56,722 research outputs found

    Bayesian Discovery of Multiple Bayesian Networks via Transfer Learning

    Full text link
    Bayesian network structure learning algorithms with limited data are being used in domains such as systems biology and neuroscience to gain insight into the underlying processes that produce observed data. Learning reliable networks from limited data is difficult, therefore transfer learning can improve the robustness of learned networks by leveraging data from related tasks. Existing transfer learning algorithms for Bayesian network structure learning give a single maximum a posteriori estimate of network models. Yet, many other models may be equally likely, and so a more informative result is provided by Bayesian structure discovery. Bayesian structure discovery algorithms estimate posterior probabilities of structural features, such as edges. We present transfer learning for Bayesian structure discovery which allows us to explore the shared and unique structural features among related tasks. Efficient computation requires that our transfer learning objective factors into local calculations, which we prove is given by a broad class of transfer biases. Theoretically, we show the efficiency of our approach. Empirically, we show that compared to single task learning, transfer learning is better able to positively identify true edges. We apply the method to whole-brain neuroimaging data.Comment: 10 page

    A Parallel Algorithm for Exact Bayesian Structure Discovery in Bayesian Networks

    Full text link
    Exact Bayesian structure discovery in Bayesian networks requires exponential time and space. Using dynamic programming (DP), the fastest known sequential algorithm computes the exact posterior probabilities of structural features in O(2(d+1)n2n)O(2(d+1)n2^n) time and space, if the number of nodes (variables) in the Bayesian network is nn and the in-degree (the number of parents) per node is bounded by a constant dd. Here we present a parallel algorithm capable of computing the exact posterior probabilities for all n(n−1)n(n-1) edges with optimal parallel space efficiency and nearly optimal parallel time efficiency. That is, if p=2kp=2^k processors are used, the run-time reduces to O(5(d+1)n2n−k+k(n−k)d)O(5(d+1)n2^{n-k}+k(n-k)^d) and the space usage becomes O(n2n−k)O(n2^{n-k}) per processor. Our algorithm is based the observation that the subproblems in the sequential DP algorithm constitute a nn-DD hypercube. We take a delicate way to coordinate the computation of correlated DP procedures such that large amount of data exchange is suppressed. Further, we develop parallel techniques for two variants of the well-known \emph{zeta transform}, which have applications outside the context of Bayesian networks. We demonstrate the capability of our algorithm on datasets with up to 33 variables and its scalability on up to 2048 processors. We apply our algorithm to a biological data set for discovering the yeast pheromone response pathways.Comment: 32 pages, 12 figure

    Partition MCMC for inference on acyclic digraphs

    Full text link
    Acyclic digraphs are the underlying representation of Bayesian networks, a widely used class of probabilistic graphical models. Learning the underlying graph from data is a way of gaining insights about the structural properties of a domain. Structure learning forms one of the inference challenges of statistical graphical models. MCMC methods, notably structure MCMC, to sample graphs from the posterior distribution given the data are probably the only viable option for Bayesian model averaging. Score modularity and restrictions on the number of parents of each node allow the graphs to be grouped into larger collections, which can be scored as a whole to improve the chain's convergence. Current examples of algorithms taking advantage of grouping are the biased order MCMC, which acts on the alternative space of permuted triangular matrices, and non ergodic edge reversal moves. Here we propose a novel algorithm, which employs the underlying combinatorial structure of DAGs to define a new grouping. As a result convergence is improved compared to structure MCMC, while still retaining the property of producing an unbiased sample. Finally the method can be combined with edge reversal moves to improve the sampler further.Comment: Revised version. 34 pages, 16 figures. R code available at https://github.com/annlia/partitionMCM

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author
    • …
    corecore