428 research outputs found

    Converted Measurement Trackers for Systems with Nonlinear Measurement Functions

    Get PDF
    Converted measurement tracking is a technique that filters in the coordinate system where the underlying process of interest is linear and Gaussian, and requires the measurements to be nonlinearly transformed to fit. The goal of the transformation is to allow for tracking in the coordinate system that is most natural for describing system dynamics. There are two potential issues that arise when performing converted measurement tracking. The first is conversion bias that occurs when the measurement transformation introduces a bias in the expected value of the converted measurement. The second is estimation bias that occurs because the estimate of the converted measurement error covariance is correlated with the measurement noise, leading to a biased Kalman gain. The goal of this research is to develop a new approach to converted measurement tracking that eliminates the conversion bias and mitigates the estimation bias. This new decorrelated unbiased converted measurement (DUCM) approach is developed and applied to numerous tracking problems applicable to sonar and radar systems. The resulting methods are compared to the current state of the art based on their mean square error (MSE) performance, consistency and performance with respect to the posterior Cramer-Rao lower bound

    Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach

    Full text link
    Nowadays there is a growing research interest on the possibility of enriching small flying robots with autonomous sensing and online navigation capabilities. This will enable a large number of applications spanning from remote surveillance to logistics, smarter cities and emergency aid in hazardous environments. In this context, an emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings or concealing in large UAV networks. In contrast with current solutions mainly based on static and on-ground radars, this paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets. To this end, we describe a solution for real-time navigation of UAVs to track a dynamic target using heterogeneously sensed information. Such information is shared by the UAVs with their neighbors via multi-hops, allowing tracking the target by a local Bayesian estimator running at each agent. Since not all the paths are equal in terms of information gathering point-of-view, the UAVs plan their own trajectory by minimizing the posterior covariance matrix of the target state under UAV kinematic and anti-collision constraints. Our results show how a dynamic network of radars attains better localization results compared to a fixed configuration and how the on-board sensor technology impacts the accuracy in tracking a target with different radar cross sections, especially in non line-of-sight (NLOS) situations

    A New Gaussian Mixture Algorithm for GMTI Tracking Under a Minimum Detectable Velocity Constraint

    No full text
    Published versio

    Tracking algorithms for multistatic sonar systems

    Get PDF
    Abstract Activated reconnaissance systems based on target illumination are of high importance for surveillance tasks where targets are nonemitting. Multistatic configurations, where multiple illuminators and multiple receivers are located separately, are of particular interest. The fusion of measurements is a prerequisite for extracting and maintaining target tracks. The inherent ambiguity of the data makes the use of adequate algorithms, such as multiple hypothesis tracking, inevitable. For their design, the understanding of the residual clutter, the sensor resolution and the characteristic impact of the propagation medium is important. This leads to precise sensor models, which are able to determine the performance of the surveillance team. Incorporating these models in multihypothesis tracking leads to a situationally aware data fusion and tracking algorithm. Various implementations of this algorithm are evaluated with the help of simulated and measured data sets. Incorporating model knowledge leads to increased performance, but only if the model is in line with the physical reality: we need to find a compromise between refined and robust tracking models. Furthermore, to implement the model, which is inherently nonlinear for multistatic sonar, approximations have to be made. When engineering the multistatic tracking system, sensitivity studies help to tune model assumptions and approximations

    Performance Analysis of Extended Kalman filter and Unscented Kalman filter for Doppler Bearing Passive Target Tracking

    Get PDF
    Abstract-Conventional passive bearing together with Doppler measurements is explored in Target motion analysis (TMA). This Doppler bearing tracking (DBT) approach offers one advantage compared to bearings-only tracking, that DBT does not require ownship maneuver. By using EKF and unscented Kalman filter (UKF), the target motion analysis is carried out. To obtain the convergence of the estimation fast the inclusion of range and bearing parameters is proposed in the target state vector. Doppler shifts are experienced by the harmonic signals at the ownship so that the frequency measurements can be explored to improve estimation accuracy. This paper deals with the performance evaluation of both EKF and UKF for under water tracking applications and the results for DBT are compared between extended Kalman filter and Doppler-bearing passive target tracking using unscented Kalman filter Monte Carlo simulations

    Comparative Analysis of Non Linear Estimation Schemes used for Undersea Sonar Applications

    Get PDF
        The performance evaluation of various passive underwater target tracking algorithms like Pseudo Linear Estimator, Maximum Likelihood Estimator, Modified Gain Bearings-only Extended Kalman Filter, Unscented Kalman Filter, Parameterized Modified Gain Bearings-only Extended Kalman Filter and Particle Filter coupled with Modified Gain Bearings-only Extended Kalman Filter using bearings-only measurements is carried out with various scenarios in Monte Carlo Simulation. The performance of Parameterized Modified Gain Bearings-only Extended Kalman Filter is found to be better than all estimates
    • …
    corecore