19 research outputs found

    Robust Hybrid Algorithm of PSO and SOCP for Grating Lobe Suppression and against Array Manifold Mismatch

    Get PDF
    Based on Particle Swarm Optimization (PSO) and Second-Order Cone Programming (SOCP) algorithm, this paper proposes a hybrid optimization method to suppress the grating lobes of sparse arrays and improve the robustness of array layout. With the peak side-lobe level (PSLL) as the objective function, the paper adopts the particle swarm optimization as a global optimization algorithm to optimize the elements’ positions, the convex optimization as a local optimization algorithm to optimize the elements’ weights. The effectiveness of the grating lobes suppression (as low as -32.13 dB) by this method is illustrated through its application to the sparse linear array when the actual steering vector is known. To enhance the robustness of the optimized array, a rebuilt robust convex optimization model is adopted in the optimization of both array excitations and layout. When the array manifold mismatch error is 1cm, the PSLL by the robust algorithm can be compressed to -27dB, compared to that of -24dB by the ordinary optimization. Results of a set of representative numerical experiments show that the algorithm proposed in this paper can obtain a more robust array layout and matched elements’ weight coefficients to avoid the huge degradation of the array pattern performance in the presence of array manifold mismatch errors. The good performance of pattern synthesis demonstrates the effectiveness of the proposed robust algorithm

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Reconfigurable Antennas

    Get PDF
    In this new book, we present a collection of the advanced developments in reconfigurable antennas and metasurfaces. It begins with a review of reconfigurability technologies, and proceeds to the presentation of a series of reconfigurable antennas, UWB MIMO antennas and reconfigurable arrays. Then, reconfigurable metasurfaces are introduced and the latest advances are presented and discussed

    Novel Flexible Wearable Antennas Based on Advanced Materials and Fabrication Techniques.

    Get PDF
    PhD Theses.Wearable technology has evolved gradually in parallel with other technological advancements, and nowadays, it plays a key role in a wide range of applications. New antenna designs within wearable environments should explore solutions using exible materials, remaining ergonomic and comfortable but o ering mechanical robustness at the same time. Among these materials, carbon-based materials are up-and-coming candidates for these types of solutions and fabrics to fully integrate into e-textiles and smart clothing. The target of this research is to develop novel designs for exible antennas that will provide solutions to overcome the challenges associated with wearable technology by using modern fabrication techniques and materials. A comprehensive literature review regarding fabrication methods, together with material characterisation techniques is presented. A lack of experimental work was noticed, and for the rst time, a full campaign of measurements was carried out to accurately describe the temperature's impact on fabric-based devices using resonator antenna structures. Wearables in general and e-textiles, in particular, are about to tackle tremendous environmental and sustainability challenges. In the context of exploring sustainable materials in e-textiles, a novel soft and conformal textile-based antenna using multi-layer graphene sheets has been thoroughly analysed, describing its performance, the e ects of bending, and proximity to the human body. Within this research, printing techniques have been considered as an alternative to assembly processes. Two antenna designs (PICA/LOOP) with the advantages of carbon nanotubes inks and screen-printing methods, such as lightness, malleable and washability are characterized. In addition, a quasi-Yagi-Uda design has been optimized, fabricated, and characterised. The specimen was inkjet printed on Kapton substrate using graphene ink. A post-numerical analysis was used to characterise the e ect of a not ideal fabrication. The measured data was post-processed in order to overcome some of the associated challenges of measurements for exible devices in a wearable environment. The outcomes of this research ful l the gap between the use of carbon-based alternatives and fabrication procedures on di erent exible substrate
    corecore