378 research outputs found

    Location-aided multi-user beamforming for 60 GHz WPAN systems

    Get PDF

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    Sum Rate Maximization under AoI Constraints for RIS-Assisted mmWave Communications

    Full text link
    The concept of age of information (AoI) has been proposed to quantify information freshness, which is crucial for time-sensitive applications. However, in millimeter wave (mmWave) communication systems, the link blockage caused by obstacles and the severe path loss greatly impair the freshness of information received by the user equipments (UEs). In this paper, we focus on reconfigurable intelligent surface (RIS)-assisted mmWave communications, where beamforming is performed at transceivers to provide directional beam gain and a RIS is deployed to combat link blockage. We aim to maximize the system sum rate while satisfying the information freshness requirements of UEs by jointly optimizing the beamforming at transceivers, the discrete RIS reflection coefficients, and the UE scheduling strategy. To facilitate a practical solution, we decompose the problem into two subproblems. For the first per-UE data rate maximization problem, we further decompose it into a beamforming optimization subproblem and a RIS reflection coefficient optimization subproblem. Considering the difficulty of channel estimation, we utilize the hierarchical search method for the former and the local search method for the latter, and then adopt the block coordinate descent (BCD) method to alternately solve them. For the second scheduling strategy design problem, a low-complexity heuristic scheduling algorithm is designed. Simulation results show that the proposed algorithm can effectively improve the system sum rate while satisfying the information freshness requirements of all UEs

    RIS-assisted Scheduling for High-Speed Railway Secure Communications

    Full text link
    With the rapid development of high-speed railway systems and railway wireless communication, the application of ultra-wideband millimeter wave band is an inevitable trend. However, the millimeter wave channel has large propagation loss and is easy to be blocked. Moreover, there are many problems such as eavesdropping between the base station (BS) and the train. As an emerging technology, reconfigurable intelligent surface (RIS) can achieve the effect of passive beamforming by controlling the propagation of the incident electromagnetic wave in the desired direction.We propose a RIS-assisted scheduling scheme for scheduling interrupted transmission and improving quality of service (QoS).In the propsed scheme, an RIS is deployed between the BS and multiple mobile relays (MRs). By jointly optimizing the beamforming vector and the discrete phase shift of the RIS, the constructive interference between direct link signals and indirect link signals can be achieved, and the channel capacity of eavesdroppers is guaranteed to be within a controllable range. Finally, the purpose of maximizing the number of successfully scheduled tasks and satisfying their QoS requirements can be practically realized. Extensive simulations demonstrate that the proposed scheme has superior performance regarding the number of completed tasks and the system secrecy capacity over four baseline schemes in literature.Comment: 15 pages, 10 figures, to appear in IEEE Transactions on Vehicular Technolog

    Millimeter Wave Hybrid Beamforming Systems

    Get PDF

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    60 GHz MAC Standardization: Progress and Way Forward

    Full text link
    Communication at mmWave frequencies has been the focus in the recent years. In this paper, we discuss standardization efforts in 60 GHz short range communication and the progress therein. We compare the available standards in terms of network architecture, medium access control mechanisms, physical layer techniques and several other features. Comparative analysis indicates that IEEE 802.11ad is likely to lead the short-range indoor communication at 60 GHz. We bring to the fore resolved and unresolved issues pertaining to robust WLAN connectivity at 60 GHz. Further, we discuss the role of mmWave bands in 5G communication scenarios and highlight the further efforts required in terms of research and standardization
    • …
    corecore