10 research outputs found

    Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation

    Get PDF
    Motivation: Circadian rhythms are prevalent in most organisms. Identification of circadian-regulated genes is a crucial step in discovering underlying pathways and processes that are clock-controlled. Such genes are largely detected by searching periodic patterns in microarray data. However, temporal gene expression profiles usually have a short time-series with low sampling frequency and high levels of noise. This makes circadian rhythmic analysis of temporal microarray data very challenging

    Evaluation of mRNA markers for estimating blood deposition time : towards alibi testing from human forensic stains with rhythmic biomarkers

    Get PDF
    This study was supported by grant 27.011.001 by the Netherlands Organization for Scientific Research (NWO) Forensic Science Program, Erasmus MC University Medical Center Rotterdam, by the EU 6th Framework project EUCLOCK (018741), UK Biotechnology and Biological Sciences Research Council (BBSRC) Grant BB/I019405/1, and by a previous grant from the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) within the framework of the Forensic Genomics Consortium Netherlands (FGCN). D.J.S. is a Royal Society Wolfson Research Merit Award holder.Determining the time a biological trace was left at a scene of crime reflects a crucial aspect of forensic investigations as - if possible - it would permit testing the sample donor's alibi directly from the trace evidence, helping to link (or not) the DNA-identified sample donor with the crime event. However, reliable and robust methodology is lacking thus far. In this study, we assessed the suitability of mRNA for the purpose of estimating blood deposition time, and its added value relative to melatonin and cortisol, two circadian hormones we previously introduced for this purpose. By analysing 21 candidate mRNA markers in blood samples from 12 individuals collected around the clock at 2 h intervals for 36 h under real-life, controlled conditions, we identified 11 mRNAs with statistically significant expression rhythms. We then used these 11 significantly rhythmic mRNA markers, with and without melatonin and cortisol also analysed in these samples, to establish statistical models for predicting day/night time categories. We found that although in general mRNA-based estimation of time categories was less accurate than hormone-based estimation, the use of three mRNA markers HSPA1B, MKNK2 and PER3 together with melatonin and cortisol generally enhanced the time prediction accuracy relative to the use of the two hormones alone. Our data best support a model that by using these five molecular biomarkers estimates three time categories, i.e., night/early morning, morning/noon, and afternoon/evening with prediction accuracies expressed as AUC values of 0.88, 0.88, and 0.95, respectively. For the first time, we demonstrate the value of mRNA for blood deposition timing and introduce a statistical model for estimating day/night time categories based on molecular biomarkers, which shall be further validated with additional samples in the future. Moreover, our work provides new leads for molecular approaches on time of death estimation using the significantly rhythmic mRNA markers established here.PostprintPeer reviewe

    Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity

    Get PDF

    Transcriptome Phase Distribution Analysis Reveals Diurnal Regulated Biological Processes and Key Pathways in Rice Flag Leaves and Seedling Leaves

    Get PDF
    Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa) is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96%) diurnal probe sets in seedling leaves, 13,773 (24.08%) diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO) and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated biological processes and key functional pathways in rice

    Circadian forensics; estimating blood trace deposition time using rhytmic biomarkers

    Get PDF

    Circadian forensics; estimating blood trace deposition time using rhytmic biomarkers

    Get PDF

    Bayesian detection of non-sinusoidal periodic patterns in circadian expression data

    No full text
    Motivation: Cyclical biological processes such as cell division and circadian regulation produce coordinated periodic expression of thousands of genes. Identification of such genes and their expression patterns is a crucial step in discovering underlying regulatory mechanisms. Existing computational methods are biased toward discovering genes that follow sine-wave patterns

    On Bayesian Analyses of Functional Regression, Correlated Functional Data and Non-homogeneous Computer Models

    Get PDF
    <p>Current frontiers in complex stochastic modeling of high-dimensional processes include major emphases on so-called functional data: problems in which the data are snapshots of curves and surfaces representing fundamentally important scientific quantities. This thesis explores new Bayesian methodologies for functional data analysis. </p><p>The first part of the thesis places emphasis on the role of factor models in functional data analysis. Data reduction becomes mandatory when dealing with such high-dimensional data, more so when data are available on a large number of individuals. In Chapter 2 we present a novel Bayesian framework which employs a latent factor construction to represent each variable by a low dimensional summary. Further, we explore the important issue of modeling and analyzing the relationship of functional data with other covariate and outcome variables simultaneously measured on the same subjects.</p><p>The second part of the thesis is concerned with the analysis of circadian data. The focus is on the identification of circadian genes that is, genes whose expression levels appear to be rhythmic through time with a period of approximately 24 hours. While addressing this goal, most of the current literature does not account for the potential dependence across genes. In Chapter 4, we propose a Bayesian approach which employs latent factors to accommodate dependence and verify patterns and relationships between genes, while representing the true gene expression trajectories in the Fourier domain allows for inference on period, phase, and amplitude of the signal.</p><p>The third part of the thesis is concerned with the statistical analysis of computer models (simulators). The heavy computational demand of these input-output maps calls for statistical techniques that quickly estimate the surface output at untried inputs given a few preliminary runs of the simulator at a set design points. In this regard, we propose a Bayesian methodology based on a non-stationary Gaussian process. Relying on a model-based assessment of uncertainty, we envision a sequential design technique which helps choosing input points where the simulator should be run to minimize the uncertainty in posterior surface estimation in an optimal way. The proposed non-stationary approach adapts well to output surfaces of unconstrained shape.</p>Dissertatio
    corecore