51]. For example, the length of the 

simulated cardiocycle is 1000 samples, and Coifman wavelet of the fifth 

order has a central frequency of Fc = 0.6897 Hz. Then the central 

frequency of the wavelet, which will be used for the first level of the 

wavelet decomposition, is F1 = 0.6897 * 1000 = 689.7 Hz. For each next 

level of wavelet decomposition the frequency of the wavelet will be 2 

times lower than for the previous one, i.e. F2 = 344.8 Hz, F3 = 172.4 Hz. 

 Such a change in the frequencies, when moving from one scale to 

another, leads to the fact that the high frequencies, characteristic for 

ALP, are represented on the scalogram by several levels and practically 
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invisible. Using the log scale allows stretching the high-frequency range 

of scalogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14. Models of сardiocycle and wavelet scalogram in logarithmic 

scale: a) absence of micro-potentials: 

b) presence of 5 micro-potentials at the end of P wave 

 

Fig. 2.14 shows models of сardiocycle in norm and with ALP 

presence at the end of P wave, as well as wavelet scalograms of these 

signals in logarithmic scale. High energy of ECG waves masks the low 

а)                                    b)                                                             No ALP 
   ALP  

t, ms t, ms 

 
V, mV  
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energy of low amplitude ALP.  In the range of scales a = 3.8 - 17.5 in the 

time interval of 90-180 ms, 5 separate components are observed                     

(Fig. 2.15). This range of scales corresponds to a frequency range of                  

40 - 180 Hz. 

 

Fig. 2.15. Wavelet scalograms: 

a) absence of micro-potentials; b) presence of 5 micro-potentials 

 

2.7.2. Combined method for analysis of the subtle structure of 

electrocardiosignal for late potentials identification  

 

Discrete wavelet transform operates with discrete values of 

parameters a and b. These parameters are usually set in the form of 

power-law functions, avoiding excessive number of operations and 

calculated сoefficients, which is typical for CWT. 

In multilevel discrete wavelet decomposition of the 

electrocardiogram approximation coefficients cA, representing the 

smoothed signal for the contour analysis of ECG, and detail coefficients 

cD, which describe the high frequency fluctuations of ECG, are 

а а 

W 

t, ms 
t, ms 

W 

а) b) 



 

- 91- 

 

determined. For analysis of ECG signal on different scales, filters of low 

and high frequencies with different cutoff frequencies are used. Vectors 

of wavelet coefficients are obtained by means of a mathematical 

operation of сonvolution for the investigated signal S with a low pass 

filter for determining the approximation coefficients cA1 and with a high 

pass filter to determine the detail coefficients cD1  [51]. In the next step, 

the coefficients of approximation cA1 are decomposed in two parts for 

obtaining сА2 and сD2. The procedure can be repeated to the required 

level of decomposition N (Fig. 2.16). 

 

 

 

Fig. 2.16. Tree of discrete wavelet decomposition of the signal S  

to the level N 

 

Thus, the signal S is presented as the sum of the approximating 

component, which is determined by the approximation coefficients of N 

level of wavelet decomposition (aN), and all the detailing components, 

which are determined by the detail coefficients of levels from 1 to N (dN, 

dN-1, ... d1) (Fig. 2.17):  

 

1 1N N N-S = a + d  + d  +  + d . 

 

The method of HR ECG involves the registration and averaging of 

100-400 ECG complexes. In the case of insufficient for signal averaging 

length of ECG recording, the presence of residual noise does not allow 



 

- 92- 

 

us to analyze the morphology of the terminal part of P wave and to 

conclude whether or not micro-potentials are present (Fig. 2.18). 

 

 

Fig. 2.17. Discrete wavelet decomposition of ECG signal to the 3rd level  

 

 

 

 

 

 

 

 

 
 

 

Fig. 2.18. The presence of residual noise after signal averaging 
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The wavelet decomposition of the ECG signal allows obtaining of 

approximation coefficients, representing a smoothed signal, and detail 

coefficients, describing high-frequency oscillations. Fig. 2.19 

demonstrates wavelet decomposition of P wave without ALP and with 

presence of ALP. As a result of discrete wavelet decomposition of P 

wave up to the 5th level, the approximation coefficients, which represent 

the smoothed P wave, and detail coefficients, which describe high 

frequency oscillations, are obtained. Data dimension can be reduced by 

removing large-scale wavelet-coefficients, responsible for the form of 

high-amplitude (in comparison with ALP) P wave.  Model experiments 

showed that the signs of ALP can be found at d1 level of detail 

representing the high-frequency low-amplitude bursts.  The other levels 

of discrete wavelet decomposition reflect the features of lower frequency 

components. 

The noise component is less than the amplitude of the main signal, 

and manifests itself mainly in the detail coefficients. The easiest way to 

remove noise is threshold processing of wavelet coefficients. There are 

as hard and soft methods of threshold processing of wavelet coefficients. 

In the case of hard threshold processing, all coefficients larger than the 

threshold   or equal to it in absolute value are left unchanged, and 

coefficients smaller than   are zeroed. If soft threshold processing with 

zeroing coefficients smaller in absolute value than  , the absolute values 

of the remaining coefficients are reduced on  . In the systems of HR 

ECG, the problem of noise removal is complicated by the fact that 

amplitude of late potentials is close to the amplitude of noise 

components. In the presence of noise, it is impossible to detect late 

potentials by means of wavelet decomposition, since noise components 
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and late potentials appear at the same levels of wavelet decomposition 

of P wave (Fig. 2.20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.19. Discrete wavelet decomposition up to the 5th level: 

a) P wave without ALP; b) Р wave with ALP 

 

Threshold processing of detail coefficients does not yield 

satisfactory results. The setting of small threshold values preserves the 
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noise background in the detail coefficients, and the signal-to-noise ratio 

increases insignificantly. The choice of large threshold values for the 

processing of the detail coefficients leads to the loss of information about 

the presence of ALP. 

    
 

 

Fig. 2.20. Discrete wavelet decomposition up to the 5th level of                  

P wave with ALP and different signal-to-noise ratio (SNR): 

а) SNR =55 dB; b) SNR =60 dB; c) SNR =65 dB 

 

Given the specific features of late potentials, the information about 

noise components should not be completely removed, thus losing the 

characteristics of ALP, but separated from the information about 

electrocardiogram. In this case, the use of the method of eigenvectors, 

which allows the division of signal and noise subspaces, is justified. 

 а)  b)  c) 
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Existing methods of analysis of low-amplitude components of 

electrocardiosignals can be divided into two classes, depending on the 

availability of a priori information about the investigated signals. The 

knowledge of time and/or frequency characteristics of the signals and the 

use of standard basic functions is typical for the I-st class of methods. 

For the II-nd class of methods, on the basis of a minimum of a priori 

information about signal properties, the eigen basic functions derived 

from the data are applied.  For the analysis of low-amplitude components 

of electrocardiosignals a combined approach, which includes several 

stages with the use of methods of analysis of the I-st and the II-nd 

classes, is encouraged to use:  wavelet transformation, decomposition in 

the basis of eigenvectors, principal component analysis. For the tasks of 

processing of low-amplitude components of ECG the different 

combinations of these methods can be utilized [52-58]. 

Let us consider the application of the eigenvectors method for ECG 

analysis. Each i-realization in the ensemble of registered 

electrocardiosignals corresponds to a set of samples  iNiii eeeE ,..., 21 , 

where N is the amount of samples. The ensemble of M realizations can 

be presented as matrix E. Then the matrix of the ensemble of 

observations E and the covariance matrix C obtained for the ensemble of 

observations can be written as follows:  



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where the elements cij of the matrix C can be presented as follows 

))((
1

kkj

M

k
kkiij memec --∑



 ,                                     

mk is the average value calculated for the k-th realization.  

With the methods of decomposition in the basis of eigenvectors and 

principal component analysis, the subspaces of eigen basic functions, 

which are determined from observations of the ensemble of 

electrocardiosignals, are constructed.  

The method of decomposition in the basis of eigenvectors and 

principal component analysis decorrelate the ensemble of registered 

electrocardiosignals by projecting the data on the orthogonal axes of the 

eigenvectors of the covariance matrix:   

 

TUDVE  , 

 

where E is observations matrix (the ensemble of registered 

electrocardiosignals) with dimension NM  ; D  is the diagonal matrix 

with diagonal elements equal to the square root of the eigenvalues λi of 

the covariance matrix C; V  is NN   matrix of eigenvectors of the 

covariance matrix С; U  is MM   matrix of E projections on the 

eigenvectors of matrix C. 

Performing principal component analysis, the major eigenvectors 

corresponding to the most significant eigenvalues are retained (p<<M ). 

According to the set of the major eigenvectors, a new matrix of ECG 

observations is constructed with filtration from noise components.  

 

T
pnew VUDE  , 
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where Dp is the diagonal matrix with diagonal elements equal to the 

square root of the most significant eigenvalues λi of the covariance 

matrix C. 

On the basis of wavelet decomposition, electrocardiosignals 

preprocessing and postprocessing can be performed, resulting in the 

formation of the subspace of wavelet coefficients of low amplitude 

components Y. The approximation coefficients of multiresolution wavelet 

transform correspond to the low-frequency components of ECG signal 

and the detail coefficients correspond to high frequency components.                                                  

Depending on the features of detectable pathology, signs of low 

amplitude components of electrocardiosignals can be found either at 

lower levels of detail components (for high-frequency character of 

identified components), or at the highest levels of detail components (for 

low-frequency character of identified components). 

Extraction and evaluation of late potentials is possible to perform 

through the creation of eigensubspaces of wavelet patterns of low-

amplitude components of ECG (Fig. 2.21). Suggested procedure for 

atrial late potentials recognition is based on the determination of 

eigenvalues and eigenvectors of the covariance matrix defined for 

wavelet coefficients sets, which comprise signs of late potentials and 

specified for each P wave in the ensemble of ECG realizations.  

Eigenvector V1 of covariance matrix Сw, defined for wavelet 

coefficients sets with signs of late potentials, corresponds to the largest 

eigenvalue λ1. The first principal component determined by eigenvector 

V1 can be considered as a filtered set of the detail wavelet coefficients 

сD1. The signal reconstructed on this set of wavelet coefficients can be 

considered as a component of ECG that in the case of atrial delayed 

depolarization contains the signs of late potentials purified from noise 
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and high-amplitude part of P wave. The remaining vectors of eigenbasis 

characterize the noise subspace, concretely, a mixture of the less 

significant components of the useful signal with physiological 

interferences and uncorrelated measuring noise.  
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Fig. 2.21.General scheme of complex method of ECG analysis to identify 

ALP as the combination of the wavelet transform and decomposition in 

the coordinate basis of eigenvectors  

 

Decomposition of the ensemble of d1 detail components, 

сorresponding to the ensemble of investigated P waves, in the 

coordinate basis of eigenvectors, demonstrates that the information 

about ALP is located in the signal subspace, namely, in the principal 

component of P wave, which is restored from the first eigenvector in the 

basis of eigenvectors V1-V6 (Fig. 2.22). The subspace of noise 

corresponding to the other eigenvectors contains the noise components. 

Therefore, the combined method of analysis makes it possible to 

combine the effective separation of levels of wavelet transform 

containing ALP attributes with the separation of diagnostically important 
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low-amplitude signal and noise. 
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Fig. 2.22. a) ensemble of the investigated P waves; b) wavelet 

decomposition of P wave; c) decomposition of the ensemble of d1 detail 

components in the coordinate basis of eigenvectors 
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The value of coefficient of correlation r between the simulated ALP, 

added to the P waves together with noise, and the ALP, detected by 

using the proposed combined method, amounts to 0.92 for the results 

presented in Fig. 2.23. It should be noted that despite small amplitude of 

detected signals and the presence of noise, the extracted ALP preserve 

the information about their shape, amplitude and quantity. 
 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

t, c

 

 

added

extracted

 
Fig. 2.23.  Simulated ALP, added to the P waves together with noise, 

and ALP, detected by using the proposed combined method 

 

In order to detect signs of atrial late potentials on the background of 

noise by means of the proposed method, a model experiment was 

conducted. 340 P waves extracted from ECG signals of several patients 

were used as data set for classification (Fig. 2.24). The real ECG 

recordings, preliminary filtered from the high-frequency components, 

were considered as the norm without ALP. Then, additive white gaussian 

noise was added to these signals. The noise in HR ECG recordings was 

simulated by superimposing P waves and a gaussian additive noise 

signal with signal-to-noise ratio of 65 dB. At the initial assumption about 

the possibility of the "norm" and "pathology", cardiocycles with such P 

waves are normal, because they do not contain ALP.  
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Fig. 2.24. Data used for classification 
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To the terminal part of each distorted by noise P wave the simulated 

late potentials were added.  These P waves represented the pathology 

and contained simulated ALP, which were different in their amplitude, 

shape and duration.  To simulate ALP in some cases the Hodgkin-Huxley 

equations were solved and the action potentials with low amplitude were 

added to the terminal part (30 ms) of P waves.  In another cases ALP 

activity was simulated as the sum of sinusoids with frequency range from 

40 to 250 Hz and amplitudes of 1-10 μV. For each patient ALP were 

simulated different in their amplitude, shape and quantity. 

Analysis of cardiocycles with such P waves involves the detection of 

late potentials on the background noise. For the initial ensembles of 

cardiosignals the sets of wavelet coefficients cD1 were obtained by 

means of wavelet decomposition up to the 5th level with a "symmetric" 

wavelet of the 4th order. 

Parameter 

1

100%i
N

k
k

L





 


 

makes sense of the part of the variance in percentage, which is 

used to estimate the proportion of the information contained in the 

component determined by the eigenvector Vi.  

The obtained sets of eigenvalues explain the use of the component 

determined by the first eigenvector V1. For example, decomposition in a 

basis of eigenvectors performed for wavelet coefficients cD1 of the ECG 

signals with ALP presence in background noise obviously shows that the 

largest proportion of the dispersion L = 63%, i.e. the largest amount of 

the information about ALP, corresponds to the first principal component 
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(Fig. 2.25, b). The proportion of the variance is approximately equal for 

remaining eigenvalues and determined by the noise components. In 

absence of ALP wavelet coefficients contain only noise and, 

consequently, the proportion of the variance for the first component is not 

significantly higher than the corresponding parameter for the other 

components in the set of 10 eigenvalues  (Fig. 2.25, a).  

 

 

Fig. 2.25. Parameter L for the first 10 eigenvalues: 

 а) absence of ALP; b) presence of ALP 

 

Reconstruction in the time-amplitude domain was made by inverse 

wavelet transform performed using only the main first component of 

wavelet coefficients cD1. This component for the case of the late 

potentials absence on the background noise has a form typical for noise, 

and in the presence of late potentials, it contains the peaks of late 

potentials, individual and peculiar to each patient (Fig. 2.26, 2.27). 

The use of the proposed complex method made it possible to 

distinguish ALP bursts from the noise and determine the temporal area 

of their localization. For P waves corresponding to the absence of ALP 

reconstructed signal does not contain high-amplitude ALP bursts above 

the general noise level.  

a) b) 
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Fig. 2.26. The first main component corresponding to the largest 

eigenvalue for the cases of absence and presence of ALP in noise 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.27. The first main component corresponding to the largest 

eigenvalue:  a) for the case of ALP absence on the background noise; 

b-f) for cases of ALP existence on the background noise 
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Visual analysis of raw data before processing can not conclude on 

the presence or absence of late potentials in the terminal part of ECG P 

wave. Application of the proposed method makes it possible to 

distinguish between the noise and late potentials and to determine the 

region of their localization (Fig. 2.28). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.28. Application of the complex method:  

a) P wave without ALP;  b) P wave with ALP;  

c) ALP are absent in the high-frequency component of P wave after 

processing;  d) ALP are present in the high-frequency component of                   

P wave after processing 

 

To estimate high-frequency P wave components, the following 

parameters based on the ratio of the eigenvalues can be used [52-58]: 

 

0 20 40 60 80 100 120
-3

-2

-1

0

1

2

3
x 10

-3

t,мс

V
,м

кВ

0 20 40 60 80 100 120
-0.06

-0.04

-0.02

0

0.02

t,мс

V
,м

кВ

 

 

P зубець без ППП

0 20 40 60 80 100 120
-4

-2

0

2

4
x 10

-3

t,мс

V
,м

кВ

0 20 40 60 80 100 120
-0.06

-0.04

-0.02

0

0.02

0.04

t,мс

V
,м

кВ

 

 
P зубець з ППП

 V, mV 

 P wave without ALP 

 P wave with ALP 

 c) 

 b)  d) 

 а) 

 V, mV 
 V, mV 

 V, mV 

 t, ms  t, ms 

 t, ms  t, ms 



 

- 107- 

 

1

1

;N

i
i

R








 

2

1

;

N

i
i

N

i
i

K












 

1

.
N

i
i

S 


   

Analysis of points groups in three-dimensional feature space 

indicates the presence of two clouds of data. The cluster with the close 

packing of points corresponds to data relating to P waves without ALP, 

representing the class “norm". Large enough, comparing with the first 

case, the spread of features within the second cluster, representing the 

class "pathology", is caused by the individual character of late potentials 

for each patient (Fig. 2.29).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.29. Atrial late potentials pattern recognition 
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A similar picture of points distribution is observed for another choice 

of ALP features. Parameter R is determined as ratio of the first 

eigenvalue to the sum of all eigenvalues of the covariance matrix for an 

ensemble of detail wavelet coefficients cD1. M parameter is determined 

as maximum of the absolute values of the signal A, reconstructed by the 

main component of the detail coefficients cD1: maxM A . Fig. 2.30 

shows 2 non-overlapping clusters for 2 classes in ALP pattern 

recognition: “norm - ALP absence” and “pathology - ALP presence”. 

Classification is done the better, the smaller the distance to the center 

point of the cluster within the cluster and the greater the distance 

between the centers of the different clusters.  

 

 

Fig. 2.30. The results of data clustering  

 

Application of the proposed method allowed us to separate initial 

ECG data into 2 classes: norm and pathology (Fig. 2.31). 

In the development of approaches to late potentials detection, 

cluster analysis can be considered as a preliminary stage of recognition, 
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which is conducted to select the most significant features of late 

potentials and to prepare a training set to provide the possibility of 

automated diagnostic decision on the patient's condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.31. Separation of P waves into 2 Classes: a) norm; b) pathology 

 

CONCLUSIONS 

 

The search for predictors, which can detect the fact of the presence 

of vulnerable myocardium and predict development of arrhythmia, is an 

important task aimed at patients risk stratification. Widespread use in 

clinical practice of many approaches to the analysis of late potentials is 

still limited through medical ambiguity of the results and requires 

additional clinical studies and their interpretation. Improvement of 

methods of processing of low amplitude components of bioelectric 
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signals allows diagnose of heart malfunction at the stage, when classical 

methods do not show abnormalities.  

The proposed combined method allows the detection of low 

amplitude components of ECG that are markers of cardiac electrical 

instability. The use of the combined method makes it possible to 

distinguish the bursts of late potentials from the noise and to determine 

the temporal area of their localization.  

 

CONTROL QUESTIONS AND TASKS 

 

1. Draw schematically electrical conduction system of the heart. 

2. Explain the principle of ECG registration. 

3. How problems in the heart are detected?  

4. Explain which waves are distinguished on the standard 

electrocardiogram. 

5. What is happening in the heart during the P, QRS, and T waves? 

6. What electrophysiologic event does P wave reflect? 

7. What electrophysiologic event does T wave reflect? 

8. What do you know about normal heart rate and heart rhythm 

disturbance? 

9. Explain the theoretical and methodological aspects of using the 

method of high-resolution electrocardiography. 

10.  Explain the reasons of genesis of atrial and ventriclar late 

potentials. 

11. What are the requirements for high-resolution 

electrocardiography systems? 

12.  What are the main advantages of signal averaging in high-

resolution electrocardiography systems? 
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13.  Which sources of instrumental and physiological artifacts, 

presented in ECG recordings, do you know? How do these artifacts 

manifest themselves on the spectrum of electrocardiograms?  

14.  What are the ways to eliminate noise components of ECG signal 

or reduce their impact? 

15.  Draw a typical ECG signal with its waves and noise 

components. Explain, how the ECG signal changes during the filtration 

process using: a) low pass filter with a cutoff frequency of 200 Hz? 

b) high pass filter with a cutoff frequency of 5 Hz? 

16.  An electrocardiogram with a sampling frequency of 2000 Hz has 

been registered in the system of HR ECG. The spectral components of 

the essential ECG signal appear up to 100 Hz. The signal is distorted by 

a periodic interference with a base frequency of 50 Hz and a third, fifth 

and seventh harmonics of this frequency. Draw a schematic spectrum of 

the ECG and show the components associated with the artifacts. 

17. What are the advantages and disadvantages of spectral analysis 

of ECG? 

18.  Explain the features of continuous and discrete wavelet 

transform of ECG signals. 

19.  What are the advantages and disadvantages of using wavelet 

transform to ECG analysis? 

20.  How the appropriate wavelet function for wavelet analysis of 

biomedical signal can be selected? 

21.  Explain the features of decomposition in the basis of 

eigenvectors. 

22.  Explain the features of the complex method of ECG analysis as 

the combination of the wavelet transform and decomposition in the 

coordinate basis of eigenvectors. 
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SECTION 3 

IDENTIFICATION AND ASSESSMENT OF T WAVE 

ALTERNANS AS A PREDICTOR OF LIFE-THREATENING 

VENTRICULAR TACHYARRHYTHMIAS 

 

3.1. T wave alternans phenomenon 

 

Another task of extraction of diagnostically important information 

from the surface electrocardiogram is analysis of the electrical alternans 

of ventricular repolarization. Identification and evaluation of T wave 

alternans is a promising direction in electrocardiography. The term "T 

wave alternans" (TWA) refers to the alternation of amplitude or temporal 

characteristics of the ST interval and T wave (ST-T complex) and 

involves measuring of the differences in amplitude, shape, and/or time of 

the T wave in successive cardiac cycle [1, 2].  

The appearance of TWA on the ECG can be explained by the 

presence of repolarization alternation at the level of ventricular 

cardiomyocytes. TWA reflects periodic beat-to-beat variation in the 

electrophysiological characteristics of the myocardial cells in various 

pathological processes, which lead to violations of repolarization of 

cardiomyocytes, and serves as a predictor of life-threatening ventricular 

tachyarrhythmias. Macro and micro alternans can be distinguished on 

ECG. Macro alternans is apparent on the ECG with the naked eye and 

represents significant change in the morphology of the T wave (its 

amplitude, shape, length, polarity). Microvolt level beat-to-beat 

fluctuations could not be revealed by visual inspection and demand 
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advanced digital processing techniques and computational algorithms for 

their detection and assessment.   

It is thought that TWA is the result of spatial or temporal dispersion 

of repolarization [1-3]. Heterogeneity of electrophysiological properties of 

the myocardium cells (spatial changes in duration, shape or speed of 

propagation of action potentials) forms a substrate for reentry 

mechanism (mechanism of excitation wave reentry), which consequently 

leads to arrhythmia. TWA is closely associated with arrhythmogenic 

mechanisms and reflects the propensity of the myocardium to the 

development of ventricular tachyarrhythmias; therefore, it is believed to 

be a marker of increased risk of sudden cardiac death. Even in healthy 

subjects the subtle beat-to-beat fluctuations in T-wave amplitude could 

be observed. Changes in electrophysiological characteristics of 

myocardial cells under various pathological processes lead to variation of 

the amplitude of these beat-to-beat fluctuations. Characteristics of low 

amplitude but clinically significant beat-to-beat fluctuations can be used 

as a noninvasive diagnostic tool.  

ABAB pattern is typical for T wave alternans, wherein one type of T 

wave is observed in the odd cardiocycles (type A, the waves with a lower 

amplitude in Fig. 3.1), and the different type of T wave can be seen in the 

even cardiocycles (type B, the waves with a larger amplitude). However, 

the other types of alternans are believed to be possible, when at some 

point of time a change of phase of alternans occurs, such as in ABBABA 

pattern.  
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Fig. 3.1. Typical for T wave alternans ABAB pattern  

 

Beat to beat alternation of T wave amplitude, termed T wave 

alternans, is associated with the dispersion of repolarization and reflects 

variation that periodically appears in each succeeding cardiocycle. 

Significant spatial and temporal dispersion of repolarization, variation of 

the propagation velocity of excitation pulse, fluctuation of the ionic 

currents, and alternation of duration and shape of the action potentials in 

cardiac cells lead to arrhythmias. Repolarization alternans at the cellular 

level, observed in direct recordings of action potentials from the surface 

of the heart, is several orders of magnitude greater than the 

manifestation of TWA on the surface ECG. This fact explains why even 

micro-volt changes on the surface ECG, as TWA manifestation, reflect 

significant abnormalities of repolarization of cardiomyocytes membrane 

and have clinical importance. 

The peculiarity of the T wave alternans analysis is the need of its 

assessment within a certain range of heart rate. T wave alternans occurs 

t, seconds 

 
  V, mV 
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at a significant increase in heart rate above a certain threshold. Usually, 

TWA appears with an increase in heart rate up to 100-110 beats/minute, 

so it is mainly evaluated during the exercise test, pharmacological stress 

tests, electrocardiostimulation, or according to the daily ECG monitoring. 

When heart rate is greater than 110 beats per minute, alternans of 

repolarization may occur in healthy people. A high heart rate can result in 

overload and disruption of the cell's ability to maintain calcium 

homeostasis during myocardial contraction. This leads to an alternation 

in the calcium circulation process and consequently to alternating action 

potential duration [1-3]. 

 

3.2. Detection and assessment of the level of T wave 

alternans by the scattergram method 

 

The relevance of using T wave alternans as a noninvasive 

diagnostic indicator is not in doubt. However, the detection and 

assessment of the level of T wave alternans from surface ECG data is 

quite challenging, as the visually implicit changes in T wave amplitude 

have a level from units to several tens of microvolts, while the amplitude 

of the T wave is 0.3-0.7 mV. Furthermore, the real ECG signals are 

usually highly distorted by noise components of biological and 

nonbiological origin. 

The Database used for investigation of TWA is provided by the 

PhysioNet resource (T Wave Alternans Challenge Database) and 

contains 100 multichannel ECG records sampled at 500 Hz with 16 bit 

resolution and approximate duration of two minutes [4-6]. It includes 

recordings from patients with myocardial infarctions, transient ischemia, 
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ventricular tachyarrhythmias, and other risk factors for sudden cardiac 

death, as well as healthy controls and synthetic cases with TWA.  

The stage of ECG signal preprocessing is very important for TWA 

identification and assessment.  Even a very weak residual noise can lead 

to a false-positive result. In the present study preprocessing stage 

included the elimination of baseline drift and high-frequency noise 

suppression. The wavelet based multiresolution analysis was applied to 

remove baseline fluctuations. Wavelet decomposition was performed up 

to the 12th level of the raw ECG data using Symmetric wavelet of 6th 

order. The 12th order approximation function and the detail functions 

from 9 to 12 orders, which reflect slow changes of signal, were not taken 

into account during signal recovery. To remove high-frequency noises, 

the spectrum of the previously detrended data was limited up to 30 Hz 

using FIR Window Lowpass filter. 

PQRST-complexes of ECG were selected for QRS detection using 

original method, based on threshold algorithm applied to the specialy 

formed reference signal that was obtained by nonlinear conversion of the 

signal and its first derivative. The algorithm is based on ECG QRS Pan 

Tompkins algorithm, but has several significant improvements for reliable 

and accurate QRS detection in noisy signal with artifacts. The detection 

point of QRS complexes was selected as the peak points of R waves. 

The peak points of R-waves are located at the local maximum peaks of 

ECG signal. The beats were synchronized with respect to the peak of R 

wave; beats, which cross-correlation coefficient with the common beat 

pattern was below the fixed threshold, were rejected. 

After receiving the ensemble of realizations of PQRST complexes 

the local extremes detection algorithm was applied and the results were 

used as input for clustering of these “special points” of ECG signal.  
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Fig. 3.2.  а) ECG characteristic points; b) synchronization of all 

cardiocycles on R-wave to observe the changes in T wave apex  

time-location 

 

a) 
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The results of clustering are shown in Fig. 3.2. After clustering the 

coordinates of special (characteristic) points as a function of the “big-

time” (beat-to-beat series) were obtained. These data were used for 

future investigation of T wave alternans. 

T wave detection was achieved by finding the highest special point 

after R wave peak special point in a single beat. It was taken into 

account that the investigation of such aspect of TWA as beat-to-beat 

alternation in T wave timing requires the synchronization of all 

cardiocycles on R wave. In this case we can observe the changes in T 

wave apex time-location (Fig. 3.3, b).  

Investigation of T wave alternans with a change in its amplitude 

and/or morphology involves the alignment of ensemble of T waves on 

their maximums (Fig. 3.3, a). In case of absence of repolarization 

alternans, amplitudes of the T waves in ECG signal represent a 

realization of one random variable (Fig. 3.4, a), which varies with certain 

dispersion with respect to the average value of the amplitude of T wave. 

In case of presence of repolarization alternans, amplitudes of the T 

waves in ECG signal are the realizations of two random variables that 

vary with given variances with respect to their mathematical expectations 

on the condition of alternation of these characteristics in consecutive 

cardiac cycles (Fig. 3.4, b). Here the dependence of the amplitude of the 

T wave from the number of the cardiac cycle has a sawtooth character 

(Fig. 3.3, b) 

The scatter-plot method of TWA analysis involves graphical 

representation of the T wave amplitude (or another feature, for instance, 

the area under the curve of T wave) of each beat against its successor in 

coordinate plane. Area of the points obtained in this way is called 

scattergram (scatter-plot, Poincare or Lorenz plot).  
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Fig. 3.3: Synchronization of the ensemble of T waves according to 

their maximums (a); dependence of the amplitude of the T wave from the 

number of the cardiac cycle: presence of repolarization               

alternans (b) and absence of repolarization alternans (c) 
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Cluster analysis of scattergram can be used as for ABABAB pattern 

of alternans as for ABCABC pattern. Scattergram represents a set of 

points, the center of which is located on the bisector. The deviation of the 

point from the bisector to the left indicates, how much more is the T wave 

amplitude of N+1 beat comparing to the T wave amplitude for the 

previous beat (N); deviation of the point from the bisector to the right 

demonstrates, how much less is the T wave amplitude of N+1 beat 

comparing to the T wave amplitude of the previous beat (N). 

Comparing scattergrams obtained for the cases of TWA presence 

and TWA absence, we can observe one cluster of points in case of TWA 

absence (Fig. 3.5, a) and the apparent separation of the set of points into 

two clusters corresponding to the amplitudes of T waves from even and 

odd ECG cardiocycles in the case of TWA presence of ABAB pattern 

(Fig. 3.5, b). Three clusters are observed in scattergram in case of 

alternans of ABCABC type. 

 The amplitude of T wave alternans is estimated by measuring the 

distance between the centers of two clusters, which were obtained in 

scattergram for even and odd cardiocycles. The cluster analysis of 

scattergram involves assessment of intercluster distance Se, which is 

calculated between the centers of two clusters (Fig.3.5, b), and the 

average sum of squares of intracluster distances Si, which were found for 

each of the clusters. The squared Euclidean distance measure is usually 

used for this purpose. 
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Fig. 3.4. Dependence of T wave amplitude on local time in case of 

synchronization of all cardiocycles on R wave: a) absence of 

repolarization alternans; b) presence of repolarization alternans 

a) 

b) 
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Fig. 3.5. The cluster analysis of 2D and 3D scattergrams: 

а) absence of repolarization alternans; b) presence of repolarization 

alternans 
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3.3. Detection of T wave alternans using spectral analysis 

 

In order to detect TWA, the spectral analysis is also used, during 

which the average energy spectrum is calculated based on the averaging 

of the spectra obtained for the fluctuations of the values of all points of 

the T wave. The alternation of the T wave is detected on the power 

spectrum as a peak at the frequency of 0.5 cycle/beat, which is the 

frequency of the alternation (Fig. 3.6). TWA is characterized by two 

quantitative parameters: the amplitude of alternation and the coefficient 

of alternation K. Amplitude of alternation is defined as the square root of 

the difference between the meanings of power spectrum corresponding 

to the normalized frequency equal to 0.5 cycle/beat (that is the last value 

of the spectrum) and the mean value of the spectral noise. The 

coefficient K is defined as the ratio of the aforementioned difference to 

the mean standard deviation of the noise. It shows whether a peak of 

alternation is statistically significant at the noise level. For the calculation 

of mean standard deviation the area of spectral noise in the interval of 

0.44-0.48 cycle/beat is taken. If K>3, the TWA test is considered to be 

positive. 

The algorithm for detection of T wave alternans by means of Fourier 

transform yields acceptable results only when the amplitude of the T 

wave varies from beat to beat according to the sinusoidal law. 

Consequently, the algorithm based on spectral analysis, does not allow 

us to detect the alternation of the T wave at other frequencies than 0.5 

cycle/beat, and also to detect TWA with possible changes in the phase of 

alternation of the T wave. This significantly reduces the area of practical 

application of the method. In addition, in order to ensure the robust 

operation of the algorithm, the signal must have a low noise level, 
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because spectral components may exceed the characteristic peak of 

alternation. 
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Fig. 3.6. Presence of TWA on the power spectrum 

 

3.3. Identification and evaluation of T wave alternans using 

principal component analysis 

 

The method of principal components analysis implies decorrelation 

of the ensemble of T waves through the data projection on the 

orthogonal axes of eigenvectors of the covariance matrix [7-11]. Error of 

T wave reconstruction in coordinate basis of principal eigenvectors 

depends on the number of eigenvectors, which are discarded during 

reconstruction. It is enough to take into account from 3 to 5 major 

eigenvectors and their eigenvalues for the analysis of T wave alternans.  

The decomposition of the ensemble of T waves consists of 

calculating bij coefficients, which are the projections of the signal on the 

cycle/beat 
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eigenvectors (Fig. 3.7). Analysis of bij coefficients allows assessment of 

beat-to-beat changes in the amplitude and shape of T wave. Depending 

on the complexity of violations of repolarization in myocardial cells, beat-

to-beat changes in the morphology of T wave may comprise as subtle 

variations of shape, as apparent modifications, including even change of 

T wave polarity. ABAB pattern of alternans corresponds to one form of T 

wave in even of cardiac cycles and to another form in odd cardiac cycles. 

In case of alternans, manifested as beat-to-beat changes in T wave 

morphology, the values of the coefficients bij form distinct clusters 

corresponding to even and odd cardiac cycles. 

 To reduce dimensionality of this representation we can preserve S 

main eigenvectors V1, V2, …, VS (S‹‹N) corresponding to the most 

significant eigenvalues  λ1, λ2,..., λS. In general, the sufficient number of 

eigenvectors must be remained to reproduce T waves with a given 

accuracy; however, our experiments have shown that using of 3-5 

eigenvectors is quite effective to restore original T waves (Fig. 3.8) 

[10-11]. 

For ECG signals with the absence of T wave alternans the presence 

of one cluster of points formed by the values of the coefficients b1-b3 of 

eigenvectors V1-V3 is observed (Fig. 3.9, а).  For ECG signals with T 

wave alternans the presence of two clusters in the space of features can 

be seen (Fig.  3.9, b). These clusters of points correspond to odd and 

even cardiac cycles. That means that there are two main (base) shapes, 

around which the shape of T waves fluctuates in odd and even cardiac 

cycles. These basic shapes of T wave for even and odd cardiocycles are 

calculated using the coefficient values of the respective centers of the 

clusters (Fig. 3.10) by obtaining a linear combination of the vectors V1-V3 

multiplied by the coefficients b1-b3. 
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Fig. 3.7. Original T wave and restored from the first 3 eigenvectors. 
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Fig. 3.8. The first 3 eigenvectors V1-V3 (а) and their coefficients b1-b3 (b) 

for ensemble of T waves 
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Fig. 3.9. Coefficients b1-b3 for odd and even cardiocycles: a) absence of 

T wave alternans; b) presence of T wave alternans 

 

As a quantitative characteristic for ALP presence identification, the 

sum of the squares of bij coefficients, which correspond to the centers of 

the clusters for even and odd cardiocycles, is proposed to use. Suppose 

that 
1 2

( , ,..., )
odd odd odd oddS

С b b b  and 
1 2

( , ,..., )
even even even evenS

С b b b  are the centers of 

the clusters for even and odd cardiocycles, then 

2

1

( )
S

odd odd i
i

H b


  ,   2

1

( )
S

even even i
i

H b


  , 

where S is the selected number coefficients bi, which correspond to 

the principal eigenvectors Vi. Significant differences between the values 

of the parameters, obtained by decomposition in the basis of 

eigenvectors for T waves from even and odd cardiocycles, indicate the 

presence of TWA. 

b) 
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Fig. 3.10. The basic shapes of T wave in even and odd cardiac 

cycles in the presence of micro-TWA  

 

Analyzing the features of T wave alternans identification by analysis 

in time domain, cluster analysis of the Lorentz scattergrams and principal 

component analysis, it should be noted that, since the phenomenon of 

TWA may relate to changes in the amplitude, shape, and time, it is 

reasonable to use several different approaches for a comprehensive 

study of this process. For example, the analysis of TWA in the time 

domain or by using Lorentz scattergrams reveals the alternans of  T 

wave amplitude, but does not provide information about changing of its 

morphology. Investigations have shown that the PCA method in addition 

to the identification of alternans in the amplitude of T wave, can also 

reveal beat-to-beat variability of its shape. 
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CONCLUSIONS  

 

The combined methods for the analysis of low-amplitude 

components of electrocardiogram, based on the creation of 

eigensubspaces of signals and noise by decomposition in the basis of 

eigenvectors, principal component analysis, and wavelet analysis, are 

developed. The proposed techniques allow extraction of low amplitude 

components, which are markers of cardiac electrical instability, from the 

noisy ECG. 

Identification of markers of cardiac electrical instability may be 

based on the use of a broad class of algorithms - from the conventional 

analysis in time and frequency domains to the complex procedures of 

pattern recognition. However, at this stage wide application of many 

approaches to the analysis of markers of cardiac electrical instability is 

limited in clinical practice, due to the ambiguity of medical interpretation, 

and demands additional clinical studies. Thus, the directions for further 

research are improvement of theory-based methods and algorithms for 

detection of low-amplitude components of ECG for early prediction of 

potentially dangerous arrhythmias and arrangement of wide clinical tests. 

 

CONTROL QUESTIONS AND TASKS 

1. Explain the reasons of T wave alternans phenomenon. 

2. Explain, how to assess the level of T wave alternans by the 

scattergram method. 

3. What is the idea of using spectral analysis for T wave alternans 

estimation? 

4. How T wave alternans can be evaluated by using principal 

component analysis? 
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SECTION 4 

ATRIAL ELECTRICAL ACTIVITY EXTRACTION FOR ATRIAL 

FIBRILLATION ASSESSMENT 

 

Development of computerized diagnostic systems in cardiology 

makes it possible to analyze electrocardiographic signals on qualitatively 

higher level for non-invasive diagnosis of cardiac pathologies. Actuality 

of the design of algorithms for atrial electrical activity extraction from 

ECG and its evaluation in isolation from ventricular component is 

determined by considerable distribution of cardiac arrhythmias, 

especially atrial fibrillation (AF). Atrial fibrillation is the most common 

heart rhythm disturbance, which is characterized by uncoordinated atrial 

electrical activity. Atrial fibrillation manifests itself on the 

electrocardiogram (ECG) as an absence of P waves, and the presence 

of numerous chaotic f waves, which vary in amplitude, frequency, shape 

and timing (Fig. 4.1). QRS complexes in AF often have no morphological 

changes, but the ventricular response in AF is usually irregular, 

consequently the duration of RR intervals varies greatly.  

The relevance of the study of atrial fibrillation is conditioned by the 

wide range of its negative consequences which related not only to a 

significant deterioration in the quality of life, but also a significant 

increase in the frequency of serious complications and death. 

Extraction and analysis of atrial electrical activity is important in the 

diagnosis of atrial fibrillation. It is not difficult for an experienced 

cardiologist to determine the presence of atrial fibrillation on the ECG. 

However, without advanced computerized analysis of the digital ECG the 

frequency of atrial activity can not be estimated. The separation of atrial 

and ventricular activity is quite complicated due to the considerable 
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difference in amplitudes of the signals. On the surface ECG 

manifestation of ventricular electrical activity is several times higher in 

amplitude compared to the atrial activity. Furthermore, low-amplitude 

atrial electrical activity is distorted by noise and interferences occurring in 

ECG signals: muscular activity, power line interference, noise of 

electrodes, motion artifacts, baseline drift caused by breathing, noise of 

electronic equipment. Atrial and ventricular signals separation by means 

of frequency filtering is not possible because their spectral ranges 

overlap. 
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Fig. 4.1. Normal sinus rhythm (a) and atrial fibrillation (b) 
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4.1. Method of Blind Source Separation for Atrial Activity 

Extraction 

 

To solve the problem of separation of atrial and ventricular electrical 

activities in surface ECG signal the method of blind source separation 

(BSS) was applied. BSS is the algebraic division of the signals from 

multiple sources that occur as a mixture of signals. The process is called 

"blind" because very little is known about the nature of the sources to be 

divided, the properties of the signals and conditions of their mixing. 

Minimum available information usually consists of the assumptions of 

statistical independence of the source signals and consistency of 

coefficients of the mixing matrix in the interval of observation. 

Independent components analysis (ICA) is a method that implements the 

idea of blind source separation [1-7]. 

ICA separation process is based on the assumption of the difference 

between the statistical characteristics of source signals which have non-

Gaussian distribution law and their statistical independence. Separating 

atrial and ventricular activity by blind source separation we assume that: 

1) atrial and ventricular activities are the products of independent 

sources of bioelectric activity; 2) signals of atrial and ventricular activities 

have non-Gaussian distribution laws. 

For any moment of time vector of ECG’s sources can be defined as 

1 2( ) [ ( ), ( ), ..., ( )],qs t s t s t s t  where ( )is t , 1, 2, ...,i q  are the ECG 

sources. Monitoring of ECG signals is conducted by measuring the 

potential difference between pairs of electrodes placed on the surface of 

the body. For such p couples (p ECG leads) a vector of observations can 

be defined as 
1 2( ) [ ( ), ( ),..., ( )].px t x t x t x t  For low-frequency ECG signals 

the body is completely linear and conducting medium with almost infinite 
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speed of electrical signals propagation. As a result, fluctuations observed 

in each point of the body surface can be represented as a linear 

combination of signals from the different sources and additive noise: 

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2

( ) ( ) ( ) ... ( ) ( );

( ) ( ) ( ) ... ( ) ( );

( ) ( ) ( ) ... ( ) ( )

q q

q q

p p p pq q p

x t m s t m s t m s t n t

x t m s t m s t m s t n t

x t m s t m s t m s t n t

    

    

    


 

or in the matrix form:  

( ) ( ) ( )X t MS t N t  , 

where X(t) is the vector of observations; M is the mixing matrix that 

contains the coefficients mij, which determine including of each source to 

the vector of observations; N(t) represents the noise components. 

The coefficients of the mixing matrix are not determined beforehand 

as a model of signal propagation from the sources to the receivers is 

unknown. Shapes of the signals from separately taken sources si(t) are 

also unknown, because they can not be observed directly and are 

available to us only as a mixture. Assume that the signals from the 

sources are statistically independent owing to physical independence of 

bioelectric phenomena that determine them. For the same 

considerations the noise components nj(t) can also be regarded as 

statistically independent in different channels and independent from the 

source. The separation of individual signals si(t) from a mix of the signals 

from different sources consists in determining the separation matrix W 

with of the coefficients wij:  
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1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

( ) ( ) ( ) ... ( );

( ) ( ) ( ) ... ( );

( ) ( ) ( ) ... ( ).

p p

p p

q q q qp p

s t w x t w x t w x t

s t w x t w x t w x t

s t w x t w x t w x t
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   

   
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The separation matrix W is the inverse matrix to the mixing matrix 

M. Thus, the problem of atrial and ventricular activities separation is 

formulated as follows: for registered multichannel ECG measurements it 

is necessary to determine the mixing matrix and the signals from the 

different sources [1-7]. 

Processing of the multichannel ECG signal by means of ICA 

approach aims of using the information about atrial electrical activity 

presented in all recorded ECG leads. In general, the number of 

independent components obtained by ICA is equal to the amount of 

registered ECG leads. If the estimated number of sources si(t) is less 

than the number of observations x(t), then we receive "extra" 

components. Otherwise, if the number of sources is larger than the 

number of observations, then obtained independent components contain 

the signals from several sources, which makes it difficult to interpret the 

results. BSS allows us to reconstruct atrial contribution to the ECG signal 

in various leads regardless of high-amplitude ventricular activity. 

The assumption that the signals of atrial and ventricular activities 

have non-Gaussian distribution law, can be used for their separation 

through the use of statistical indicators of higher orders than the second. 

For identification of the atrial electrical activity source among all the 

sources obtained by ICA the coefficients of skewness and kurtosis as 

well as spectral analysis were applied.  

The central moment of the third order is used to measure the 

asymmetry of distribution. Dimensionless characteristic of asymmetry 
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degree of distribution curve concerning of mathematical expectation E(X) 

is coefficient of skewness: 

3

1

E( )
( )

( )

n
j

j
j

x X
Sk X p

X

 
  

 



. 

If Sk(X) = 0, then probability density function for the random variable 

X is symmetric regarding to mathematical expectation E(X). If the 

probability distribution is asymmetric and its long part ("tail") is located on 

the right of mode of a random variable Mo(X) (a right-bevel), then the 

weighted sum of the cubes of positive deviations from E(X) is greater 

than the sum of the cubes of negative deviations and Sk(X)>0. Similarly, 

Sk(X)<0 when the density function has left-sided bevel and long "tail" of 

distribution appears on the left.  

The fourth central moment determines how acute the top of curve 

distribution is. This property is characterized by a dimensionless quantity 

─ kurtosis coefficient:  

4

1

E( )
( ) 3

( )

n
j

j
j

x X
Kurt X p

X

 
  

 



. 

Kurtosis characterizes the slope or in other words the rapidity of 

increasing of distribution curve compared to the normal curve. The 

higher the kurtosis, the more acute is the top of probability density 

function for a random variable. This property of kurtosis coefficient 

indicates a higher concentration of random variable values in the vicinity 

of its mathematical expectation. The lower value of the kurtosis 

corresponds to the more smoothed (less acute) peak of probability 

density function of random variable. 
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ECG signals are predominantly non-Gaussian due to the high 

values of amplitude in the area of QRS complex and the low values in 

other parts of cardiac cycle. Atrial fibrillation appears on the ECG as the 

replacement of coordinated P waves by rapid fluctuations which vary in 

size and shape. For independent component, which corresponds to the 

separated atrial electrical activity, skewness and kurtosis coefficients are 

much lower comparing to the independent components that include 

ventricular activity. This is explained by the presence of more random 

components in the atrial signal in AF. Thus, in AF atrial independent 

component has distribution law which is more similar to the normal 

distribution.  

Fig. 5.3 shows an example of the separation of atrial activity from 

the real 12-lead ECG recording (Fig. 5.2) provided by The PhysioNet 

resource (St.-Petersburg Institute of Cardiological Technics 12-lead 

Arrhythmia Database [8-9]). The recording was acquired with 257 Hz 

sampling rate. Dimension reduction is carried out by Principal component 

analysis (PCA) prior to ICA and 8 independent components were 

obtained in result of ICA separation process (Fig. 5.3, a). The 6th 

independent component contains the isolated atrial activity in AF. For 

this source of chaotic atrial activity skewness and kurtosis coefficients 

are the lowest comparing to the other sources (Fig. 5.3, b).   

It should be noted that for AA identification it is not enough just to 

reorder the sources from lower to higher kurtosis and skewness. Spectral 

analysis should be applied additionally to determine AA source. Atrial 

fibrillation manifests itself in the frequency spectrum as a well-defined 

single peak in a frequency range of 3-15 Hz. This maximum peak of the 

power spectrum of the atrial signal is the dominant fibrillation frequency, 

which reflects the average refractory period of the atria. For instance, 
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frequency of the power spectral density peak of the separated atrial 

source from Fig. 5.3 a, a is 4,67 Hz. In addition, in visual inspection the 

extracted atrial signal resembles the fibrillatory waves, which are visible 

in some of the initial ECG leads. 
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Fig. 5.2. 12-lead ECG with signs of atrial fibrillation, 

 used as input for ICA 

 

    V, mV 



 

- 150- 

 

 

0 2 4 6 8 10
-5

0

5
Kurtosis=21.2048    Skewness=-3.8386

0 2 4 6 8
-8
-6
-4
-2
0
2
4

Kurtosis= 28.9726    Skewness=4.7583

0 2 4 6 8

-30

-25

Kurtosis= 7.7797    Skewness=-0.76553

1 2 3 4 5 6 7 8 9

-6
-4
-2
0
2
4

Kurtosis= 4.4282    Skewness=-0.91713

0 2 4 6 8 10

-4

-2

0
Kurtosis= 6.1207    Skewness=0.8623

0 2 4 6 8 10
-8

-6

-4
Kurtosis = 2.23    Skewness =-0.028943

0 2 4 6 8 10
2

4

6
Kurtosis= 3.4027    Skewness=0.41991

0 2 4 6 8

20

25

Kurtosis= 2.8811    Skewness=-0.16188

t, seconds
   

-10 -5 0 5
0

5000
Kurtosis= 21.2048   Skewness=-3.8386

-5 0 5 10
0

5000

10000
Kurtosis= 28.9726   Skewness=4.7583

-10 -5 0 5 10
0

2000

4000
Kurtosis= 7.7797   Skewness=-0.76553

-5 0 5
0

2000

4000
Kurtosis= 4.4282   Skewness=-0.91713

-5 0 5 10
0

2000

4000
Kurtosis= 6.1207   Skewness=0.8623

-4 -2 0 2 4
0

500

1000
Kurtosis= 2.23   Skewness=-0.028943

-4 -2 0 2 4
0

1000

2000
Kurtosis= 3.4027   Skewness=0.41991

-5 0 5
0

1000

2000
Kurtosis= 2.8811   Skewness=-0.16188

Normalized amplitude - mean
 

Fig. 5.3. (a) 8 estimated sources obtained by means of ICA. Separated 

atrial electrical activity corresponds to the source #6.  (b) Histograms of 

the separated sources. 
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Algorithm of atrial electrical activity revealing for the analysis and 

prediction of AF episodes termination is presented in Fig. 5.4. 

E1

Spectral and spectral-temporal 
analysis of the atrial independent 

component

Multichannel registration of  ECG 
signal

ICA
 Independent components analysis

Identification of the separated atrial 
source 

Determination of parameters that 
characterize atrial fibrillation and the 

probability of its termination

E2 En

Diagnostic solution 

 

Fig. 5.4. Algorithm of atrial electrical activity extraction for the analysis 

and prediction of the termination of AF episodes  

 
 

4.2. Average Beat Subtraction Approach 

 
 

In the study conducted on the variety of signals ICA applied to AF 

analysis has shown good performance. As it was mentioned above, 

sources of atrial and ventricular electrical activities can be separated by 
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means of BSS algorithms (PCA or ICA) only for multilead ECG 

recordings. But there are many cases when registration of a multichannel 

ECG is not possible. ECG recordings with a limited number of channels 

are usually acquired by medical devices, which are intended for use in 

intensive care units, surgical wards, in the provision of emergency care 

in a hospital or during transport of patients. In ECG recordings registered 

by wearable devices as Holter monitor also only few leads are available, 

which is not enough for BSS algorithms employment because their 

performance deteriorates significantly for a small amount of leads. 

Another type of methods, used for atrial activity extraction, is Average 

Beat Subtraction (ABS) methods. The approach relies on detection of 

QRST complexes, their classification and the subtraction from the 

investigated ECG signal of the average beat of the class to which the 

current beat belongs. This technique provides a signal of atrial electrical 

activity for each separately taken ECG lead.  

ECG signal preprocessing stage сontains baseline drift removal and 

high-frequency noise suppression. Elimination of baseline fluctuations 

was based on multiresolution wavelet decomposition of the raw ECG 

recordings up to the 12th level using symmetric wavelet of the 5th order. 

The 12th level approximation and the details of 9-12 decomposition levels 

were removed from the raw ECG as they reflect slow variations of the 

signal. To suppress high-frequency noises, the spectrum of the 

detrended data was limited up to 40 Hz using FIR Window Lowpass 

filter. QRST detection is the fundamental step in ABS approach. QRST 

detection was performed in the time domain with derivative-based 

threshold algorithm applied to the specially formed reference signal 

which was obtained by nonlinear conversion of the ECG signal with its 

first derivative. The selected algorithm is reliable and accurate for QRST 
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detection in noisy ECGs with artifacts. The detection point of each QRST 

complex is the peak of its R wave. The peaks of R waves are located at 

the local maximums of ECG signal. Before classification the beats were 

synchronized with respect to R wave peak. QRST morphology clustering 

was performed for each single lead by minimizing the sum, over all 

clusters, of the within-cluster sums of point-to-cluster-centroid distances. 

As a measure of the distance the sum of absolute differences, i.e., the L1 

distance was used. From each QRST complex the appropriate template 

(estimated centroid of the corresponding class) was subtracted after 

alignment. Fig. 5.5 shows QRST templates obtained for VI and aVF 

leads of the signal depicted in Fig. 5.2.  

It should be noted that the number of classes and templates for 

morphological clustering of QRST complexes is unknown beforehand 

and selected empirically depending on the signal. If necessary, the 

number of classes and templates should be redefined.   After ventricular 

activity cancellation the residual signal containing the atrial activity was 

obtained. It is necessary to note the following disadvantages of the 

method we have encountered in its implementation. In presence of 

ectopic beats or artifacts of electrodes motion, the considerable amount 

of residual QRST complexes remains in the atrial signal. Moreover, if the 

class consists of only a single representative (for example, unusual for 

QRST complex splash caused by motion artifact), then after subtraction 

from this cardiac cycle of a template of the class, an area with zero 

amplitude occurs in residual atrial signal.  

In Fig. 5.6 (a) segment of the ECG signal acquired from the I lead 

(a), the atrial activity source extracted from 12-lead ECG by means of 

ICA (b) and the atrial signal obtained by QRST cancellation in average 

beat subtraction method (c), are compared. Even in visual analysis it is 
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obvious that atrial activity extracted by ICA method resembles greatly 

atrial f waves from initial ECG lead. Atrial signal obtained by average 

beat subtraction method demonstrates the presence of some distortions 

and residual artifacts which arise from QRST cancellation. The apparent 

differences in the shape of the atrial signals (b) and (c) can be explained 

by different approaches to their receiving. While the average beat 

subtraction method extracts the atrial activity from a single ECG lead, 

ICA method recovers a global atrial signal with contributions from all 

leads. 
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Fig. 5.5. Representative beats for QRST morphology clustering:                             

(a) estimated class centroids for VI lead; (b) estimated class centroids for 

aVF lead 
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Fig. 5.6. (a) Original ECG signal (I lead) . The atrial activity source 

extracted from 12-lead ECG by means of ICA (b) and the atrial signal 

obtained by QRST cancellation in average beat subtraction method (c). 

Dominant AF frequency estimation via FFT analysis of atrial activity 

separated by ICA (d) and by ABC method (e). Dominant AF frequency 

estimation via Multiple Signal Classification (MUSIC) method of atrial 

activity separated by ICA (f) and by ABC method (g) 

 

 

d) e) 

f) g) 
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4.3. Fibrillatory frequency tracking 

 

The emergence and maintenance of atrial fibrillation can be 

explained by the continuous propagation of multiple wavelets (re-entries) 

wandering throughout the atrial tissue. Before AF termination the number 

of re-entries decreases and atrial activity gradually changes its chaotic 

pattern to a more organized type, chaotic f waves convert into P waves. 

This process reflects in the changes (reduction) of the dominant atrial 

frequency in the spectrogram.  There are obvious correlation between 

AF dominant frequency and the likelihood of spontaneous AF 

termination [10]. A low fibrillation frequency perceived in the interval 4-5 

Hz has proved to be a predictor of spontaneous AF termination. The risk 

of non-terminating AF is higher for patients with higher AF frequency. 

Frequencies between 6-15 Hz are considered to be dangerous for 

patient. 

Fast Fourier Transform (FFT) and Multiple Signal Classification 

(MUSIC) methods were used to obtain the frequency spectrum of the 

signals. Figure 5.6 shows dominant AF frequency estimation via FFT 

analysis of atrial activity separated by ICA (d) and by ABC method (e). 

For (d) maximum peak of the power spectrum, which characterizes the 

dominant fibrillation frequency, corresponds to 4,67 Hz. For (e) the main 

peak is located on 4,75 Hz with a difference of 0.078 Hz (1,67%) in 

comparison to (d). However, since atrial signal obtained by ABS method 

contains evident distortions after QRST cancellation, its spectrum (e) has 

additional peaks of the smaller amplitudes [11].  

To reduce the effect of these distortions on the assessment of the 

dominant frequency of atrial fibrillation it is suggested to use MUSIC 

method of frequency analysis. MUSIC is an eigen-based subspace 

decomposition method. Eigen-analysis splits up the eigenvectors and the 
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eigenvalues of the autocorrelation matrix of a noisy signal into 2 

subspaces: signal subspace and noise subspace. To estimate dominant 

AF and reduce the influence of distortions on the spectrum, S (S<<N) 

main eigenvectors V1, V2…, VS which correspond to the largest 

eigenvalues  λ1, λ2 ..., λS is used. Other N S  eigenvectors correspond 

to the smallest eigenvalues and characterize the noise subspace.  

For (f) the main peak corresponds to 4,518 Hz with a difference of 

0.159 Hz (3,39%) in comparison to (d). For (g) the main peak 

corresponds to 4,773 Hz with a difference of 0.018 Hz (0,37%) in 

comparison to (e). But there are no additional peaks in Fig. 5.6, e. 

Time-frequency analysis of isolated atrial electrical activity was also 

performed to identify the dominant frequency of atrial fibrillation and to 

supervise its time variation. Assessment of temporal behavior of atrial 

electrical activity gives prognostic information in the prediction of 

spontaneous termination of paroxysmal atrial fibrillation, success of 

electrical cardioversion or drug treatment of persistent AF.  

To investigate the time-varying properties of AF the basic approach 

to time-frequency analysis was applied to the real 12-channel ECG 

records from the PhysioNet resource (Fig. 5.7, 5.8) [8-9]. The isolated 

atrial signal was segmented and the Fourier spectrum was calculated for 

each segment with Hamming window function of length equal to 3*fs, 

where fs is the sampling frequency. The segments were considerably 

overlapping. The choice of segment size was driven by the compromise 

between time and frequency resolution: a larger value of segment size 

gives better frequency resolution, but poorer time resolution. 
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Fig. 5.7. Time-frequency distribution for atrial source obtained by ICA: 

two-dimensional (a) and three-dimensional spectrograms (b) 
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Fig. 5.8. Analysis of another 12-channel ECG record with signs of 

AF: identified atrial independent component (a), its spectral analysis (b), 

histogram (c) and spectral-time analysis (d) 
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CONCLUSIONS 

 

Comparison of ICA and ABS methods in study of the surface ECGs 

in atrial fibrillation has shown that in the presence of a multichannel ECG 

recording it is more preferably to use ICA method for atrial electrical 

activity extraction. However, due to the computational complexity, ICA 

should be applied to the moderately long segments of ECG (1-2 minutes 

long at a sampling frequency fs=257 Hz). ABS method is recommended 

to use for atrial electrical activity extraction, if only a few leads of ECG 

are available. In comparison with ICA, ABS method produces the atrial 

signal with some distortions, but it works well with long ECG segments. 

CONTROL QUESTIONS AND TASKS 

1.  Explain why extraction and analysis of atrial electrical activity is 

important in the diagnosis of atrial fibrillation. 

2. Explain the application of method of blind source separation to 

the task of atrial activity extraction. 

3. Explain the application of average beat subtraction approach to 

the task of atrial activity extraction. 

4. Explain the idea of fibrillatory frequency tracking by time-

frequency analysis. 
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SECTION 5 

FETAL ELECTROCARDIOGRAM EXTRACTION  

FROM MATERNAL ABDOMINAL SIGNALS  

 

5.1. Peculiarities of manifestation of fetal cardiac electrical 

activity 

 

Despite the difference in fetal and maternal cardiocirculatory 

systems, the standard fetal electrocardiogram (FECG) contains the same 

waves and complexes as the maternal electrocardiogram (MECG). At 

early stages of embryo-fetal development (6-8 weeks) practically all 

elements of ECG (P, Q, R, S, and T waves) can be differentiated. 

However, in clinical conditions fetal electrocardiogram can be recorded 

only beginning from the 10-16th week of pregnancy. Waves on the fetal 

electrocardiogram have a different degree of intensity and to a great 

extent are determined by both the technical registration conditions and 

the term of fetus development: the amplitude of waves of ECG signal 

increases beginning from the 32nd week of intrauterine growth and up to 

the delivery. 

The heart rate is determined by the degree of fetus development, its 

bond with the maternal organism, and also changes depending on the 

period of the day and the term of pregnancy. It is believed that by the 

end of intrauterine period the heart rate is reduced from 160-170 beats 

per minute at the 12-week of pregnancy to 130 beats at the end of 

pregnancy [1-3].  

Non-invasive techniques of fetal ECG registration and processing 

are based on the separation of fetal electrocardiogram from the mixture 

of abdominal electrocardiosignals registered at different points of the 
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surface of mother’s body (Fig. 5.1). The problem lies in the fact that the 

signals registered in this case represent a mixture of maternal EGG 

(100-1500 µV), fetal ECG with much lower amplitude (1-50 µV), and 

numerous disturbances (Fig. 5.1 b, where markers indicate QRS-

complexes of fetal ECG). 
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а)                                                        b) 

Fig. 5.1. а) the principle of registration of abdominal ECG; 

b) abdominal ECG with fetal cardiocycles 

 

The enhancement of electrocardiographic fetal diagnostics involves 

the need of using the high resolution technologies in 

electrocardiography. Then the early diagnostics of cardiac electrical 

activity can become a criterion for estimation of the general condition of 

fetus and detection of hypoxia. 

One of the most common abnormalities of the fetal evolution is 

oxygen starvation, hypoxia, which endangers the health and life of a 

fetus. STAN (ST analysis) is a computerized analysis of the ST segment 

of the fetal electrocardiogram [4-10]. Normal form of ST segment 

indicates a sufficient supply of fetal oxygen, an aerobic metabolism of the 

myocardium, and a positive energy balance. ST segment and T wave on 
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fetal ECG correspond to the processes of ventricular repolarization of 

myocardial cells and preparation to the next heart contraction. These 

processes require energy. During fetal hypoxia, the energy balance is 

disturbed, and its recovery is accompanied by the release of potassium 

ions into the cells. This leads to increase of the membrane potential of 

myocardial cells, and, consequently, to change of the ST segment, which 

manifests itself as increase in T wave amplitude. The inability to restore 

energy balance by widening blood vessels or anaerobic metabolism 

сauses endocardium ischemia, which leads to disruption of ventricular 

repolarization. Depression of the ST segment with inversion of the T 

wave or without it can be detected on the fetal ECG. ECG changes in 

fetal hypoxia in animals are depicted in Fig. 5.2 [4]. 

 

Fig. 5.2. ECG changes in fetal hypoxia in animals [4] 
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Early development of hypoxia can reflect itself on the fetal ECG in 

the form of two-phase ST segment or omission of ST segment relative to 

the baseline. The ST segment leans down and becomes negative, which 

is accompanied by a gradual decrease in the amplitude of T wave. 

However, not only hypoxia leads to such changes of fetal ECG. The 

changes can also be caused by infections, fever, excited state of the 

mother, as well as myocardial dystrophy or heart failure.  

Early detection of hypoxia and its prompt correction can contribute 

to the birth of a healthy child. Evaluation of cardiac activity is one of the 

most important components of fetal monitoring because it enables 

diagnosis of fetal distress. Monitoring of the fetal heart can be carried out 

using the ultrasound method involving the analysis of the mechanical 

work of the heart and electrocardiography, which provides the clinician 

with a measure of the electrical activity of fetal heart. Ultrasound method 

based on Doppler effect is the most common instrument for detection of 

fetal hypoxia symptoms. However, it assesses only the mean heart rates.  

Registration of the bioelectrical activity of fetal heart makes it 

possible to analyze morphology and time intervals of the fetal 

electrocardiogram, which are the reliable parameters for fetal condition 

determining [1-3]. It can be carried out by invasive and noninvasive 

methods. Invasive electrocardiography is based on the electrodes 

placement directly on the fetus head. This restricts the use of the 

method, because it can be applied only during the labor. Noninvasive 

method of fetal electrocardiogram acquisition uses electrodes, which are 

placed on the maternal abdomen, and enables registration of fetal ECG 

in a wide range of gestation terms. The noninvasive technique performs 

registration of the abdominal electrocardiosignal, which is the sum of 

maternal and fetal electrocardiograms. Fetal ECG could be extracted 

from this mixture using digital signal processing techniques.  
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There are various ways of locating the electrodes to register the fetal 

ECG. According to one of the methods, the electrodes are located on the 

edges of the abdomen of a pregnant woman similar to the way the 

electrodes are arranged on the limbs for the normal recording of the 

electrocardiogram in an adult. The electrodes, which are usually fixed on 

the hands of the adult, are placed in the upper abdomen, and those, 

which are fixed on the legs, are located in the lower abdomen of the 

pregnant woman. 

With the other approach to registration, all 6 breast electrodes are 

located in the lower segment of the abdomen, trying to reach the upper 

part of the fetal body as much as possible, and 4 limb electrodes are 

located along the abdominal edges. In case of pelvic position of the 

fetus, the electrodes are placed in the middle upper part of the abdomen. 

Normal amplitude of QRS complex ranges from  1 to 50 μV and from 

100 to 1000 μV for fetal and maternal ECG respectively. Heart rate 

varies from 120 to 160 beats per minute and from 60 to 90 beats per 

minute for fetus and mother respectively. Fetal heart rate variability can 

be assessed more precisely by the analysis of fetal ECG comparing to 

the ultrasound method, because in the former case RR intervals are 

defined directly from the fetal ECG. Morphological analysis of the fetal 

ECG includes estimation of amplitudes of ECG waves and time intervals 

between the waves. One of the important parameters is the ratio of T 

wave amplitude to QRS complex amplitude, which progressively 

increases with increasing degree of hypoxia [4-10].  

Due to the significant difference between amplitudes of fetal and 

maternal ECG signals as well as noise presence, achieving a high 

quality fetal ECG extraction from the abdominal ECG signal still remains 

a difficult task [1-3]. Noise and interferences occurring in the abdominal 

signal have the different nature and include: maternal ECG, muscular 
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activity of maternal abdominal muscles and uterus, power line 

interference, noise of electrodes, fetal motion artifacts, baseline drift 

caused by maternal breathing, noise of electronic equipment. Signals 

separation by simple frequency filtering is not possible because 

frequency spectrums of maternal and fetal ECG overlap. It is also 

necessary to take into account that a place, from which the fetal ECG 

could be recorded most clearly, can vary. It is explained by the fetal 

movement activity during pregnancy.                  

Among the promising approaches for maternal and fetal ECG 

signals separation is using of blind source separation methods (BSS) in 

conjunction with wavelet transform. Standard methods of signals 

separation from the mixture are based on the difference between their 

temporary and spectral characteristics. In case when the mixed signals 

overlap in time and frequency domain, the method of blind source 

separation is used. BSS is the separation of a set of signals from a set 

of mixed signals with unknown mixing process. The process is called 

"blind" because of the minimum of priori information about the nature of 

separated sources. The minimum a priori information, used in solving the 

problem, consists of an assumption of the statistical independence of 

signal sources, difference between statistical characteristics, constancy 

of the coefficients of mixing matrix on the interval of observation, and the 

fact that the probability densities of the source amplitude distributions are 

described by the non-Gaussian law. The method of independent 

components analysis (ICA) is the most common method to implement 

BSS. 

However, as it can be seen from the problem statement, the 

rigorous solution is only possible on assumption of the absence of 

observation noises. In practice, noises are always present during the 

ECG recording. This results in emergence of additional components in 
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the separated signal in case of constant number of initial sources. 

To overcome the limitations of "blind" nature of separated fetal and 

maternal sources, a vector model of heart electrical activity with a dipole 

structure was selected. It is assumed that a heart vector has a fixed 

spatial position and changes over time in amplitude and direction. 

Maternal ECG signal (MECG), which is recorded from the abdomen of a 

pregnant woman, can be represented as a linear superposition of three 

orthogonal signals – subspace of MECG sources. Similarly, a subspace 

of fetal ECG (FECG) sources can be imagined. The independence of 

bioelectrical fetal and maternal cardiac phenomena makes it possible to 

assume that the signals of sources are statistically independent. Due to 

the fact that the sources of noise have different physical nature as 

compared to sources of electrocardiosignals, they can be also 

considered as statistically independent with respect to sources of 

signals. Therefore, it is necessary to separate signals of individual 

sources from the mixture of surface noisy electrocardiosignals, namely 

fetal electrocardiosignals against the background of maternal 

electrocardiosignals and noise components. 

Numerous investigations of BSS application achieved fetal ECG 

detection from abdominal maternal ECG. However, the studies were 

often limited to determination of fetal heart rate variability based on                    

R waves detection and did not use additional information, included in 

morphological changes of fetal cardiocycles. 

 

5.2. Fetal cardiocycle modeling 

 

Testing of digital signal processing techniques for fetal ECG 

extraction requires signals with various morphologies. Generation of 

artificial electrocardiographic signals (Fig. 5.3) based on the real ECG 
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signals waveforms and modification of the model parameters allows us 

to create the database of simulated signals, which reflect the states of 

normal and pathologic fetal conditions [11-14]. 

According to the biophysical theory, electrical activity of the heart 

can be expressed as a cumulative effect of the dipoles, the intensity of 

which is described by Gaussian distribution. Therefore, a model of a 

cardiac cycle as a sum of Gaussian functions corresponds to maternal 

and fetal ECG signals. In general, the model must contain a sufficient 

number of Gaussian functions to reproduce ECG with a given accuracy; 

however, using of five functions is quite effective. For the task of fetal 

cardiac cycles modeling in normal condition and in cases of fetal 

hypoxia, the modified model was used, where each wave (P, Q, R, S) 

was reproduced by one Gaussian function and ST segment containing T 

wave was reproduced by two Gaussian functions: 
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where V  is voltage in the lead, mV; t  is time, s; 
i

 is amplitude of the i-th 

Gaussian function, mV; 2 ,f   f is heart rate, Hz; 
i

b  is width of the i-th 

Gaussian function, rad; 
i

  is phase of the i-th Gaussian function, rad; 

( )mod(2 )
i i

      , rad;   is phase of  ECG quasiperiod, rad.  

Using the equation (5.1) the following mathematical model was 

obtained for fetal cardiocycle simulation:  
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Fig. 5.3. Simulated abdominal ECG:  

M - maternal cardiocycles, F ─ fetal cardiocycles  
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Fig. 5.4. Simulated fetal cardiac cycles corresponding to normal fetal 

condition and to different manifestations of fetal hypoxia: 

 increased T wave amplitude (1),  

T wave inversion relative to the baseline (2)  

and biphasic ST segment (3) 
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Alterations in amplitudes and durations of ECG waves are the 

features that signalize about fetal distress. The shape of the ST 

waveform can change with hypoxia [4-10]. Artificial FECG signals 

(Fig. 5.4) with the signs of fetal hypoxia state were developed 

considering three typical cases of hypoxia manifestation on ST segment: 

increase in T wave amplitude, T wave inversion relative to the baseline, 

biphasic ST segment.  

To investigate the possibility of application of wavelet transform and 

independent components analysis to the problem of fetal ECG extraction 

from maternal abdominal ECG signal a model experiment was carried 

out [14]. Artificial fetal ECG signal and noise components in the form of 

additive Gaussian white noise were added to artificial maternal 

abdominal ECG signal (Fig. 5.5). Sampling frequency of the simulated 

ECG signals was assumed equal to 1 kHz, that corresponds to the 

sampling frequency of signals recorded by high resolution 

electrocardiography systems. The average amplitude of fetal QRS 

complex was approximately 35 μV, which is about 10 times less than the 

average amplitude of maternal QRS complex. The model also takes into 

account fetal and maternal heart rate variability (variation in the time 

interval between heartbeats) and variation in the amplitudes of particular 

ECG waves. Variation ranges of RR interval duration were ± 10% and 

±15% from the mean value for maternal and fetal heart rhythm 

respectively, which corresponds to the physiology of the adult and the 

fetal hearts. Durations of RR intervals were set using a pseudorandom 

numbers generator for normal distribution. 

The orientation of the fetal PQRST complexes is the opposite to the 

maternal PQRST according to the normal fetus position in the uterus. 

Similarly to the simulated ECG signals in one lead, the models of 
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multichannel abdominal ECG recordings were received for normal fetal 

condition and for the presence of hypoxia signs. 
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Fig. 5.5. Artificial maternal (a) and fetal (b) ECG signals and a sum of 

these signals (c); simulated abdominal signal affected by noise (d) 

 

5.3. Fetal ECG detection and analysis based on combined use 

of  ICA and WT methods 

Analysis of abdominal ECG by means of wavelet transform includes 

signal preprocessing to eliminate noise components and fetal ECG 

extraction to define diagnostic parameters [15-18]. Wavelet 

decomposition allows us to eliminate noise and suppress the main high-
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amplitude interference that dominates in abdominal signal – maternal 

ECG.  

Wavelet transform requires only one abdominal lead for fetal QRS 

extraction. Abdominal ECG signal can be represented by multiresolution 

wavelet analysis as a sum of an approximation component 
m

a  and the 

detail components 
j

d :  
1

( ) ( ),
m

m j
j

S t a t d t


    where m is number of 

wavelet decomposition levels. The approximation coefficients correspond 

to the low-frequency components of ECG signal and the detail 

coefficients correspond to high frequency components of short duration. 

This property of wavelet decomposition allows us to remove noise from 

the abdominal signals and to separate maternal and fetal ECG. Noise 

appears at the detail levels of wavelet transform, therefore the task of 

noise suppression consists in detail coefficients processing. Coefficient 

values not exceeding a selected threshold level are replaced by zero. 

Appropriate threshold limit and threshold method (hard or soft) can be 

different at each level of wavelet decomposition.  

The baseline wander and power-line interferences were eliminated 

from the abdominal signal using wavelet decomposition. As a wavelet 

function, which was used to eliminate the baseline wander, a symmetric 

wavelet of 6th order was used (Fig. 5.6). Wavelet decomposition was 

performed up to the 9th level (Fig. 5.7). The baseline wander is the low-

frequency noise, so in order to eliminate it, it is necessary to restore the 

signal with zero coefficients of the approximating component, which 

reflects the slow fluctuations of the signal. 

To suppress high frequency noise, the simulated abdominal ECG 

signals were decomposed up to the 5th level with a "symmetric" wavelet 

of 6th order (Fig. 5.8). The presence of the noise manifested itself at the 

detail levels 
1 2 3
, ,d d d . Taking into account the noise pattern at these 
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levels, it was reasonable to replace by zero all wavelet coefficients at the 

detail levels 
1 2
,d d  and apply soft thresholding method to wavelet 

coefficients at the detail level 
3

d , as this level apart from the noise 

contained the signs of fetal ECG.  Then, using the thresholded 

coefficients in the inverse wavelet transformation, the abdominal ECG 

signals without noise were reconstructed.  

On the next stage after the noise suppression, the fetal ECG must 

be extracted from the abdominal signal. Fig. 5.9 shows the wavelet 

decomposition up to the 5th level performed for the preliminarily denoised 

abdominal ECG signal.  

It is evident that the detail components 
1 2 3 4
, , ,d d d d  contain the signs 

of the fetal QRS complexes. At the detail level 
5

d  and at the 

approximation level 
5

а  the signs  of  fetal QRS complexes do not appear. 

Therefore, to separate the fetal ECG from the abdominal signal it is 

necessary to consider only the coefficients of the detail levels 
1 2 3 4
, , ,d d d d  

and replace by zero the coefficients at 
5

d  and 
5

а  levels.  

Investigation of WT possibilities in fetal ECG detection with using of 

different wavelet functions and different number of wavelet 

decomposition levels showed, that localization of fetal QRS complexes 

and RR intervals durations for heart rate variability analysis can be 

accurately determined, but morphology of the fetal cardiocycles can not 

be analyzed properly (Fig. 5.10). 

In the signal obtained after reconstruction the areas containing the 

features of the maternal QRS complexes must be excluded since 

maternal QRS complexes occur at all levels of the wavelet 

decomposition of the abdominal ECG signal (Fig. 5.11). 
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Fig. 5.6. "Symmetric" wavelet functions of the 4th, 5th and 6th orders 
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Fig. 5.7. Wavelet-decomposition of  the abdominal ECG signal using a 

"symmetric" wavelet of the 2nd order up to the 9th level  
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Fig. 5.8. ECG denoising by means of wavelet transform: a) wavelet 

decomposition of the simulated abdominal ECG signal; b) fragment of 

the simulated abdominal ECG containing fetal cardiocycle before and 

after denoising 
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Fig. 5.9. Wavelet decomposition up to the 5th level (with a "symmetric" 

wavelet of 6th order) perfomed for the simulated abdominal ECG signal 

that was preliminarily denoised 
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Fig. 5.10. The simulated fetal cardiocycle with the manifestation of 

fetal hypoxia as biphasic ST segment: added to the abdominal signal 

and extracted from it using WT. P and T waves were not revealed 
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Fig. 5.11. Fragment of the real abdominal ECG after elimination of noise 

components and sum of the detail components 
1 2 3 4
, , ,d d d d  

 

Fig. 5.12. Algorithm of fetal ECG detection and analysis based on 

combined use of ICA and WT methods 
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The shapes of the extracted fetal QRS complexes were close to the 

shapes of QRS complexes from the simulated fetal cardiocycles, which 

were added to the maternal ECG signal, but there were obvious 

distortions in low-frequency P and T waves and their diagnostically 

important information was lost (Fig. 5.11).  

A comparative analysis of the results received by simulated signals 

processing showed, that for fetal ECG extraction with the aim of 

morphology estimation wavelet transform should be applied as a tool for 

noise suppression and used in combination with ICA method (Fig. 5.12) 

[19-23]. Conducted experiments revealed that it is better to apply WT not 

before ICA, but after independent components separation in order to 

purify the fetal independent components from the noise. In the case of 

using WT before ICA method, the slight distortions, which arise in the 

reconstructed signal due to the specifics of WT, may occur in the fetal 

independent components as the significant distortions that have the 

same order of magnitude as the fetal ECG waves. 

Fig. 5.13 shows 4 independent components obtained for the 

simulated 6-channel abdominal ECG. Noise was suppressed by WT 

(Fig. 5.13, b). Due to the fact, that fetal heart rate exceeds maternal 

about twice, fetal independent components can be easily identified 

among maternal independent components. It should be noted that the 

fetal cardiac cycles extracted from the denoised fetal independent 

components are very similar in shape to the simulated cardiac cycles 

added to the abdominal signals.  

Values of correlation coefficient for cardiac cycles, shown in 

Fig. 5.14 a-d, are 0.972, 0.981, 0.977 and 0.974 respectively. Despite 

the slight distortion, the diagnostically important information about the 

low-frequency P and T waves as well as about the biphasic ST-segment 

was not lost after processing and can be estimated 
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Fig. 5.13. Independent components obtained for the simulated 6-channel 

abdominal ECG recording: a) before denoising; b) after denoising by 

means of WT 
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Fig. 5.14. Simulated fetal cardiac cycles added to the mixture of maternal 

abdominal ECG signal and noise and then extracted from it by combined 

use of ICA and WT methods. In the extracted signals the information 

about the subtle structure of the fetal cardiac cycles is saved: a) norm;  

b) increased T wave amplitude; c) T wave inversion relative to the 

baseline; d) biphasic ST segment 

 

The value of the coefficient of correlation r between the separately 

taken simulated fetal cardiocycle and the cardiocycle, detected from the 

total abdominal signal, was found as:     
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where N is the number of samples in the separately taken  simulated 

fetal cardiocycle S and in the cardiocycle S*, which is detected from the 

total abdominal signal; 

s  і 
*s  are average values of the separately taken simulated fetal 

cardiocycle and the detected one.  

The proposed approach for fetal ECG extraction, based on the joint 

application of ICA and WT methods, was then applied to real data from 

PhysioNet resource [24-27]. Abdominal and Direct Fetal 

Electrocardiogram Database [24] contains multichannel fetal 

electrocardiogram recordings obtained from 5 different women in labor, 

between 38 and 41 weeks of gestation. Each recording comprises four 

differential signals acquired from maternal abdomen and the reference 

direct fetal electrocardiogram registered from the fetal head (Fig. 5.15).  

 

Fig. 5.15. Fragment of the recording from the  

Abdominal and Direct Fetal Electrocardiogram Database 
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Non-Invasive Fetal Electrocardiogram Database [27] contains a 

series of 55 multichannel abdominal non-invasive fetal electrocardiogram 

recordings, which were taken weekly from a single subject between 21 to 

40 weeks of pregnancy. The recordings contain 2 thoracic signals and 3 

or 4 abdominal signals (Fig. 5.16). 

 

Fig. 5.16. Fragment of the recording from the 

Non-Invasive Fetal Electrocardiogram Database  

Fig. 5.17 depicts a fragment of 4-channel abdominal 

electrocardiogram recording obtained from the woman in labor on 39 

week of gestation. The recording was acquired with 1 kHz sampling rate 

and 16 bits resolution. Fetal and maternal independent components, 

obtained for this recording and denoised by WT, are presented in 

Fig. 5.18. The fetal cardiocycle extracted from the maternal abdominal 

ECG resembles the cardiocycle from the direct fetal electrocardiogram 

registered simultaneously from the fetal head (Fig. 5.18). The differences 

in the shape of the cardiocycles are explained by placement of 

electrodes. 

The simulation of ECG signals allows us to generate a variety of 

fetal and maternal ECG signals of different shapes, which correspond to 
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the states of norm, pre-pathology and pathology. In the simulated fetal 

signals changes in amplitudes and durations of ECG waves, which 

indicate the state of fetal hypoxia, are taken into account. Also various 

types and levels of interferences, that affect abdominal ECG signal, may 

be set in the model.  Creating a database of synthetic ECG, that includes 

the models with pathological alterations in morphology of fetal ECG, is a 

promising direction for further investigation and improvement of methods 

and algorithms for diagnosis of the fetal status throughout pregnancy and 

recognition of early symptoms of fetal distress. 
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Fig. 5.17. Fragment of the real 4-channel abdominal ECG recording 
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Fig. 5.18. Fetal and maternal independent components  

after denoising by WT  
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Fig. 5.19. The fetal cardiocycle extracted from the noninvasive maternal 

abdominal ECG and the cardiocycle from the direct fetal ECG registered 

simultaneously from the fetal head 
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Fig. 5.20 shows another example of the application of the proposed 

complex method to the analysis of real multichannel abdominal ECG 

signals. 5 independent components were obtained for a real 5-channel 

abdominal ECG record from the database [28]. One of the independent 

components is fetal. 
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Fig. 5.20. a) abdominal 5-channel ECG record; b) independent 

components of the abdominal ECG record; c) fetal independent 

component after removal of baseline wander and high-frequency noise 

by means of wavelet analysis 
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The purified fetal independent component can be used to find the 

RR intervals of the fetal ECG, and also to obtain an average fetal 

cardiocycle. Averaging of the fetal ECG signal in Fig. 5.21 was 

performed with the accumulation of fetal cardiocycles with 

synchronization on the R wave. 
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Fig. 5.21. a) evaluation of fetal heart rate;  

b) determination of the average fetal cardiocycle 

 

Numerical experiments have shown that the сonsidered method 

makes it possible to perform the evaluation of fetal heart rate, as well as 

to reveal changes in the morphology of fetal cardiocycles [29].  

 

CONCLUSIONS 

 

The integrated approach of abdominal ECG signals processing for 
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independent components separation by ICA and noise reduction in these 
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components by WT. The results obtained for the simulated and real 

signals have shown, that the presented approach enables us to extract 

fetal ECG signal with quality that sufficient not only for fetal heart rate 

variability measurement, but also for assessment of 

morphological and temporal parameters of fetal cardiac cycles. For the 

real signals the sufficient number of fetal ECG beats must be registered 

to enable the signal averaging technique appliance. The averaging of 

consecutive ECG complexes, obtained from the denoised fetal 

independent component and synchronized on their R waves, is advisable 

for accurate assessment of the morphological parameters of fetal ECG. 

 

CONTROL QUESTIONS AND TASKS 

 

1. Explain technique of non-invasive registration of fetal ECG. 

2. Explain the peculiarities of manifestation of fetal cardiac electrical 

activity on maternal abdominal ECG. 

3. How can development of hypoxia reflect itself on the fetal ECG? 

4. Explain approaches for fetal ECG extraction. 

5. Explain, how can be simulated the abdominal ECG signal of a 

pregnant woman? 
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CONCLUSIONS 

 

Development of methods for detection of early signs of heart 

disorders can not only predict the disease, but by early treatment can 

help prevent the pathological process flow. Mathematical methods of 

ECG analysis are realized in the development of new generation of 

diagnostic ECG systems, using complex transformations for parameter’s 

estimation of myocardial electrical potential, based on biophysics and 

electrophysiology of the heart. 

Technology of high resolution electrocardiography is perspective 

direction for digital processing of low-amplitude components of 

electrocardiosignal. These combined technologies include methods, 

based on creating eigen subspaces of signals and noise by 

decomposition in the basis of eigenvectors, principal component 

analysis, independent component analysis and wavelet analysis.  

Research directions of atrial and ventricular late potentials detection 

and T wave alternans evaluation are both linked by a common idea: 

detection of markers of cardiac electrical instability in the surface ECG. 

Application of the combined methods gives the opportunity not only to 

decide on the presence or absence of late potentials or T wave alternans 

in the electrocardiosignal, but also to evaluate changes in the pattern of 

low-amplitude ECG components after antiarrhythmic therapies or 

surgical procedures in order to judge the effectiveness of the treatment 

of arrhythmias and to perform early diagnosis of diseases of the 

cardiovascular system. 

Atrial electrical activity and ventricular activity can be separated 

from real multichannel recordings in atrial fibrillation by means of 

independent component analysis. To identify the source that 

corresponds to atrial electrical activity, the frequency spectrums and 
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coefficients of skewness and kurtosis are determined. Also atrial activity 

separation is performed by average beat subtraction method. 

Non-invasive combined methods of detection of fetal ECG from 

mother abdominal electrocardiosignals can determine heart rate 

variability and morphological parameters of fetus cardiac cycles that 

allows assessing the functional status of the fetus during pregnancy. 
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