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Abstract

This paper proposes new dynamic component models of returns and realized co-
variance (RCOV) matrices based on time-varying Wishart distributions. Bayesian
estimation and model comparison is conducted with a range of multivariate GARCH
models and existing RCOV models from the literature. The main method of model
comparison consists of a term-structure of density forecasts of returns for multiple fore-
cast horizons. The new joint return-RCOV models provide superior density forecasts
for returns from forecast horizons of 1 day to 3 months ahead as well as improved
point forecasts for realized covariances. Global minimum variance portfolio selection
is improved for forecast horizons up to 3 weeks out.
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1 Introduction

This paper proposes new dynamic component models of returns and realized covariance
(RCOV) matrices based on time-varying Wishart distributions.1 Bayesian estimation and
model comparison are discussed. While the current literature has focused on the forecast-
ing of realized covariances, this paper demonstrates the benefits to forecasts of the return
distribution from the joint modelling of RCOV and returns.

Multivariate volatility modelling is a key input into portfolio optimization, risk mea-
surement and management. There has arose a voluminous literature on how to approach
this problem. The two popular approaches based on return data are multivariate GARCH
(MGARCH) and multivariate stochastic volatility (MSV). Bauwens et al. (2006) provide a
survey of MGARCH modelling while Asai et al. (2006) review the MSV literature. Despite
the important advances in this literature there remain significant challenges. In practise
the covariance of returns is unknown and is either projected onto past data in the case of
MGARCH or is assumed to be latent in the case of MSV. For MSV sophisticated simulation
methods must be used to deal with the unobserved nature of the conditional covariances.
However, if an accurate measure of the covariance matrix could be obtained many of these
difficulties could be avoided.

Recently, a new paradigm has emerged in which the latent covariance of returns is re-
placed by an accurate estimate based upon intraperiod return data. The estimator is non-
parametric in the sense that we can obtain an accurate measure of daily ex post covariation
without knowing the underlying data generating process. Realized covariance (RCOV) ma-
trices open the door to standard time series analysis. See Andersen et al. (2003), Barndorff-
Nielsen and Shephard (2004b) and Bandi and Russell (2005b) for the theoretical foundations
and Andersen et al. (2009) and McAleer and Medeiros (2008) for surveys of the literature.

Among the few models in the literature for RCOV matrices is the Wishart autoregressive
model of Gourieroux, Jasiak, and Sufana (2009). The process is defined by the Laplace
transform and naturally leads to method of moments estimation (see also Chiriac (2006))
while the transition density is a noncentral Wishart. In a different approach Bauer and
Vorkink (2011) decompose the RCOV matrix by a log-transformation and then use various
time-series approaches to model the elements. Chiriac and Voev (2010) use a 3-step proce-
dure, by first decomposing the RCOV matrices into Cholesky factors and modelling them
with a VARFIMA process before transforming them back.

MSV Wishart specifications for the covariance of returns are proposed in Asai and
McAleer (2009) and Philipov and Glickman (2006). These models specify a standard Wishart
transition density for the inverse covariance matrix of returns.2 In contrast to modelling the
Cholesky factor or log-transformation of RCOV, contemporaneous covariances between ele-
ments in the RCOV matrix are straightforward to interpret and model using a Wishart law
of motion.

Our approach is also related to the independent work of Golosnoy et al. (2010) and Asai

1The Wishart distribution is a generalization of the univariate gamma distribution to nonnegative-definite
matrices.

2An advantage to working with the Wishart distribution is that the pdf and simulation methods for ran-
dom draws are readily available, while this is not the case for the noncentral Wishart distribution (Gauthier
and Possamai 2009).
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and So (2010) who propose alternative dynamic Wishart models for stock market volatility.
These papers focus on RCOV dynamics while our interest is in the joint modelling of returns
and realized covariances and density forecasts. In addition, we propose component models
in which the lag length of a component is estimated.

The RCOV is estimated using the realized kernels of Barndorff-Nielsen et al. (2008).3

The empirical analysis of 5 stocks show the strong persistence of the daily time series of
RCOV elements. We propose new Wishart specifications with components to capture the
persistence properties in realized covariances. A component is defined as a sample average
of past RCOV matrices based on a particular window of data. Different windows of data
give different components. Two types of time-varying Wishart models are considered. The
first assumes the components affect the scale matrix in a additive fashion while the second
has the components enter by a multiplicative term. The additive specification performs the
best in our analysis.

The models are estimated from a Bayesian perspective. We show how to estimate the
length of data windows that enter into the components of the models. For each of the
RCOV models the second component is associated with 2 weeks of data while the third
component is associated with about 3 months of past data. The component models deliver
a dramatic improvement in capturing the time series autocorrelations of the smallest and
largest eigenvalues of the RCOV matrices.

Besides providing new tractable models for returns and realized covariances we also eval-
uate the models over a term structure of density forecasts of returns and a term structure of
global minimum-variance portfolios.4 It is important to consider density forecasts of returns
since this is the quantity that in principle enters into all financial decisions such as risk
measurement and management. In general the covariance of future returns is not a sufficient
statistic for the density of returns.5 Daily returns are common to both the MGARCH and
return-RCOV models and provide a common metric to compare models that use high and
low-frequency data. In contrast to the value-at-risk measures that focus on the tails of a
distribution, the cumulative log-predictive likelihoods measure the accuracy of the whole
return distribution. A term structure of forecasts from 1 to 60 days ahead is considered in
order to assess model forecast strength at many different horizons.

An important lesson from our work is that the use of realized covariances, which exploit
high-frequency intraday data, do not necessarily deliver superior density forecasts of returns.
Indeed, several of the models studied in this paper that use realized covariances do not pro-
vide any improvements relative to a MGARCH model with Student-t innovations estimated
from daily returns. The functional form of the dynamics of realized covariances is critical
to obtaining a better characterization of the distribution of returns. Our results on density
forecasts of returns are a new contribution to the literature.

Another contribution of this paper is to extend the RCOV models of Bonato et al.

3Estimation of RCOV this way has several benefits including imposing the positive definiteness and
accounting for the bias that market microstructure and nonsynchronous trading can have.

4Maheu and McCurdy (2011) introduced the term structure of density forecasts for returns using joint
models for returns and realized volatility for individual assets. We extend this to include multivariate assets
and global minimum variance portfolios.

5For instance, the predictive density of returns in the models integrate out both parameter uncertainty
and uncertainty regarding future RCOV values, making the density highly non-Gaussian.
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(2009) and Chiriac and Voev (2010) to joint return-RCOV models that we estimate by a
full likelihood approach. The models serve as a comparison to the new specifications. Our
additive component Wishart model provides superior density forecasts of returns and point
forecasts of realized covariances. The improvements are from 1 day ahead forecasts to 3
months ahead. For global minimum variance portfolio selection most of the RCOV models
give improvements beyond a MGARCH model for up to 3 weeks ahead.

The joint return-RCOV model based on Bonato et al. (2009) performs poorly relative to
the other specifications. The model is a HAR type parametrization6 based on the Wishart
autoregressive model of Gourieroux et al. (2009). In these models the source of time variation
in the conditional mean of RCOV is the noncentrality matrix. By proposing another non-
central Wishart model which has the same form of the condition mean we show that the
data strongly favor time variation in the conditional mean coming through the scale matrix
and not the noncentrality matrix.

In summary, we provide a new approach to modelling multivariate returns that consists
of joint models of returns and RCOV matrices. We find that it is critical to include the
components to obtain improved performance relative to MGARCH models and other existing
models of RCOV. This paper is organized as follows. In Section 2, we review the theory
and the procedures of constructing the RCOV estimator and the data. In Section 3, several
models for returns and RCOV are introduced including two benchmark multivariate GARCH
models of volatility based on daily returns. Section 4 explains the estimation procedure while
the computation of density forecasts are found in Section 5. Out-of-sample model comparison
results are reported in Section 6, followed by full sample estimates. Section 7 concludes. The
Appendix contains details on posterior simulation.

2 Realized Covariance

2.1 RCOV Construction

Suppose the k-dimensional efficient log-price Y (t), follows a continuous time diffusion process
defined as follows:

Y (t) =

∫ t

0

a(u)du+

∫ t

0

Φ(u)dW (u), (1)

where a(t) is a vector of drift components, Φ(t) is the instantaneous volatility matrix, and
W (t) is a vector of standard independent Brownian motions.7 The quantity of interest here
is
∫ τ

0
Φ(u)Φ′(u)du, known as the integrated covariance of Y (t) over the interval [0, τ ]. It is a

measure of the ex-post covariation of Y (t). For simplicity, we normalize τ to be 1. Results
from stochastic process theory (e.g. Protter (2004)) imply that the integrated covariance of
Y (t), ∫ 1

0

Φ(u)Φ′(u)du, (2)

6See Corsi (2009) for the heterogeneous autoregressive (HAR) model for realized volatility.
7Jumps are not considered in this paper. How to model individual asset jumps and common jumps among

several assets is an open question which we leave for future work.
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is equal to its quadratic variation over the same interval,

[Y ](1) ≡ plimn→∞

n∑
j=1

{Y (tj)− Y (tj−1)}{Y (tj)− Y (tj−1)}′ (3)

for any sequence of partitions 0 = t0 < t1 < . . . < tn = 1 with supj{tj+1 − tj} → 0 for
n→ ∞.

An important motivation for our modelling approach is Theorem 2 from Andersen, Boller-
slev, Diebold and Labys (2003). They show that the daily log-return follows,

Y (1)− Y (0)|σ{a(v),Φ(v)}0≤v≤1 ∼ N

(∫ 1

0

a(u)du,

∫ 1

0

Φ(u)Φ′(u)du

)
,

where σ{a(v),Φ(v)}0≤v≤1 denotes the sigma-field generated by {a(v),Φ(v)}0≤v≤1. In our em-
pirical work we will assume the drift term is approximately 0 while the integrated covariance
can be replaced by an accurate estimate using high-frequency intraday data.

We follow the procedure in Barndorff-Nielsen et al. (2008) (BNHLS) to construct RCOV
using the high-frequency stock returns. BNHLS propose a multivariate realized kernel to
estimate the ex-post covariation of log-prices. They show this new estimator is consistent,
guaranteed to be positive semi-definite, can accommodate endogenous measurement noise
and can also handle non-synchronous trading. To synchronize the data, they use the idea of
refresh time. A kernel estimation approach is used to minimize the effect of the microstruc-
ture noise, and to ensure positive semi-definiteness. We review these key ideas.

The econometrician observes the log price process X =
(
X(1), X(2), . . . , X(k)

)′
, which

is generated by Y , but is contaminated with market microstructure noise. Prices arrive at
different times and at different frequencies for different stocks over the unit interval, t ∈ [0, 1].

Suppose the observation times for the i-th stock are written as t
(i)
1 , t

(i)
2 , . . . , i = 1, 2, . . . , k.

Let N
(i)
t count the number of distinct data points available for the i-th asset up to time t.

The observed history of prices for the day is X(i)(t
(i)
j ), for j = 1, 2, . . . , N

(i)
1 , i.e, the j-th

price update for asset i is X(i)(t
(i)
j ), it arrives at t

(i)
j . The steps to computing daily RCOV

are the following.

1. Synchronizing the data.
The first key step is to deal with the non-synchronous nature of the data. The idea

of refresh time is used here. Define the first refresh time as τ1 = max
(
t
(1)
1 , . . . , t

(k)
1

)
,

and then subsequent refresh times as τj+1 = max

(
t
(1)

N
(1)
τj

+1
, . . . , t

(k)

N
(k)
τj

+1

)
. τ1 is the

time it has taken for all the assets to trade, i.e. all their posted prices have been
updated at least once. τ2 is the first time when all the prices are again updated,
etc. From now on, we will base our analysis on this new conformed time clock {τj},
and treat the entire k-dimensional vector of price updates as if it is observed at these
refreshed times {τj}. The number of observations of the synchronized price vector
is n + 1, which is no larger than the number of observations of the stock with the
fewest price updates. Then, the synchronized high frequency return vector is defined
as xj = X(τj) − X(τj−1), j = 1, 2, . . . , n, where n is the number of refresh return
observations for the day.
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2. Compute the positive semi-definite realized kernel. Having synchronized the high fre-
quency vector of returns {xj}, j = 1, 2, . . . , n, daily RCOVt is calculated as,

RCOVt =
n∑

s=−n

f

(
s

S + 1

)
Υs. (4)

where f() is the Parzen kernel and Υs is the sample autocovariance of xj. For full
details along with the selection of bandwidth S, see BNHLS.

We apply this multivariate realized kernel estimation to our high-frequency data, obtain-
ing a series of daily RCOVt matrices, which will then be fitted by our proposed Wishart
Model.8 The j-th diagonal element of RCOVt is called realized volatility9 and is an ex
post measure of the variance for asset j. Realized correlation between asset i and j is
RCOVt,ij/

√
RCOVt,iiRCOVt,jj where RCOVt,ij is the element from the i-th row and j-th

column.

2.2 Data

We use high-frequency stock prices for 5 assets, namely Standard and Poor’s Depository
Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C), Alcoa Inc. (AA) and Boeing
Co. (BA). The sample period runs from 1998/12/04 – 2007/12/31 delivering 2281 days.
We reserve the data back to 1998/01/02 (219 observations) as conditioning data for the
components models. The data are obtained from the TAQ database. We use transaction
prices and closely follow Barndorff-Nielsen et al. (2008) to construct daily RCOV matrices.
The data is cleaned as follows. First, trades before 9:30 AM or after 4:00 PM are removed
as well as any trades with a zero price. We delete entries with a corrected trade condition,
or an abnormal sale condition.10 Finally, any trade that has a price increase (decrease) of
more than 5% followed by a price decrease (increase) of more than 5% is removed. For
multiple transactions that have the same time stamp the price is set to the median of the
transaction prices. From this cleaned data we proceed to compute the refresh time and the
realized kernel discussed in the previous section. The daily return rt, is the continuously
compounded return from the open and close prices and matches RCOV. Table 1 reports the
average number of daily transaction for each stock. The average number of transactions
based on the refresh time is much lower at 1835. This represents just under 5 transactions
per minute. Based on this our sample is quite liquid.

Table 2 shows the sample covariance from daily returns along with the average RCOV.
Figure 1 displays daily returns while the corresponding realized volatilities (RV) are in Fig-
ure 2.

8Throughout the paper realized covariance (RCOV) is used instead of realized kernel.
9Also called realized variance in the literature.

10Specifically we remove a trade with CORR 6= 0, or a trade that has COND letter other than E or F in
the TAQ database.
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3 Models

3.1 New Joint Models of Returns and Realized Covariances

Compared to existing approaches which model factors of RCOV matrices (Cholesky factors,
Chiriac and Voev (2010), principle components, Bauer and Vorkink (2011)) an advantage of
the Wishart distribution is that it has support over symmetric positive definite matrices and
allows for the joint modelling of all elements of a covariance matrix. Conditional moments
between realized variances and covariances have closed form expressions.

Motivated by Philipov and Glickman (2006) and Asai and McAleer (2009), we propose
to model the dynamics of RCOV by a time-varying Wishart distribution. This choice is
similar to Gourieroux, Jasiak, and Sufana (2009) however they use a noncentral Wishart
distribution. We have also explored the inverse Wishart density as another distribution
to govern the dynamics of realized covariances but found the Wishart provided superior
performance.11

Two models are presented in which the scale matrix of the Wishart distribution follows
an additive and multiplicative structure. Both models feature components, which is impor-
tant to providing gains against standard multivariate GARCH models, and accounting for
persistence in RCOV elements.

The approach to modelling components is related to Andersen, Bollerslev and Diebold
(2007), Corsi (2009), Maheu and McCurdy (2011) among others which uses the Heteroge-
neous AutoRegressive (HAR) model of realized variance in the univariate case in order to
capture long-memory like features of volatility parsimoniously.

3.1.1 An Additive Component Wishart Model

Let Σt ≡ RCOVt, then the Wishart-RCOV-A(K) model with K ≥ 1 components is defined
as,

rt|Σt ∼ N(0,Σ
1/2
t Λ(Σ

1/2
t )

′
) (5)

Σt|ν, St−1 ∼ Wishartk(ν, St−1) (6)

νSt = B0 +
K∑
j=1

Bj � Γt,`j (7)

Γt,` =
1

`

`−1∑
i=0

Σt−i (8)

Bj = bjb
′
j, j = 1, . . . , K (9)

1 = `1 < · · · < `K . (10)

Wishartk(ν, St−1) denotes a Wishart distribution over positive definite matrices of dimension
k with ν > k−1 degrees of freedom and scale matrix St−1. � denotes the Hadamard product
of two matrices. Parameters are B0, ν, b1, . . . , bK , `2, . . . , `K . B0 is a k×k symmetric positive

11Note that the choice of the distribution governing the dynamics of Σt is unrelated to the Bayesian
conjugate analysis that uses the Wishart as a conjugate prior for Σ−1

t for Gaussian observations.
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definite matrix, and bj’s are k × 1 vectors making Bj rank 1. This specification ensures St

is symmetric positive definite. Λ is a symmetric positive definite matrix and allows the
covariance of returns to deviate from the RCOV measure. Λ is estimated and provides a
simple way to adjust for estimation error in RCOV. Except for the first component, each Γt,`

is an average of past Σt over ` observations. Rather than preset the components to weekly
and monthly terms each ` is estimated. The components are found to be critical to providing
improvements to forecasts.

By the properties of the Wishart distribution, the conditional expectation of Σt is:

E(Σt|Σ1:t−1) = νSt−1 = B0 +
K∑
j=1

Bj � Γt−1,`j , (11)

where Σ1:t−1 = {Σ1, . . . ,Σt−1}.12 Conditional moments are straightforward to obtain and in-
terpret. The conditional variance of element (i, j) is Var(Σt,ij|St−1, ν) =

1
ν
[S̃2

t−1,ij+S̃t−1,iiS̃t−1,jj]

where S̃t−1,ij is element (i, j) of (11). The conditional variance is increasing in S̃t−1,ij, S̃t−1,ii,
and S̃t−1,jj. The conditional covariance between elements has a similar form, Cov(Σt,ij,Σt,km|St−1, ν) =
1
ν
[S̃t−1,ijS̃t−1,km + S̃t−1,iiS̃t−1,jj]. The degree of freedom parameter ν determines how tight

the density of Σt is centered around its conditional mean, with larger ν meaning the random
matrices are more concentrated around νSt−1. Thus, the modelling of the scale matrix and
ν are the key factors in affecting the conditional moments of Σt. If B1 = . . . , BK = 0 then
Σt ∼ i.i.d.Wishartk(ν,B0/ν). On the other hand if B0 = 0, B1 = ιι

′
and K = 1 we obtain

E(Σt|Σ1:t−1) = Σt−1.
Each element (i, j) of the scale matrix is a function only of element (i, j) of lagged

Σt. Many other parametrization could be considered but this specification is reasonably
parsimonious and performs well in the empirical work. In related independent work Golosnoy
et al. (2010) consider a similar model for RCOV matrices without components but with an
autoregressive structure. They provide important results on the unconditional moments for
our time-varying Wishart model. For instance, the unconditional mean of Σt is finite if all
elements of

∑K
j=1Bj are less than 1 in modulus.

Instead of estimating B0, we implement RCOV targeting by setting B0 = (ιι′ − B1 −
· · · − BK) � Σt, where Σt is the sample mean of Σt. This ensures that the long-run mean
of Σt is equal to Σt. In estimation we reject any posterior draws in which B0 is not positive
definite.

12The inverse of RCOV follows the inverse-Wishart distribution with the conditional expectation being:

E(Σ−1
t |Σ1:t−1) = (ν − k − 1)−1S−1

t−1.
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3.1.2 A Multiplicative Component Wishart Model

Related to the SV model Philipov and Glickman (2006) we propose a multiplicative Wishart
model. The Wishart-RCOV-M(K) model with K ≥ 1 components is defined as,

rt|Σt ∼ N(0,Σ
1/2
t Λ(Σ

1/2
t )

′
) (12)

Σt|ν, St−1 ∼ Wishartk(ν, St−1) (13)

St =
1

ν

[
1∏

j=K

Γ
dj
2
t,`j

]
A

[
K∏
j=1

Γ
dj
2
t,`j

]
(14)

Γt,` =
1

`

`−1∑
i=0

Σt−i (15)

1 = `1 < · · · < `K . (16)

A is a positive definite symmetric parameter matrix and dj is a positive scalar.
The components enter as a sample average of past Σt raised to a different matrix power

dk/2.
13 The first component is assumed to be a function of only Σt, `1 = 1. The component

terms Γt,l allow for more persistence in the location of Σt while the different values of dj
allow the effect to be dampened or amplified. In (12) the order of the product operator is
important and differs in the two terms.

To discuss some of the features of this model consider the special case with K = 1
component, St = 1

ν
(Σ

d1/2
t )A(Σ

d1/2
t ). By the properties of the Wishart distribution, the

conditional expectation of Σt is:

E(Σt|Σ1:t−1) = νSt−1 = (Σ
d1/2
t−1 )A(Σ

d1/2
t−1 ). (17)

Additional conditional moments for Σt follow the Wishart-RCOV-A(K) discussion above.
The scalar parameter d1 measures the overall influence of past RCOV on current RCOV.

This parameter is closely related to the degree of persistence present in the RCOV series,
with larger d1 the stronger the persistence. Suppose A is the identity matrix and d1 = 1,
then by equation (17), E(Σt|Σ1:t−1) = νSt−1 = Σt−1, which is a random walk in matrix form.
If d1 = 0, then E(Σt|Σ1:t−1) = A, so the RCOV matrix follows an i.i.d. Wishart distribution
over time.

By expanding to several components each with a different window lag length `j and
parameter dj, we obtain a richer model to capture the time series dependencies in realized
covariances. Unfortunately, we do not know the unconditional moments for this model with
K components, nevertheless, our Bayesian estimation and model comparison approach does
not depend on this.

13We also examined a geometric average version using the following specification: Γd
t,` ≡

Σ
d
`

t−`+1Σ
d
`

t−`+2 · · ·Σ
d
`
t . We found this geometric average version, while it has similar performance in al-

most every aspect, is computationally more costly. We will hence focus our results on the sample average
version.
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3.2 Benchmark return-RCOV Models

In this section we extend existing specifications for RCOV dynamics by Chiriac and Voev
(2010) and Bonato et al. (2009) to joint return-RCOV models to compare with our new
models.

3.2.1 Cholesky-VARFIMA(1,m, 1)

Apply the Cholesky decomposition to Σt such that Σt = LtL
′
t, where Lt is lower triangular.

Let Zt = vech(L′
t) be the

k(k+1)
2

×1 vector obtained by stacking the upper triangular elements
of L′

t. Chiriac and Voev (2010) propose to model Zt as a vector autoregressive fractionally
integrated moving average (VARFIMA(p,m, q)) model. A restricted VARFIMA(1,m,1) spec-
ification is shown to forecast Σt well. Extending this model to include returns we have,

rt|Σt ∼ N(0,Σ
1/2
t Λ(Σ

1/2
t )

′
) (18)

(1− δL)(1− L)mI[Zt − c] = (1− ψL)ξt, ξt ∼ N(0,Ξ). (19)

There is a common long-memory parameter m to each element of the Cholesky decompo-
sition. The parameters here are δ,m, ψ, c,Ξ. δ,m, ψ are scalars, c is a k(k+1)

2
× 1 vector of

constants, and Ξ is a k(k+1)
2

× k(k+1)
2

symmetric positive definite matrix. Regarding the mean
vector c, we follow Chiriac and Voev (2010) to set it at the sample mean of Zt in estimation,

which leaves the number of parameters to be estimated equal to 3 + k(k+1)
2

(k(k+1)
2

+ 1)/2.14

Chiriac and Voev (2010) apply the conditional maximum likelihood method developed in
Beran (1995). With the same spirit in our Bayesian setting, we follow Ravishanker and
Ray (1997)(Section 2.2) and construct the posterior distribution based on the conditional
likelihood function, rather than the exact likelihood function. See Appendix 8.4 for details.

3.2.2 Wishart Autoregressive Model

Gourieroux et al. (2009) introduce the Wishart Autoregressive process (WAR) to model
the dynamics of RCOV by a noncentral Wishart distribution. The Wishart Autoregressive
process of order 1 (WAR(1)) is defined as

Σt|ν, S, Vt−1 ∼ NCWk(ν, S, Vt−1) (20)

Vt = MΣtM
′. (21)

NCWk(ν, S, Vt−1) denotes a noncentral Wishart distribution over positive definite matrices
of dimension k. ν is the real-valued degree of freedom and ν > k − 1. S is the scale matrix,
which is symmetric positive definite. Vt is the noncentrality matrix, which is symmetric
positive semi-definite. M is the k × k matrix of autoregressive parameters. The central
Wishart previously discussed is a special case with Vt−1 = 0.

Bonato et al. (2009) propose a block structure on the matrixM to reduce the number of
parameters and also incorporate the HAR structure of Corsi (2009) to account for persistence

14As pointed out in Chiriac and Voev (2010), Ξ is irrelevant for constructing a point forecast. However,
it’s used in determining the forecast errors, and is also needed in simulation.
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in RCOV. In our paper we implement their diagonal-HAR-WAR specification extended to a
joint model with returns as follows:

rt|Σt ∼ N(0,Σ
1/2
t Λ(Σ

1/2
t )

′
) (22)

Σt|ν, S, Vt−1 ∼ NCWk(ν, S, Vt−1)

Vt = M1Γt,1M
′
1 +M2Γt,5M

′
2 +M3Γt,22M

′
3 (23)

Γt,` =
1

`

`−1∑
i=0

Σt−i, ` = 1, 5, 22. (24)

where M1,M2,M3 are diagonal matrices. Under this specification, the conditional mean of
Σt becomes:

E(Σt|Σ1:t−1) =M1Γt−1,1M1 +M2Γt−1,5M2 +M3Γt−1,22M3 + νS. (25)

In estimation, we reparametrize S by its Cholesky factor LS (i.e. S = LSL
′
S, LS is lower

triangular), and restrict the diagonal elements of LS to be positive. For M1, M2 and M3, we
restrict the (1, 1) element of each matrix to be positive for identification purpose. For ν, we
consider 2 cases. In the first case, we impose the condition that ν > k − 1. In the second
case, in addition to the first condition, we also restrict it to be integer-valued for the purpose
of simulation.15 All forecasting and empirical applications (where simulation is needed) are
based on the second case. See Appendix 8.5 for estimation details.

3.3 GARCH Models of Daily Returns

3.3.1 Vector-diagonal GARCH Model

Ding and Engle (2001) introduce the vector-diagonal GARCH (VD-GARCH-t) model to
which we add Student-t innovations as follows

rt|r1:t−1 ∼ t(0, Ht, ζ) (26)

Ht = CC ′ + aa′ � rt−1r
′
t−1 + bb′ �Ht−1, (27)

where rt is a k-dimensional daily return series, and r1:t−1 = {r1, . . . , rt−1}. The parameters
are C, a k × k lower triangular matrix; a and b are k × 1 vectors, and ζ is the degree
of freedom in the Student-t density. In estimation, covariance targeting is achieved by

replacing CC ′ with Cov(r)�
(

ζ−2
ζ
ιι′ − aa′ − ζ−2

ζ
bb′
)
, where Cov(r) is the sample covariance

matrix estimated from daily returns, and ι is a k × 1 vector of 1. This model assumes that
the conditional covariance hij,t is only a function of the past shock ri,t−1rj,t−1, and the past
conditional covariance hij,t−1. The conditional covariance of returns is

ζ
ζ−2

Ht assuming ζ > 2.

15To simulate a noncentral Wishart, we use the method proposed by Gleser (1976). In fact this is the only
method we know of that is practically feasible and easy to implement. For this method to work, however,
either ν needs to be greater than 2k − 1, or ν needs to be an integer. There is no easy way to simulate
noncentral Wishart in all cases (Gauthier and Possamai 2009). In estimation we first allow ν to be any real
number greater than k − 1, which results in a posterior mean around 8.4. In our empirical work k = 5,
this result does not satisfy the condition of ν > 2k − 1, in which case we cannot simulate Σt. To solve the
problem, we estimate the model and restrict ν to be integer-valued, which results in a posterior mean of 8.
See Table 9
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3.3.2 Dynamic Conditional Correlation Model

The second model is a dynamic conditional correlation (DCC-t) model of Engle (2002) with
Student-t innovations,

rt|r1:t−1 ∼ t(0, Ht, ζ) (28)

Ht = DtRtDt (29)

Dt = diag(σi,t) (30)

σ2
i,t = ωi + κir

2
i,t−1 + λiσ

2
i,t−1, i = 1, . . . , k (31)

εt =

(
ζ − 2

ζ

)1/2

D−1
t rt (32)

Qt = Q(1− α− β) + αεt−1ε
′
t−1 + βQt−1 (33)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2. (34)

Dt, Rt, Qt, Q are all k×k matrices. The parameters are ω1, . . . , ωk, κ1, . . . , κk, λ1, . . . , λk, α,
β, ζ. Following Engle (2002), Q is replaced by Corr(εt), the sample correlation. In this way
the number of parameters is greatly reduced from k2+5k

2
+2 to 3k+2. Equation (31) governs

the dynamics of the conditional variances of each individual return by a univariate GARCH
process; equation (33) governs the dynamics of the time-varying conditional correlation of the
whole return vector. Because Corr(εt) is symmetric positive definite, and εtε

′
t is symmetric

positive semi-definite, the conditional correlation matrices are guaranteed to be symmetric
positive definite.

4 Model Estimation

We apply standard Bayesian estimation techniques to estimate the models using MCMC
methods for posterior simulation. The posterior distribution is unknown for all the models
considered, but a Markov Chain that has as its limiting distribution the posterior distribution
of the parameters of interest can be sampled from using MCMC simulations. Features of
the posterior density can then be estimated consistently based on the samples obtained from
the posterior. For example, we can estimate the posterior mean of model parameters by the
sample average of the MCMC draws. For more details on MCMC methods see Chib (2001).

In the following we outline estimation for the Wishart-RCOV-A(3) model and provide
specific details for this model and others in the Appendix. To apply Bayesian inference,
we need to first assign priors to the parameters. In general all priors are uninformative but
proper. The priors on the elements of bj’s are all N(0, 100), except the first element of each bj
is truncated to be positive for identification purposes. For the degree of freedom parameter
ν ∼ exp(λ0)Iν>k−1, an exponential distribution with support truncated to be greater than
k−1.16 To make the prior flat, λ0 is set to 100. In the empirical work focus is given to K = 3
components as this was found to produce good results. The priors for `2 and `3 are uniform
discrete with support {2, 3, . . . , 200}, with the restriction that `2 < `3 for identification. We
assume independence among the prior distributions of parameters.

16In posterior simulation only draws of ν > k − 1 are accepted.
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The joint density of returns and realized covariances is decomposed as

p(rt,Σt|Λ,Θ, r1:t−1,Σ1:t−1) = p(rt|Λ,Σt)p(Σt|,Θ,Σ1:t−1) (35)

where Θ is the parameters in the RCOV specification. p(rt|Λ,Σt) has a density in (5) while
p(Σt|Θ,Σ1:t−1) has the density from (6). Equation (35) implies that estimation of Λ and Θ
can be done separately.

Bayes’ rule gives the posterior for Θ in the Wishart model as

p(Θ|Σ1:T ) ∝

[
T∏
t=1

p(Σt|Θ,Σ1:t−1)

]
p(Θ) (36)

where p(Θ) is the prior discussed above. Conditional distributions used in posterior simula-
tion are proportional to this density.

The Wishart-RCOV-A(3) model has parameters Θ = {b1, b2, b3, `, ν}, with ` = {`2, `3}.
MCMC sampling iterates making parameter draws from the following conditional distribu-
tions.

• Θj|Θ−j,Σ1:T ,

where Θj denotes one element of the parameter vector Θ and Θ−j is Θ excluding Θj. For
the parameters in b1, b2, b3, ν a single-move Metropolis-Hastings step using a random walk
proposal is employed. The conditional posterior of `2 and `3 has support on discrete points
and the proposal density is a random walk with Poisson increments that are equally likely
to be positive or negative.

Taking a draw from all of the conditional distributions constitutes one sweep of the sam-
pler. After dropping an initial set of draws as burnin we collect N draws to obtain {Θ(i)}Ni=1.
Simulation consistent estimates of posterior moments can be obtained as sample averages of
the draws. For instance, the posterior mean of Θ can be estimated as N−1

∑N
i=1 Θ

(i).

Posterior simulation from Λ|r1:T ,Σ1:T is based on recognizing that r̃t = Σ
−1/2
t rt ∼

N(0,Λ). Setting the prior density of Λ−1 to Wishartk(k + 1, Ik), results in a standard con-
jugate result for the multivariate normal model. This is done separately from the estimation
for the RCOV models.

All of the details of the conditional distributions and proposal distributions along with
details for the other models are collected in the Appendix.

5 Density Forecasts of Returns

It is important to consider density forecasts of returns since this is the quantity that in
principle enters into all financial decisions such as portfolio choice and risk measurement.17

Another reason for comparing models this way is that the daily returns are common to both
the GARCH and the joint return-RCOV models and provides a common metric to compare
models that use high and low frequency data. In contrast to the value-at-risk measures that

17In general the covariance of returns is not a sufficient statistic for the future return distribution except
with a Gaussian assumption.
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focus on the tails of a distribution the predictive likelihoods test the accuracy of the whole
distribution. Finally, a term structure of forecasts is considered in order to assess model
forecast strength at many different horizons.

From a Bayesian perspective the predictive likelihoods are a key input into model com-
parison through predictive Bayes factors (Geweke (2005)).18 Following Maheu and McCurdy
(2011) we evaluate a term structure of a model’s density forecasts of returns. This is the cu-
mulative log-predictive likelihood based on out-of-sample data for h = 1, ..., H period ahead
density forecasts of returns.

For a candidate model A, we compute the following cumulative log-predictive likelihood:

p̂Ah =
T−h∑

t=T0−h

log(p(rt+h|It,A)), (37)

for h = 1, 2, . . . , H and T0 < T . For each h, p̂Ah measures the forecast performance based on
the same common set of returns : rT0 , ..., rT . Therefore, p̂

A
1 is comparable with p̂A10 and allows

us to measure the decline in forecast performance as we move from 1 day ahead forecasts to
10 day ahead forecasts using model A. We are also interested in comparing p̂Ah for a fixed
h with another specification B, using its cumulative log-predictive likelihood p̂Bh . Better
models, in terms of more accurate predictive densities, will have larger (37).

For the joint return-RCOV models It = {r1:t,Σ1:t} while for the MGARCH models It =
{r1:t}. The predictive likelihood p(rt+h|It,A), is the h-period ahead predictive density for
model A evaluated at the realized return rt+h,

p(rt+h|It,A) =

∫
p(rr+h|θ,Ωt+h,A)p(Ωt+h|θ, It,A)p(θ|It,A)dθdΩt+h. (38)

Parameter uncertainty from θ and the future latent covariance of returns Ωt+h are both
integrated out and will in general result in a highly non-Gaussian density on the left hand
side of (38). In the DCC-t and VD-GARCH-t models Ωt ≡ Ht while for each of the models
that exploit RCOV information Ωt ≡ Σt, while θ is the respective parameter vector. The
integration is approximated as∫

p(rt+h|θ,Ωt+h,A)p(Ωt+h|θ, It,A)p(θ|It,A)dθdΩt+h ≈ 1

N

N∑
i=1

p(rt+h|θ(i),Ω(i)
t+h,A), (39)

where Ω
(i)
t+h ∼ p(Ωt+h|θ(i), It,A), and θ(i) ∼ p(θ|It,A). {θ(i)}Ni=1 are the MCMC draws from

the posterior distribution p(θ|It,A) for the model given the information It.

For the GARCH models, p(rt+h|θ(i),Ω(i)
t+h,A) is the pdf of a multivariate Student-t density

with mean 0, scale matrixH
(i)
t+h and degree of freedom ζ(i) evaluated at rt+h. H

(i)
t+h is simulated

out from the last in-sample value H
(i)
t which is computed using the GARCH recursion and

the parameter draw θ(i) from the posterior density given data It = {r1:t}.
For the RCOV models, p(rt+h|θ(i),Ω(i)

t+h,A) is the pdf of a multivariate Normal density

with mean 0 and covariance (Σ
(i)
t+h)

1/2Λ(i)((Σ
(i)
t+h)

1/2)
′
evaluated at rt+h. Σ

(i)
t+h is simulated out

18Classical approaches to comparison of density forecasts include Amisano and Giacomini (2007), Bao,
Lee, and Saltoglu (2007) and Weigend and Shi (2000).
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using the Wishart, Cholesky-VARFIMA, or diagonal-HAR-WAR dynamics of the particular
model and conditional on θ(i),Λ(i) from the posterior density, given data It = {r1:t,Σ1:t}.

Note that for each term p(rt+h|It,A) in the out-of-sample period we re-estimate the model
to obtain a new set of draws from the posterior to compute (39). In other words the full set
of models is recursively estimated for t = T0 −H, . . . , T − 1.

Given a model A with log-predictive likelihood p̂A, and model B with log-predictive
likelihood p̂B, based on the common data {rT0 , . . . , rT}, the predictive Bayes factor in favor
of model A versus model B is BFAB = exp(p̂A − p̂B). The Bayes factor is a relative ranking
of the ability of the models to account for the data. A value greater than 1 means that
model A is better able to account for the data compared to model B. Kass and Raftery
(1995) suggest interpreting the evidence for A as: not worth more than a bare mention if
1 ≤ BFAB < 3; positive if 3 ≤ BFAB < 20; strong if 20 ≤ BFAB < 150; and very strong if
BFAB ≥ 150.

6 Results

6.1 Density Forecasts of Returns

In this section, we compare the joint return-RCOV models to the other benchmark models,
focusing on their out-of-sample performance. The out-of-sample data begins at T0=2006/03/31
and ends at 2007/12/31 for a total of 441 observations. This is true for each model and each
forecast horizon h. The full set of models is recursively estimated for t = T0 −H, . . . , T − 1
with a burnin of 1000 iterations after which N=5000 draws are collected to compute the
predictive likelihoods and other predictive quantities. Figures 3 and 4 present the full range
of log-predictive likelihoods for the models while Table 3 presents specific values for selected
h. The table can be used to compute log-predictive Bayes factors by taking the difference in
p̂h for two models.

Figure 3 plots p̂h for the MGARCH models against h = 1, 2, . . . , H = 60, giving each
model a cumulative log-predictive likelihood term structure. Included are the DCC model
with Gaussian innovations and the DCC-t and VD-GARCH-t both with Student-t innova-
tions. All specifications have a downward sloping term structure. Intuitively, forecasting
further out is more difficult. The t-distribution provides significant improvements in density
forecasts of returns at all forecast horizons. In general, the VD-GARCH-t model has the
best performance among the MGARCH specifications and we include it in further discussion
as a benchmark that uses only daily return data.

Turning to Figure 4 the term structure of log-predictive likelihood for returns is presented
for several of the joint return-RCOV models. Included are the following models: Wishart-
RCOV-A(3), Wishart-RCOV-M(3), Cholesky-VARFIMA, diagonal-HAR-WAR as well as
the VD-MGARCH-t and a new specification, diagonal-HAR-NCW, which we will discuss
below.

First the VD-MGARCH-t model is competitive and is generally producing better density
forecasts than the Cholesky-VARFIMA model that exploits high frequency information. For
instance, the predictive Bayes factor in favor of the VD-MGARCH-t is exp(7.04), h = 5,
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exp(6.78), h = 10 and exp(10.66) h = 20.19 Recall that the Bayes factor represents the
improvement that the GARCH model gives in describing the data. Although Chiriac and
Voev (2010) demonstrate that point forecasts of RCOV matrices are improved using their
model as compared to DCC alternatives this does not translate into better density forecasts
of returns. The dynamics of the RCOV matrices is also important. The Wishart-RCOV-
M(3) model provide further gains but the Wishart-RCOV-A(3) dominates all competitors
across the forecast horizon.

To further investigate the statistical significance of these results Figures 5 and 6 display
log-predictive Bayes factors over each forecast horizon h. The first plot shows that the
Wishart-RCOV-M(3) does not always improve on the VD-MGARCH-t model. For h =
17− 35 the MGARCH model has better density forecasts. The Wishart-RCOV-A(3) beats
the MGARCH model at each h. It provides substantial improvements particularly for small
and large h.

The second plot shows that the Wishart-RCOV-M(3) is often better than the Cholesky-
VARFIMA specification but there are forecast horizons that the latter performs well, par-
ticularly for h > 55. On the other hand, the Wishart-RCOV-A(3) strongly dominates the
Cholesky-VARFIMA model for all h. This translates into predictive Bayes factors on the
order of exp(10) to exp(20) in favor of the Wishart-RCOV-A(3).

Next we turn to the diagonal-HAR-WAR model which is shown in Figure 4 to have very
poor performance compared to all other models. Why does this occur? After exploring
other similar specifications we conjecture that the time variation in the diagonal-HAR-WAR
model comes through the wrong channel. This model makes the noncentral parameter time-
varying while fixing the scale matrix. Our Wishart models have a noncentral parameter of
0 but time variation in the scale matrix. To investigate the importance of where the time
variation in the model should be we propose the following diagonal-HAR-noncentral Wishart
(diagonal-HAR-NCW) specification as

Σt|ν, St−1, V ∼ NCWk(ν, St−1, νV )

νSt = M̃1Γt,1M̃1 + M̃2Γt,5M̃2 + M̃3Γt,22M̃3 (40)

Γt,` =
1

`

`−1∑
i=0

Σt−i, ` = 1, 5, 22. (41)

ν is the real-valued degree of freedom, St−1 is the scale matrix, νV is the noncentralily
matrix. M̃1, M̃2, M̃3 are diagonal matrices. Under this specification, the conditional mean
of Σt becomes:

E(Σt|Σ1:t−1) = M̃1Γt−1,1M̃1 + M̃2Γt−1,5M̃2 + M̃3Γt−1,22M̃3 + νV, (42)

and is exactly the same form as the conditional mean for the diagonal-HAR-WAR model in
(25). The difference between the diagonal-HAR-WAR and the diagonal-HAR-NCW is that
the roles of the scale matrix and the noncentrality matrix in the noncentral Wishart transition
density are switched. In the diagonal-HAR-WAR model, the time series dependence in Σt

is captured in the noncentrality matrix Vt, while the scale matrix S is set to a constant. In

19For h = 1 the VD-MGARCH-t and Cholesky-VARFIMA models have essentially the same predictive
power.
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the diagonal-HAR-NCW model, however, the time dependence goes into the scale matrix
St, while the noncentrality matrix V (up to a constant ν) is constant.

Figure 4 shows that switching the time variation from the noncentrality matrix to the
scale matrix results in a huge improvement in density forecasts. Further improvements are
possible for this model by estimating the lag length of the components Γt,` (not reported).
From Table 3 the predictive Bayes factors in favor of the diagonal-HAR-NCW model range
from exp(75.75), h = 1 to exp(186.38), h = 60. We conclude that the existing WAR models,
according to our results, are likely to be poor performers unless additional time variation in
the conditional mean is incorporated into the scale matrix.

In summary, the Wishart-RCOV-A(3) provides superior density forecasts for returns as
compared to MGARCH models and existing RCOV models.

6.2 Forecasts of RCOV

Figure 7 and Table 4 report the root mean squared error for predicting Σt based on the
predictive mean from each model. This is reported for each of the forecast horizons h. As in
the density forecasts, each model is re-estimated for each observation in the out-of-sample
period to produce the predictive mean. The reason the Wishart-RCOV-A model performs
well in density forecasts of returns is that it has the best point forecasts of Σt amongst
all the models. Both the Wishart-RCOV-M and Cholesky-VARFIMA are similar while the
diagonal-HAR-WAR is the worst.20 Compared to the diagonal-HAR-WAR, the alternative
diagonal-HAR-NCW model shows great improvements, as it did in the density forecasts
discussed above.

6.3 Economic Evaluation

In this section, we evaluate the out-of-sample performance of the models from a portfolio
optimization perspective. We focus on the simple problem of finding the global minimum
variance portfolio, so the issue of specifying the expected return is avoided. The h-period
ahead global minimum variance portfolio (GMVP) is computed as the solution to

min
wt+h|t

w′
t+h|tΩt+h|twt+h|t

s.t. w′
t+h|tι = 1.

Ωt+h|t is the predictive mean of the covariance matrix at time t+ h given time t information
for a particular model. From the posterior draws the predictive mean of the covariance
matrix at time t + h is simulated along the lines of the previous subsection. wt+h|t is the
portfolio weight, and ι is a vector with all the elements equal to 1. The optimal portfolio
weight is

wt+h|t =
Ω−1

t+h|tι

ι′Ω−1
t+h|tι

. (43)

20Chiriac and Voev (2010) also find the diagonal-HAR-WAR model performs poorly in point forecasts.
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It can be shown (Engle and Colacito (2006)) that if the portfolio weights, wt, are constructed
from the true conditional covariance, then the variance of a portfolio computed using the
GMVP from any other model must be larger.

We evaluate model performance starting at 2006/03/31 to 2007/12/31 for a total of 441
observations for h = 1, ..., H = 60. The specifications considered are: Wishart-RCOV-A(3),
Wishart-RCOV-M(3), Cholesky-VARFIMA, diagonal-HAR-WAR, and the DCC-t. As in
the density forecasts the models are estimated using data up to and including time t and
weights are computed from (43). For the MGARCH models Ωt+h|t = E[ ζ

ζ−2
Ht+h|r1:t] and

for the RCOV models Ωt+h|t = E[Σ
1/2
t+hΛ(Σ

1/2
t+h)

′ |r1:t,Σ1:t]. These terms are computed by
simulation and have parameter uncertainty integrated out. Observation t + 1 is added and
the models are re-estimated and the new weights computed, etc.

We report the sample variances21 of the GMVPs across models in Figure 8. Table 5
reports the portfolio variance for selected values of h. As in the density forecast exercise
we use a common set of returns to evaluate the performance over different h. As a result,
the upwards sloping portfolio variances indicates that time-series information is most useful
for short term portfolio choice. With the exception of the diagonal-HAR-WAR model, all of
the return-RCOV time-series models improve upon the DCC-t model for about 15 days out
after which the portfolio variance is similar. The Wishart-RCOV-M(3) model has the lowest
portfolio variance but the Wishart-RCOV-A(3) model remains very competitive.

6.4 Full Sample Estimates

This section presents full sample estimates for selected models. Tables 6 and 7 report pos-
terior moments for the new time-varying Wishart models.22 Both models have a degree of
freedom parameter of about 14 and components with windows of length 9 and 64. These
components correspond to roughly 2 weeks and 3 months of data. We found it critical to
have 3 components and to estimate the window width of each component to obtain good
out-of-sample results. All the 0.95 posterior density intervals show the parameters to be
precisely estimated.

The remaining joint return-RCOV model estimates are reported in Tables 8-10. The
common long-memory parameter m has a posterior mean of 0.4295 in the VARFIMA spec-
ification. The parameter estimates of the diagonal-HAR-WAR model with a real valued
degree of freedom parameter (not reported) are almost identical to the estimates in Table 9
which imposes an integer value of ν. The degree of freedom parameter is concentrated at
8. Recall, that for the noncentral Wishart it is necessary to impose an integer value on ν in
order to simulate the model for ν < 2k − 1. For the diagonal-HAR-NCW model (Table 10)
we estimate a ν = 14.55 > 2k−1 = 9 which allows us to treat ν as real valued.23 This latter
estimate of ν is close to the estimation results for ν in the Wishart-RCOV models.

21An alternative to comparing the sample variances is to compare the realized variance for each portfolio.
However, as we discuss in the next section, Σt is biased for the covariance of returns and would not represent
the true variance that investors face.

22The inefficiency factors in the tables are the ratio of the long-run variance estimate to the sample
variance where the latter assumes an i.i.d. sample. This serves as an indicator of how well the chain mixes.
The lower the value is, the closer the sampling is to i.i.d.

23In fact all posterior draws of ν in the diagonal-HAR-NCW model are above 2k − 1.
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Finally, the posterior mean and 0.95 density intervals are reported for the lower triangular
elements of Λ in Table 11. Λ is close to a diagonal matrix with four diagonal elements being
significantly smaller than 1. The effect this matrix has is to reduce the conditional variance
of returns. For instance, the determinant (generalized variance, Muirhead (1982)) is reduced

since |Σ1/2
t Λ(Σ

1/2
t )

′|/|Σt| = |Λ| = 0.53 and the eigenvalues of the covariance matrix of returns
are reduced.24 The Bayes factor is strongly in favor of Λ being estimated versus it being set
to an identity matrix.

7 Conclusion

This paper proposes new dynamic component models of returns and realized covariance
(RCOV) matrices based on time-varying Wishart distributions. Bayesian estimation and
model comparison is conducted with a range of multivariate GARCH models and existing
RCOV models from the literature. The new joint return-RCOV models provide superior
density forecasts for returns from forecast horizons of 1 day to 3 months ahead as well as
improved point forecasts for RCOV. Global minimum variance portfolio selection is improved
for forecast horizons up to 3 weeks out.

8 Appendix

8.1 Wishart-RCOV-A(K) Estimation

Parameters are Θ = {ν, b1, . . . , bK , `2, . . . , `K}. The likelihood function is the product of the
Wishart densities,

p(Σ1:T |Θ) =
T∏
t=1

Wishartk(Σt|ν, St−1). (44)

The joint posterior distribution of the parameters p(Θ|Σ1:T ) then is the product of the data
density and the individual priors for each parameter, with the priors given in Section 4. For
a particular parameter Θi ∈ Θ, the conditional posterior distribution is:

p(Θi|Θ−i,Σ1:T ) ∝ p(Θi)×
T∏
t=1

Wishartk(Σt|ν, St−1)

= p(Θi)× p(Σ1:T |Θ)

= p(Θi)
T∏
t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(

ν+1−j
2

)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)
(45)

We iteratively sample from the conditional posterior distribution of each parameter con-
ditional on the other parameters by Metropolis-Hastings scheme. For each parameter, a
random walk with normal proposal is applied, except for `i, i = 2, . . . , K, in which case the

24This is based on the posterior mean of Λ.
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proposal distribution is a Poisson random variable multiplied by a random variable that
takes on values 1 and −1 with equal probability. The density of the proposal is

q(`) =


λ`e−λ

2`!
` = 1, 2, · · ·

e−λ ` = 0
λ−`e−λ

2(−`)!
` = −1,−2, · · ·

In the empirical work λ = 2. Given the value `i in the Markov chain, the new proposal
`
′
i ∼ q(`) is accepted with probability

min

{
p(`

′
i|b1, . . . , bK , `−i, ν,Σ1:T )

p(`i|b1, . . . , bK , `−i, ν,Σ1:T )
, 1

}
. (46)

8.2 Wishart-RCOV-M(K) Estimation

The parameters are {A, d, `, ν} = Θ. For priors, A−1 ∼ Wishartk(γ0, Q0), a Wishart distri-
bution with Q0 = Ik and γ0 = k+1 set to reflect a proper but relatively uninformative prior.
Each dj follows a uniform prior, dj ∼ U(−1, 1), and ν ∼ exp(λ0)Iν>k−1, an exponential
distribution with support truncated to be greater than k − 1. To make the prior flat, λ0 is
set to 100. Given the priors, the conditional posterior distributions for the parameters are
as follows.

p(A−1|ν, d, `,Σt:T ) ∝ Wishartk(A
−1|γ0, Q0)×

T∏
t=1

Wishartk(Σt|ν, St−1)

∝ |A−1|
γ0−k−1

2 |Q−1
0 |

γ0
2

2
γ0k
2

∏k
j=1 Γ(

γ0+1−j
2

)
exp

(
−1

2
Tr(A−1Q−1

0 )

)

×
T∏
t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(

ν+1−j
2

)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)

∝ |A−1|
Tν+γ0−k−1

2 exp

(
−1

2
Tr[A−1(Q−1

0 + ν

T∑
t=1

[
K∏
j=1

Γ
−dj
2

t−1,`j

]
Σt

[
1∏

j=K

Γ
−dj
2

t−1,`j

]
)]

)
∝ Wishartk(A

−1|γ̃, Q̃) (47)

Where Q̃−1 = ν
∑T

t=1

[∏K
j=1 Γ

−dj
2

t−1,`j

]
Σt

[∏1
j=K Γ

−dj
2

t−1,`j

]
+Q−1

0 , γ̃ = Tν + γ0.

For di, i = 1, . . . , K we have,

p(di|A, d−i, `, ν,Σ1:T ) ∝ p(di)×
T∏
t=1

Wishartk(Σt|ν, St−1)

= p(di)
T∏
t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(

ν+1−j
2

)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)
∝ p(di) exp

(
−diνφi

2
− 1

2
Tr(νA−1Q−1)

)
, (48)
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where φi =
∑T

t=1 log|Γt−1,`i|, and Q−1 =
∑T

t=1

[∏K
j=1 Γ

−dj
2

t−1,`j

]
Σt

[∏1
j=K Γ

−dj
2

t−1,`j

]
. To sample

from this density we do the following. If di is the previous value in the chain we propose
d

′
i = di + u where u ∼ N(0, σ2) and accept d

′
i with probability

min

{
p(d

′
i|A, d−i, `, ν,Σ1:T )

p(di|A, d−i, `, ν,Σ1:T )
, 1

}
, (49)

and otherwise retain di. σ
2 is selected to achieve a rate of acceptance between 0.3-0.5.

For `i, i = 2, . . . , K we have,

p(`i|A, d, `−i, ν,Σ1:T ) ∝ p(`i)×
T∏
t=1

Wishartk(Σt|ν, St−1)

∝ p(`i) exp

(
−diνφi

2
− 1

2
Tr(νA−1Q−1)

)
, (50)

where φi and Q−1 are defined the same way as in the previous case. To sample from the
conditional posterior we use a simple random walk proposal. The proposal distribution is
a “symmetric Poisson”, as in Wishart-RCOV-A(K). Finally, ν has the conditional posterior
density

p(ν|A, d, `,Σ1:T ) ∝ p(ν)× p(Σt:T |A, d, ν)

= p(ν)
T∏
t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(

ν+1−j
2

)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)

= p(ν)

∏T
t=1 |Σt|

ν
2 × ν

Tνk
2 |A−1|Tν

2 ×
∏T

t=1

∏K
i=1 |Γt−1,`i|−

diν

2

2
Tνk
2 (
∏k

j=1 Γ(
ν+1−j

2
))T

× exp

(
−1

2
Tr(νA−1Q−1)

)
∝ exp

(
−λ0ν +

Tν

2
log|A|−1 +

Tνk

2
log

ν

2
− T

k∑
j=1

logΓ

(
ν + 1− j

2

))

× exp

(
ν

2

T∑
t=1

log|Σt| −
ν

2

K∑
i=1

diφi −
1

2
Tr(νA−1Q−1)

)
(51)

where Q−1 and φi are defined as in previous cases. This is a nonstandard distribution which
we sample using a Metropolis-Hastings step with a random walk proposal analogous to the
sampling in the previous step above.
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8.3 Sampling from Λ|r1:T ,Σ1:T

To estimate Λ, define r̃t = Σ
−1/2
t rt, then r̃t ∼ N(0,Λ). We let the prior of Λ−1 be

Wishartk(γ1, Q1), and we set Q1 = I and γ1 = k + 1. The posterior distribution of Λ−1 is

p(Λ−1|r̃1:T ) ∝ Wishartk(Λ
−1|γ1, Q1)×

T∏
t=1

N(r̃t|0,Λ)

∝ Wishartk(Λ
−1|γ̂, Q̂) (52)

by the conjugacy of the Wishart prior of the precision matrix with respect to a multivariate
Normal likelihood. Here γ̂ = T + γ1, and Q̂ = (

∑T
t=1 r̃tr̃

′
t +Q−1

1 )−1

8.4 VARFIMA(1,m,1) Estimation

Pre-multiply both sides of equation (19) by (1 − ψL)−1, we get the VAR representation of
VARFIMA(1,m, 1):

ξt = (1− ψL)−1(1− δL)(1− L)m[Zt − c]

= Ψ(L)(Zt − c)

=
∞∑
i=0

Ψi(Zt−i − c) (53)

Follow Ravishanker and Ray (1997), let

ξt =
t−1∑
i=0

Ψi(Zt−i − c) t = 1, . . . , T, (54)

then the conditional likelihood function is proportional to

|Ξ|−
T
2 × exp

(
T∑
t=1

ξ′tΞ
−1ξt

)
(55)

The parameters are Θ = {δ,m, ψ,Ξ}, where c is set at the sample mean of Zt. For Θi = δ,
m, or ψ, the conditional posterior distribution is:

p(Θi|Θ−i,Σ1:T ) ∝ p(Θi)× exp

(
T∑
t=1

ξ′tΞ
−1ξt

)
, (56)

with the all the priors being independent Normal of mean 0 and variance 100 truncated on
the interval (−1, 1). To sample from the posterior distributions, we use Metropolis-Hastings
scheme with a random walk proposal analogous to the sampling in the previous subsections.
For Ξ, we use an inverse Wishart distribution Wishart−1(γ2, Q2) as the prior, where γ2 =
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k∗(k+1)
2

+1 and Q2 = I. By the conjugacy of inverse Wishart prior for the covariance matrix
of a multivariate Normal, the conditional posterior distribution is:

p(Ξ|δ,m, ψ,Σ1:T ) ∝ Wishart−1(Ξ|γ2, Q2)× |Ξ|−
T
2 × exp

(
T∑
t=1

ξ′tΞ
−1ξt

)
∝ Wishart−1(Ξ|γ̂2, Q̂2), (57)

where γ̂2 = T + γ2, Q̂2 =
∑T

t=1 ξtξ
′
t +Q2.

8.5 diagonal-HAR-WAR Estimation

The parameters are Θ = {ν,M1,M2,M3, LS}. M1, M2, M3 are diagonal matrices, LS is a
lower triangular matrix. The prior on ν is an exponential distribution with support truncated
to be greater than k − 1, p(ν) = exp(100)Iν>k−1.

25 All the other parameters are each
assigned an independent Normal prior p(Θi) with mean 0 and variance 100, with the following
truncations:

M1(1, 1) > 0, M2(1, 1) > 0, M3(1, 1) > 0, LS(i, i) > 0, i = 1, . . . , k (58)

Given Θ the likelihood function is a product of the noncentral Wishart densities(see Muirhead
(1982) p. 442),

p(Σ1:T |Θ) =
T∏
t=1

NCWk(Σt|ν, S, Vt−1)

=
T∏
t=1

|Σt|
ν−k−1

2 |S−1| ν2
2

νk
2

∏k
j=1 Γ(

ν+1−j
2

)
exp

(
−1

2
Tr[S−1(Σt + Vt−1)]

)
× 0F1(ν;

1

4
S−1Vt−1S

−1Σt) (59)

where 0F1 is the hypergeometric function of matrix argument, which we evaluate using the
Laplace approximation method developed in Butler and Wood (2003, 2005).
The conditional posterior distribution of the each parameter is proportional to the product
of its prior and the likelihood function:

p(Θi|Θ−i,Σ1:T ) ∝ p(Θi)×
T∏
t=1

NCWk(Σt|ν, S, Vt−1) (60)

To sample from the posterior distributions, we use Metropolis-Hastings scheme with a ran-
dom walk proposal analogous to the sampling in the previous subsections. In the case where
ν is real-valued, the proposal is normal. In the case where ν is integer-valued, the proposal
distribution is a Poisson random variable multiplied by a random variable that takes on
values 1 and −1 with equal probability.

25In posterior simulation only draws of ν > k − 1 are accepted.
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8.6 VD-GARCH-t Estimation

The parameters are {a1, . . . , ak, b1, . . . , bk, ζ} = Θ. All parameters are assigned an indepen-
dent Normal prior with mean 0 and variance 100, with a1 and b1 restricted to be positive
for identification purpose. The joint prior p(Θ) is just the product of the individual priors.
The likelihood function p(r1:T |Θ) is:

p(r1:T |Θ) =
T∏
t=1

Γ[(ζ + k)/2][1 + 1
ζ
r′tH

−1
t rt]

−(ζ+k)/2

Γ(ζ/2)(ζπ)k/2|Ht|1/2
(61)

The posterior of the parameters p(Θ|r1:T ) is:

p(Θ|r1:T ) ∝ p(Θ)
T∏
t=1

Γ[(ζ + k)/2][1 + 1
ζ
r′tH

−1
t rt]

−(ζ+k)/2

Γ(ζ/2)(ζπ)k/2|Ht|1/2
(62)

To sample from the joint posterior distribution p(Θ|r1:T ), we do the following steps: We first
adopt a single move sampler. For each iteration, the chain cycles through the conditional
posterior densities of the parameters in a fixed order. For each parameter, a random walk
with normal proposal is applied. After dropping an initial set of draws as burnin, we collect
M draws and use them to calculate the sample covariance matrix of the joint posterior.
Then, a block sampler is used to jointly sample the full posterior. The proposal density is a
multivariate normal random walk with the covariance matrix set to the sample covariance,
obtained from the draws of the single-move sampler, scaled by a scalar. When the model
is recursively estimated as a new observation arrives the previous sample covariance is used
as the next covariance in the multivariate normal random walk. This results in fast efficient
sampling.

8.7 DCC-t Estimation

The parameters are {ω1, . . . , ωk, κ1, . . . , κk, λ1, . . . , λk, α, β, ζ} = Θ. All parameters are as-
signed an independent Normal prior with mean 0 and variance 100, with the following
restrictions are imposed:

ωi > 0, κi ≥ 0, λi ≥ 0, ζ > 2,
κiζ

ζ − 2
+ λi < 1, i = 1, ..., k, α ≥ 0, β ≥ 0, α + β < 1. (63)

The joint prior p(Θ) is just the product of the individual priors. The likelihood function
p(r1:T |Θ) is:

p(r1:T |Θ) =
T∏
t=1

Γ[(ζ + k)/2][1 + 1
ζ
r′tH

−1
t rt]

−(ζ+k)/2

Γ(ζ/2)(ζπ)k/2|Ht|1/2
. (64)

The posterior of the parameters p(Θ|r1:T ) is:

p(Θ|r1:T ) ∝ p(Θ)
T∏
t=1

Γ[(ζ + k)/2][1 + 1
ζ
r′tH

−1
t rt]

−(ζ+k)/2

Γ(ζ/2)(ζπ)k/2|Ht|1/2
. (65)
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For the special case of DCC with Normal innovations, the parameters are

{ω1, . . . , ωk, κ1, . . . , κk, λ1, . . . , λk, α, β, } = Θ.

The restriction on the priors are similar:

ωi > 0, κi ≥ 0, λi ≥ 0, κi + λi < 1, i = 1, ..., k, α ≥ 0, β ≥ 0, α+ β < 1. (66)

The posterior of the parameters p(Θ|r1:T ) is:

p(Θ|r1:T ) ∝ p(Θ)(2π)
Tk
2

T∏
t=1

|DtRtDt|−
1
2 × exp

(
−1

2

T∑
t=1

r′t(DtRtDt)
−1rt

)
(67)

The sampling procedure is similar to that of the VD-GARCH-t.
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Table 1: Average daily number of transactions and average daily refresh time ( RT ) obser-
vations per day

SPY GE C AA BA RT
6985 7479 6121 3279 3745 1835

This table reports the average daily number of transactions (after data cleaning) for Standard and Poor’s
Depository Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C), Alcoa Inc. (AA) and Boeing Co.
(BA). The total number of days is 2281. RT reports the average number of daily observations according to
the refresh time.

Table 2: Summary statistics: Daily returns and RCOV

Sample covariance from daily returns Average of realized covariances
SPY GE C AA BA SPY GE C AA BA

SPY 0.963 1.078 1.172 0.834 0.751 0.907 0.972 1.099 0.822 0.718
GE 2.410 1.500 1.062 0.931 2.327 1.250 0.897 0.796
C 2.826 1.014 0.931 3.176 0.982 0.835
AA 3.900 0.993 3.921 0.734
BA 2.933 2.910

This table reports the sample covariance from daily returns and the sample average of the realized covariances.
The data are Standard and Poor’s Depository Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C),
Alcoa Inc. (AA) and Boeing Co. (BA). Total observations is 2281.

Table 3: Cumulative log-predictive likelihoods p̂h across models for various forecast horizon
h

Model h = 1 h = 5 h = 10 h = 20 h = 60
Wishart-RCOV-A(3) −2737.53 −2762.59 −2768.55 −2791.22 −2812.09
Wishart-RCOV-M(3) −2740.11 −2764.99 −2774.46 −2797.86 −2832.94
Cholesky-VARFIMA(1,m,1) −2754.29 −2776.32 −2788.35 −2807.29 −2825.10
diagonal-HAR-WAR −2816.14 −2897.86 −2939.19 −2983.14 −3034.82
diagonal-HAR-NCW −2740.39 −2773.12 −2786.52 −2820.60 −2848.44
VD-GARCH-t −2754.37 −2769.28 −2781.57 −2796.63 −2835.97

Table 4: Root mean squared error RMSEh of forecasts of Σt across models for various
forecast horizon h

Model h = 1 h = 5 h = 10 h = 20 h = 60
Wishart-RCOV-A(3) 2.969 3.349 3.508 3.741 3.751
Wishart-RCOV-M(3) 2.969 3.384 3.564 3.881 4.029
Cholesky-VARFIMA(1,m,1) 3.199 3.507 3.655 3.842 3.981
diagonal-HAR-WAR 3.678 4.619 5.062 5.504 5.989
diagonal-HAR-NCW 3.025 3.495 3.726 4.095 4.192

RMSEh = 1
T−T0+1

∑T−h
t=T0−h‖Σt+h − E[Σt+h|It]‖, where ‖A‖ =

√∑
i

∑
j |aij |2, and

E[Σt+h|It] denotes a model’s predictive mean.
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Table 5: Sample variances of GMVP across models for various forecast horizon h

Model h = 1 h = 5 h = 10 h = 20 h = 60
Wishart-RCOV-A(3) 0.419 0.438 0.452 0.476 0.477
Wishart-RCOV-M(3) 0.419 0.435 0.446 0.470 0.470
Cholesky-VARFIMA(1,m,1) 0.431 0.446 0.457 0.474 0.483
diagonal-HAR-WAR 0.452 0.480 0.495 0.511 0.526
DCC-t 0.461 0.469 0.472 0.481 0.490

Table 6: Estimation results for Wishart-RCOV-A(3)

Parameter Mean NSE 0.95 DI Ineff
b11 0.5744 0.0012 (0.5556, 0.5905) 55.6555
b12 0.5579 0.0019 (0.5354, 0.5783) 90.5498
b13 0.5995 0.0017 (0.5835, 0.6155) 138.5520
b14 0.4888 0.0005 (0.4628, 0.5127) 3.5098
b15 0.5878 0.0010 (0.5668, 0.6077) 25.4376
b21 0.6732 0.0010 (0.6518, 0.6932) 28.8173
b22 0.6536 0.0023 (0.6314, 0.6821) 104.4400
b23 0.6536 0.0013 (0.6381, 0.6691) 73.1365
b24 0.6918 0.0005 (0.6649, 0.7174) 3.7541
b25 0.5623 0.0017 (0.5290, 0.5963) 33.6903
b31 0.4242 0.0010 (0.3992, 0.4519) 16.6831
b32 0.4854 0.0024 (0.4544, 0.5111) 76.9035
b33 0.4410 0.0019 (0.4187, 0.4644) 85.4987
b34 0.4475 0.0010 (0.4066, 0.4833) 7.9212
b35 0.5384 0.0013 (0.5064, 0.5709) 17.9957
ν 14.6666 0.0037 (14.4875, 14.8439) 4.6488
`2 8.9967 0.0031 (9.0000, 9.0000) 8.7925
`3 63.8190 0.0379 (62.0000, 66.0000) 3.3739

This table reports the posterior mean, its numerical standard error (NSE), a 0.95
density interval (DI) and the inefficiency factor for model parameters.

Table 7: Estimation results for Wishart-RCOV-M(3)

Parameter Mean NSE 0.95 DI Ineff
d1 0.2553 0.0004 (0.2415, 0.2671) 17.6101
d2 0.4502 0.0006 (0.4303, 0.4715) 17.0676
d3 0.2651 0.0006 (0.2413, 0.2858) 15.5695
ν 14.6679 0.0032 (14.4736, 14.8603) 5.3509
`2 9.0280 0.0219 (8.0000, 10.0000) 13.5203
`3 64.1822 0.0294 (63.0000, 67.0000) 3.0019

This table reports the posterior mean, its numerical standard error (NSE), a 0.95
density interval (DI) and the inefficiency factor for model parameters.
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Table 8: Estimation results for VARFIMA(1,m, 1)

Parameter Mean NSE 0.95 DI Ineff
δ 0.3477 0.0012 (0.3157, 0.3769) 18.7313
m 0.4295 0.0011 (0.4058, 0.4501) 32.6552
ψ 0.6121 0.0017 (0.5808, 0.6430) 35.9129

This table reports the posterior mean, its numerical standard error (NSE), a 0.95
density interval (DI) and the inefficiency factor for δ,m, ψ.

Table 9: Estimation results for diagonal-HAR-WAR with integer-valued ν

Parameter Mean NSE 0.95 DI Ineff
M1(1, 1) 0.4425 0.0010 (0.4167, 0.4677) 17.8611
M1(2, 2) 0.4502 0.0012 (0.4184, 0.4818) 16.8463
M1(3, 3) 0.4968 0.0011 (0.4727, 0.5191) 28.6441
M1(4, 4) 0.2981 0.0022 (0.2472, 0.3415) 26.5445
M1(5, 5) 0.4770 0.0012 (0.4431, 0.5056) 14.6781
M2(1, 1) 0.4956 0.0022 (0.4646, 0.5228) 65.4310
M2(2, 2) 0.4589 0.0025 (0.4121, 0.5089) 29.8145
M2(3, 3) 0.4112 0.0018 (0.3649, 0.4491) 21.9140
M2(4, 4) 0.6201 0.0028 (0.5792, 0.6528) 75.6611
M2(5, 5) 0.4559 0.0015 (0.4077, 0.5013) 13.4569
M3(1, 1) 0.4159 0.0022 (0.3879, 0.4416) 73.9334
M3(2, 2) 0.4475 0.0017 (0.4075, 0.4835) 25.0029
M3(3, 3) 0.4488 0.0014 (0.4176, 0.4802) 23.4271
M3(4, 4) 0.3297 0.0034 (0.2814, 0.3780) 54.6142
M3(5, 5) 0.3591 0.0024 (0.3091, 0.4024) 33.4427

ν 8 0.0000 (8, 8) 1.0000
This table reports the posterior mean, its numerical standard error (NSE), a 0.95
density interval (DI) and the inefficiency factor for M1,M2,M3 and ν

31



Table 10: Estimation results for diagonal-HAR-NCW

Parameter Mean NSE 0.95 DI Ineff

M̃1(1, 1) 0.4827 0.0024 (0.4500, 0.5145) 65.6861

M̃1(2, 2) 0.4927 0.0025 (0.4587, 0.5228) 74.8778

M̃1(3, 3) 0.5418 0.0024 (0.5143, 0.5753) 75.9262

M̃1(4, 4) 0.2679 0.0018 (0.2140, 0.3205) 13.5440

M̃1(5, 5) 0.5488 0.0021 (0.5106, 0.5835) 40.0412

M̃2(1, 1) 0.6046 0.0027 (0.5733, 0.6355) 95.3429

M̃2(2, 2) 0.5626 0.0055 (0.5197, 0.6038) 191.0160

M̃2(3, 3) 0.5386 0.0039 (0.4804, 0.5870) 66.6818

M̃2(4, 4) 0.7407 0.0019 (0.7077, 0.7695) 43.8908

M̃2(5, 5) 0.4468 0.0046 (0.3779, 0.5039) 58.2833

M̃3(1, 1) 0.6123 0.0019 (0.5889, 0.6405) 65.8317

M̃3(2, 2) 0.6587 0.0031 (0.6280, 0.6859) 128.5340

M̃3(3, 3) 0.6438 0.0012 (0.6127, 0.6761) 19.1210

M̃3(4, 4) 0.5719 0.0025 (0.5390, 0.6072) 61.7975

M̃3(5, 5) 0.6903 0.0025 (0.6602, 0.7208) 86.7010
ν 14.5491 0.0021 (14.3550, 14.7476) 1.3168

This table reports the posterior mean, its numerical standard error (NSE), a 0.95
density interval (DI) and the inefficiency factor for M̃1,M̃2,M̃3 and ν

Table 11: Estimation results for Λ

1.0783
(0.0314)
−0.0043 0.8923
(0.0208) (0.0264)
−0.0188 0.0723 0.7905
(0.0198) (0.0176) (0.0237)
0.0050 0.0182 0.0057 0.8346
(0.0199) (0.0178) (0.0168) (0.0249)
−0.0140 0.0173 0.0070 0.0171 0.8599
(0.0199) (0.0181) (0.0176) (0.0180) (0.0253)

This table reports the posterior mean, and the posterior standard deviation
in parentheses for the lower triangle of Λ.
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Figure 1: Daily returns
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Figure 2: RV for individual assets
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Figure 4: Term structure of cumulative log-predictive likelihoods for return-RCOV models
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Figure 5: Log Predictive Bayes Factors: Wishart-RCOV vs VD-GARCH
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Figure 6: Log Predictive Bayes Factors: Wishart-RCOV vs Cholesky-VARFIMA
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Figure 7: Root mean squared error of forecasts of Σt. RMSEh = 1
T−T0+1

∑T−h
t=T0−h‖Σt+h −

E[Σt+h|It]‖, where ‖A‖ =
√∑

i

∑
j |aij|2, and E[Σt+h|It] denotes a model’s predictive mean.
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Figure 8: Sample variances of global minimum variance portfolios against forecast horizon
for various models.
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