9,352 research outputs found

    Small Footprint Multilayered Millimeter-Wave Antennas and Feeding Networks for Multi-Dimensional Scanning and High-Density Integrated Systems

    Get PDF
    This paper overviews the state-of-the-art of substrate integrated waveguide (SIW) techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3) millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and systems are proposed and studied to exploit the vertical dimension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D) topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed

    Micromachined Millimetre-Wave Passive Components at 38 and 77 GHz

    Get PDF
    A precision micro-fabrication technique has been developed for millimetre-wave components of air-filled three-dimensional structures, such as rectangular coaxial lines or waveguides. The devices are formed by bonding several layers of micromachining defined slices with a thickness of a few hundred micrometres. The slices are thickphotoresist SU8 defined by photolithography, or silicon with a pattern defined by deep reactive ion etching; both are coated with gold by evaporation. The process is simple, and low-cost, as compared with conventional precision metal machining, but yields mm-wave components with good performance. The components are light weight and truly airfilled with no dielectric support. This paper reviews several of these micromachined mm-wave components at 38 and 77 GHz for communications and radar applications

    3x3 Multibeam Network for a Triangular Array of Three Radiating Elements

    Get PDF
    A multibeam antenna study based on Butler network will be undertaken in this document. These antenna designs combines phase shift systems with multibeam networks to optimize multiple channel systems. The system will work at 1.7 GHz with circular polarization. Specifically, result simulations and measurements of 3 element triangular subarray will be shown. A 45 element triangular array will be formed by the subarrays. Using triangular subarrays, side lobes and crossing points are reduced

    Wideband Dual-Polarized Multiple Beam-Forming Antenna Arrays

    Full text link
    © 1963-2012 IEEE. Wideband multibeam antenna arrays based on three-beam Butler matrices are presented in this paper. The proposed beam-forming arrays are particularly suited to increasing the capacity of 4G long-term evolution (LTE) base stations. Although dual-polarized arrays are widely used in LTE base stations, analog beam-forming arrays have not been realized before, due to the huge challenge of achieving wide operating bandwidth and stable array patterns. To tackle these problems, for the first time, we present a novel wideband multiple beam-forming antenna array based on Butler matrices. The described beam-forming networks produce three beams but the methods are applicable to larger networks. The essential part of the beam-forming array is a wideband three-beam Butler matrix, which comprises quadrature couplers and fixed wideband phase shifters. Wideband quadrature and phase shifters are developed using striplines, which provide the required power levels and phase differences at the outputs. To achieve the correct beamwidth and to obtain the required level of crossover between adjacent beams, beam-forming networks consisting of augmented three-beam Butler matrices using power dividers are presented to expand the number of output ports from three to five or six. Dual-polarized, three-beam antenna arrays with five and six elements covering LTE band are developed. Prototypes comprising beam-forming networks and arrays are tested according to LTE base station specification. The test results show close agreement with the simulation ones and compliance with LTE requirements. The designs presented are applicable to a wide range of wideband multibeam arrays

    Cramér-Rao sensitivity limits for astronomical instruments: implications for interferometer design

    Get PDF
    Multiple-telescope interferometry for high-angular-resolution astronomical imaging in the optical–IR–far-IR bands is currently a topic of great scientific interest. The fundamentals that govern the sensitivity of direct-detection instruments and interferometers are reviewed, and the rigorous sensitivity limits imposed by the Cramér–Rao theorem are discussed. Numerical calculations of the Cramér–Rao limit are carried out for a simple example, and the results are used to support the argument that interferometers that have more compact instantaneous beam patterns are more sensitive, since they extract more spatial information from each detected photon. This argument favors arrays with a larger number of telescopes, and it favors all-on-one beam-combining methods as compared with pairwise combination

    Two dimensional switched beam antenna at 28 GHz for fifth generation wireless system

    Get PDF
    Fifth generation (5G) wireless system is expected to enable new device-to-device (D2D) and machine-to-machine (M2M) applications that will impact both consumers and industry. Moreover, for efficient M2M communication, both one dimensional (1-D) and two dimensional (2-D) beam switching is highly needed for high data-rate wireless radio links. A planar array with 2-D beam switching capabilities is highly desirable in 5G system. This thesis proposes a new technique of achieving simple and cost effective 2-D beam switching array antenna at 28 GHz for 5G wireless system. The technique involves lateral cascading of Butler matrix (BM) beamforming network (BFN). However, designing a planar BM at 28 GHz that will allow K-connector is not a trivial issue because the distances between the ports are X/4 electrical length apart. Nevertheless, two branch line coupler (BLC) with unequal ports separation at 28 GHz on a single substrate are designed and applied to design 1-D switched beam antennas based on BLC and 4 * 4 BM. Then two of these antennas are laterally cascaded to achieve 2-D beam switching antenna. This novel concept is the basis for choosing BM BFN in the design. The proposed 1-D array antennas on BLC and BM have wide measured impedance bandwidth of 18.9% (5.3 GHz) and 21.7% (6.1 GHz) and highest gain of 14.6 dBi and 15.9 dBi, respectively. The 2-D switched beam antenna on cascaded BLC has highest realized gain of 14.9 dB, radiation efficiency of 86%, 86.8%, 85.5%, and 83.4% at ports 1 to 4, respectively. The switching range of from -25o to +18° in the x-z plane and from -18o to 24o in the y-z plane, while the 2-D switched beam antenna based on cascaded 4 * 4 BM has switching range of -41o to 43o in the x-z plane and -43o to 42o in the y-z plane with highest realized gain of 14.4 dBi. The proposed antennas have great potentials for 5G wireless communication system applications

    Broadband Butler Matrices with the Use of High-Pass LC Sections as Left-Handed Transmission Lines

    Get PDF
    An application of left-handed transmission line sections in Butler matrices has been investigated. It has been shown, for the first time, that the utilization of both left-handed and right-handed transmission lines allows for broadband differential phase shifters’ realization, required in the Butler matrices. A complete theoretical analysis is given, for Butler matrices incorporating ideal transmission lines of both right- and left handed types and expressions for the achievable bandwidth and differential phase deviation are derived. The presented idea has been verified by the design of a 4 x 4 Butler matrix operating in a frequency range of 2.5 – 3.5 GHz. As an artificial left-handed transmission line, an equivalent high-pass LC circuit realized in a quasi-lumped element technique, has been considered, and the resulting phase shift of such a circuit is given analytically. The obtained measurement results fully confirm the validity of the proposed idea of broadband Butler matrices’ realization

    Dynamic Capacity Enhancement using a Smart Antenna in Mobile Telecommunications Networks

    Get PDF
    This work describes an investigation into the performance of antennas for mobile base station applications and techniques for improving the coverage and capacity within a base station cell. The work starts by tracing the development of mobile systems, both in technical and commercial terms, from the earliest analogue systems to present day broadband systems and includes anticipated future developments. This is followed by an outline of how smart antenna systems can be utilised to improve cell coverage and capacity. A novel smart antenna system incorporating an array of slant ± 450 dual- polarised stacked patch elements four columns wide excited by a novel multi-beam forming and beam shaping network has been designed, simulated and implemented. It is found that for an ideal smart antenna array, four narrow overlapping beams, one wide “broadcast channel” beam and right and left shaped beams can be provided. Results are presented for the simulation of the smart antenna system using CST EM simulation software which inherently includes mutual coupling and the effects of a truncated ground plane on the element patterns. The results show some significant changes to the desired set of coverage patterns and various mutual coupling compensation techniques have been reviewed. An improved design technique has been developed for compensating the performance degrading effects of mutual coupling and finite ground plane dimensions in microstrip antenna arrays. The improved technique utilises combination of two previously known techniques: complex excitation weights compensation by inversion of the array mutual coupling scattering matrix and the incorporation of a WAIM (wide angle impedance matching) sheet. The technique has been applied to a novel multi-beam smart antenna array to demonstrate the efficacy of the technique by electromagnetic simulation. In addition, a demonstrator array has been constructed and tested which has yielded a positive conformation of the simulation results. For the developed demonstrator array which provides seven different beams, beams “footprints” have been predicted both for free space propagation and for urban propagation to evaluate the dynamic capacity performance of the smart antenna in a 3G mobile network. The results indicate that sector capacity can be dynamically tailored to user demand profiles by selection of the appropriate beam patterns provided by the novel smart antenna system
    corecore