12,783 research outputs found

    Bayesian Estimation of the Global Minimum Variance Portfolio

    Get PDF
    In this paper we consider the estimation of the weights of optimal portfolios from the Bayesian point of view under the assumption that the conditional distribution of the logarithmic returns is normal. Using the standard priors for the mean vector and the covariance matrix, we derive the posterior distributions for the weights of the global minimum variance portfolio. Moreover, we reparameterize the model to allow informative andnon-informative priors directly for the weights of the global minimum variance portfolio. The posterior distributions of the portfolio weights are derived in explicit form for almost all models. The models are compared by using the coverage probabilities of credible intervals. In an empirical study we analyze the posterior densities of the weights of an international portfolio

    Modelling Realized Covariances and Returns

    Get PDF
    This paper proposes new dynamic component models of returns and realized covariance (RCOV) matrices based on time-varying Wishart distributions. Bayesian estimation and model comparison is conducted with a range of multivariate GARCH models and existing RCOV models from the literature. The main method of model comparison consists of a term-structure of density forecasts of returns for multiple forecast horizons. The new joint return-RCOV models provide superior density forecasts for returns from forecast horizons of 1 day to 3 months ahead as well as improved point forecasts for realized covariances. Global minimum variance portfolio selection is improved for forecast horizons up to 3 weeks out.Wishart distribution, predictive likelihoods, density forecasts, MCMC

    How much foreign stocks? : Bayesian approaches to asset allocation can explain the home bias of US investors

    Get PDF
    US investors hold much less foreign stocks than mean/variance analysis applied to historical data predicts. In this article, we investigate whether this home bias can be explained by Bayesian approaches to international asset allocation. In contrast to mean/variance analysis, Bayesian approaches employ different techniques for obtaining the set of expected returns. They shrink sample means towards a reference point that is inferred from economic theory. We also show that one of the Bayesian approaches leads to the same implications for asset allocation as mean-variance/tracking error criterion. In both cases, the optimal portfolio is a combination the market portfolio and the mean/variance efficient portfolio with the highest Sharpe ratio. Applying the Bayesian approaches to the subject of international diversification, we find that substantial home bias can be explained when a US investor has a strong belief in the global mean/variance efficiency of the US market portfolio and when he has a high regret aversion falling behind the US market portfolio. We also find that the current level of home bias can justified whenever regret aversion is significantly higher than risk aversion. Finally, we compare the Bayesian approaches to mean/variance analysis in an empirical out-ofsample study. The Bayesian approaches prove to be superior to mean/variance optimized portfolios in terms of higher risk-adjusted performance and lower turnover. However, they not systematically outperform the US market portfolio or the minimum-variance portfolio

    Asset Allocation with Aversion to Parameter Uncertainty: A Minimax Regression Approach

    Get PDF
    This paper takes a minimax regression approach to incorporate aversion to parameter uncertainty into the mean-variance model. The uncertainty-averse minimax mean-variance portfolio is obtained by minimizing with respect to the unknown weights the upper bound of the usual quadratic risk function over a fuzzy ellipsoidal set. Beyond the existing approaches, our methodology offers three main advantages: first, the resulting optimal portfolio can be interpreted as a Bayesian mean-variance portfolio with the least favorable prior density, and this result allows for a comprehensive comparison with traditional uncertainty-neutral Bayesian mean-variance portfolios. Second, the minimax mean-variance portfolio has a shrinkage expression, but its performance does not necessarily lie within those of the two reference portfolios. Third, we provide closed form expressions for the standard errors of the minimax mean-variance portfolio weights and statistical significance of the optimal portfolio weights can be easily conducted. Empirical applications show that incorporating aversion to parameter uncertainty leads to more stable optimal portfolios that outperform traditional uncertainty-neutral Bayesian mean-variance portfolios.Asset allocation, estimation error, aversion to uncertainty, min-imax regression, Bayesian mean-variance portfolios, least favorable prior

    Portfolio choice and estimation risk : a comparison of Bayesian approaches to resampled efficiency

    Get PDF
    Estimation risk is known to have a huge impact on mean/variance (MV) optimized portfolios, which is one of the primary reasons to make standard Markowitz optimization unfeasible in practice. Several approaches to incorporate estimation risk into portfolio selection are suggested in the earlier literature. These papers regularly discuss heuristic approaches (e.g., placing restrictions on portfolio weights) and Bayesian estimators. Among the Bayesian class of estimators, we will focus in this paper on the Bayes/Stein estimator developed by Jorion (1985, 1986), which is probably the most popular estimator. We will show that optimal portfolios based on the Bayes/Stein estimator correspond to portfolios on the original mean-variance efficient frontier with a higher risk aversion. We quantify this increase in risk aversion. Furthermore, we review a relatively new approach introduced by Michaud (1998), resampling efficiency. Michaud argues that the limitations of MV efficiency in practice generally derive from a lack of statistical understanding of MV optimization. He advocates a statistical view of MV optimization that leads to new procedures that can reduce estimation risk. Resampling efficiency has been contrasted to standard Markowitz portfolios until now, but not to other approaches which explicitly incorporate estimation risk. This paper attempts to fill this gap. Optimal portfolios based on the Bayes/Stein estimator and resampling efficiency are compared in an empirical out-of-sample study in terms of their Sharpe ratio and in terms of stochastic dominance

    Efficient Estimation of Firm-Specific Betas and its Benefits for Asset Pricing Tests and Portfolio Choice

    Get PDF
    We improve both the specification and estimation of firm-specific betas. Time variation in betas is modeled by combining a parametric specification based on economic theory with a non-parametric approach based on data-driven filters. We increase the precision of individual beta estimates by setting up a hierarchical Bayesian panel data model that imposes a common structure on parameters. We show that these accurate beta estimates lead to a large increase in the cross-sectional explanatory power of the conditional CAPM. Using the betas to forecast the covariance matrix of returns also results in a significant improvement in the out-of-sample performance of minimum variance portfolios.asset pricing; portfolio choice; time-varying betas; Bayesian econometrics; panel data
    corecore