7 research outputs found

    Method and Approach Mapping of Fair and Balanced Risk and Value-added Distribution in Supply Chains: A Review and Future Agenda

    Get PDF
    This paper proposes a fair and balanced risk and value-added distribution as a novel approach for collaborative supply chain. The objective of this article is to analyze the existing methods and approaches for risk management, value-adding, risk and revenue sharing to develop a new framework for balancing risk and value-adding in collaborative supply chains. The authors reviewed and synthesized 162 scientific articles which were published between 2001 and 2017 and. The reviewed articles were categorized into supply chain management and performance, risk management, value-added, fair risk and value-added distribution and supply chain negotiation. The potentials identified for future research were the importance of decision-making and sustainability for effectiveness of supply chain risk management. Most previous authors have applied an approach of revenue and risk-- sharing with both decentralized and centralized supply chains to achieve the fair risk and value-added distribution. The dominant methods we found in literature were game theory and complex mathematical formulation. Most literature focused on operation research techniques. We identified a lack of discussion of the intelligent system approach and a potential for future exploration. This paper guide future research and application agenda of fair risk and value-added distribution in supply chain collaboration. We developed a new framework for a fair and balanced risk and value-added distribution model. For a future agenda, we point towards the development of a systematic intelligent system applying soft-computing techniques and knowledge transfer for maintaining sustainable supply chains.Keywords Supply chain collaboration, Fair risk and value-added distribution, Revenue sharing, Risk management, Risk sharin

    Bayesian-based preference prediction in bilateral multi-issue negotiation between intelligent agents

    No full text
    Agent negotiation is a form of decision making where two or more agents jointly search for a mutually agreed solution to a certain problem. In multi-issue negotiation, with information available about the agents\u27 preferences, a negotiation may result in a mutually beneficial agreement. In a competitive negotiation environment, however, self-interested agents may not be willing to reveal their preferences, and this can increase the difficulty of negotiating a mutually beneficial agreement. In order to solve this problem, this paper proposes a Bayesian-based approach which can help an agent to predict its opponent\u27s preference in bilateral multi-issue negotiation. The proposed approach employs Bayesian theory to analyse the opponent\u27s historical offers and to approximately predict the opponent\u27s preference over negotiation issues. A counter-offer proposition algorithm is also integrated into the prediction approach to help agents to propose mutually beneficial offers based on the prediction results. Experimental results indicate good performance of the proposed approach in terms of utility gain and negotiation efficiency

    Design and implementation of a multi-agent opportunistic grid computing platform

    Get PDF
    Opportunistic Grid Computing involves joining idle computing resources in enterprises into a converged high performance commodity infrastructure. The research described in this dissertation investigates the viability of public resource computing in offering a plethora of possibilities through seamless access to shared compute and storage resources. The research proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an Information and Communication Technologies for Development (ICT4D) initiative to address some limitations prevalent in traditional distributed system implementations. Proof-of-concept software components based on JADE (Java Agent Development Framework) validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic Grid Computing platforms. Exploration of agent technologies within the research context identified two key components which improve access to extended computer capabilities. The first component is a Mobile Agent (MA) compute component in which a group of agents interact to pool shared processor cycles. The compute component integrates dynamic resource identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and rule based reasoning concepts. The second service is a MAS based storage component realized through disk mirroring and Google file-system’s chunking with atomic append storage techniques. This research provides a candidate Opportunistic Grid Computing platform design and implementation through the use of MAS. Experiments conducted validated the design and implementation of the compute and storage services. From results, support for processing user applications; resource identification and allocation; and rule based reasoning validated the MA compute component. A MAS based file-system that implements chunking optimizations was considered to be optimum based on evaluations. The findings from the undertaken experiments also validated the functional adequacy of the implementation, and show the suitability of MAS for provisioning of robust, autonomous, and intelligent platforms. The context of this research, ICT4D, provides a solution to optimizing and increasing the utilization of computing resources that are usually idle in these contexts

    Política de Gestão de Estoques utilizando aprendizado por Reforço e Simulação Híbrida em uma farmácia hospitalar Itajubá.

    Get PDF
    A gestão de estoques é relacionada a um tipo de tomada de decisão que afeta diretamente o funcionamento das organizações, pois a sua atuação tem efeitos diretos nos resultados. Em se tratando de hospitais, a gestão de estoques de medicamentos é realizada pela farmácia hospitalar. Neste sistema, é imprescindível uma gestão baseada em resultados associada a um bom nível de serviço. Enquanto que, na maioria das empresas, um mau funcionamento do setor de estoques gera prejuízos financeiros ou ambientais, na farmácia isso pode resultar em danos irreversíveis aos pacientes ou até em seu óbito. O objetivo desta pesquisa é definir uma política de aquisição periódica de medicamentos em uma farmácia hospitalar, buscando a diminuição conjunta do número de medicamentos não atendidos e expirados e que seja limitado a um orçamento. Para tanto, optou-se pelo uso combinado das simulações a eventos discretos e baseada em agentes com a ferramenta de inteligência artificial aprendizado por reforço. O método proposto, e aplicado na farmácia estudada, segue quatro etapas são propostas para o método: desenvolvimento de níveis de abstração, tipos de simulação, ligações entre simulações e resultados e análises. Para validar o método, foram comparados quatro cenários simulados com o comportamento real de uma farmácia hospitalar no período entre maio de 2016 e abril de 2017. Na comparação dos resultados dos cenários simulados, com o método aqui proposto, em relação à realidade observada na farmácia, constatou-se que, para todos eles não ocorreu o problema de medicamentos com data de validade expirada, em dois cenários constatou-se diminuição de mais de 3.000 unidades no número de medicamentos não atendidos e, nos outros dois cenários, o aumento não seria maior que 800 unidades. Observou-se ainda, que, com o método proposto, a diminuição dos gastos em cada cenário teria um valor médio de R291.826,40,quesignificariaumaeconomiameˊdiadeR291.826,40, que significaria uma economia média de R24.318,87 mensais, com relação ao que se verificou na prática. Pode-se concluir, portanto, como resultado dessa pesquisa, que se adotando uma política de aquisição de medicamentos com base no método proposto, o farmacêutico e sua equipe terão subsídios para uma tomada de decisão racional, mais eficiente e rápida

    Design and implementation of a multi-agent opportunistic grid computing platform

    Get PDF
    Opportunistic Grid Computing involves joining idle computing resources in enterprises into a converged high performance commodity infrastructure. The research described in this dissertation investigates the viability of public resource computing in offering a plethora of possibilities through seamless access to shared compute and storage resources. The research proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an Information and Communication Technologies for Development (ICT4D) initiative to address some limitations prevalent in traditional distributed system implementations. Proof-of-concept software components based on JADE (Java Agent Development Framework) validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic Grid Computing platforms. Exploration of agent technologies within the research context identified two key components which improve access to extended computer capabilities. The first component is a Mobile Agent (MA) compute component in which a group of agents interact to pool shared processor cycles. The compute component integrates dynamic resource identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and rule based reasoning concepts. The second service is a MAS based storage component realized through disk mirroring and Google file-system’s chunking with atomic append storage techniques. This research provides a candidate Opportunistic Grid Computing platform design and implementation through the use of MAS. Experiments conducted validated the design and implementation of the compute and storage services. From results, support for processing user applications; resource identification and allocation; and rule based reasoning validated the MA compute component. A MAS based file-system that implements chunking optimizations was considered to be optimum based on evaluations. The findings from the undertaken experiments also validated the functional adequacy of the implementation, and show the suitability of MAS for provisioning of robust, autonomous, and intelligent platforms. The context of this research, ICT4D, provides a solution to optimizing and increasing the utilization of computing resources that are usually idle in these contexts

    Self-organisation of mobile robots in large structure assembly using multi-agent systems

    Get PDF
    Competition between manufacturers in large structure assembly (LSA) is driven by the need to improve the adaptability and versatility of their manufacturing systems. The lack of these qualities in the currently used systems is caused by the dedicated nature of their fixtures and jigs. This has led to their underutilisation and costly changeover procedures. In addition to that, modern automation systems tend to be dedicated to very specific tasks. This means that such systems are highly specialised and can reach obsolescence once there is a substantial change in production requirements. In this doctoral thesis, a dynamic system consisting of mobile robots is proposed to overcome those limitations. As a first knowledge contribution in this doctoral thesis, it is investigated under which conditions using mobile robots instead of the traditional, fixed automation systems in LSA can be advantageous. In this context, dynamic systems are expected to be more versatile and adaptive than fixed systems. Unlike traditional, dedicated automation systems, they are not constrained to gantry rails or fixed to the floor. This results in an expanded working envelope and consequently the ability to reach more workstations. Furthermore, if a product is large enough, the manufacturer can choose how many mobile robots to deploy around it. Accordingly, it was shown that the ability to balance work rates on products and consequently meet their due times is improved. For the second knowledge contribution, two fundamentally different decision-making models for controlling mobile agents in the complex scheduling problem are investigated. This is done to investigate ways of taking full advantage from the potential benefits of applying mobile robots. It is found that existing models from related academic literature are not suited for the given problem. Therefore, two new models had to be proposed for this purpose. It was plausible to use an agent-based approach for self-organisation. This is because similarly to agents, mobile robots can perform independently of one-another; and have limited perception and communication abilities. Finally, through a comparison study, scenarios are identified where either model is better to use. In agreement with much of the established literature in the field, the models are shown to exhibit the common advantages and disadvantages of their respective architecture types. Considering that the enabling technologies are nearing sufficient maturity for deploying mobile robots in LSA, it is concluded that this approach can have several advantages. Firstly, the granularity and freedom of movement enables much more control over product completion times. Secondly, the increased working envelope enables higher utilisation of manufacturing resources. In the context of LSA, this is a considerable challenge because products take a very long time to get loaded and unloaded from workstations. However, if the product flow is steady, there are rare disruptions and rare production changes, fixed automation systems have an advantage due to requiring much less time (if any) for moving and localising. Therefore, mobile systems become more preferred to fixed systems in environments where there is an increasing frequency of disruptions and changes in production requirements. The validation of agent-based self-organisation models for mobile robots in LSA confirms the expectations based on existing literature. Also, it reveals that with relatively low amounts of spare capacity (5%) in the manufacturing systems, there is little need for sophisticated models. The value of optimised models becomes apparent when spare capacity approaches 0% (or even negative values) and there is less room for inefficiencies in scheduling
    corecore