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Highlights 

- Knowing the time a human trace was left at a crime scene is crucial for solving the 

case 

- We recently showed that timing trace deposition with circadian hormones is feasible  

- Here we access the suitability of 21 mRNA markers for blood deposition timing 

- We present 11 rhythmic mRNAs from analysing blood collected every 2 h for 36 h 

- Three mRNAs, melatonin, cortisol allow estimating 3 time categories with AUC 

0.88-0.95 

 

Abstract 

Determining the time a biological trace was left at a scene of crime reflects a crucial aspect of 

forensic investigations as - if possible - it would permit testing the sample donor's alibi directly 

from the trace evidence, helping to link (or not) the DNA-identified sample donor with the crime 

event. However, reliable and robust methodology is lacking thus far. In this study, we assessed 

the suitability of mRNA for the purpose of estimating blood deposition time, and its added value 

relative to melatonin and cortisol, two circadian hormones we previously introduced for this 

purpose. By analysing 21 candidate mRNA markers in blood samples from 12 individuals 

collected around the clock at 2 h intervals for 36 h under real-life, controlled conditions, we 

identified 11 mRNAs with statistically significant expression rhythms. We then used these 11 

significantly rhythmic mRNA markers, with and without melatonin and cortisol also analysed in 

these samples, to establish statistical models for predicting day/night time categories. We found 

that although in general mRNA-based estimation of time categories was less accurate than 

hormone-based estimation, the use of three mRNA markers HSPA1B, MKNK2 and PER3 

together with melatonin and cortisol generally enhanced the time prediction accuracy relative to 

the use of the two hormones alone. Our data best support a model that by using these five 

molecular biomarkers estimates three time categories, i.e., night/early morning, morning/noon, 

and afternoon/evening with prediction accuracies expressed as AUC values of 0.88, 0.88, and 

0.95, respectively. For the first time, we demonstrate the value of mRNA for blood deposition 

timing and introduce a statistical model for estimating day/night time categories based on 

molecular biomarkers, which shall be further validated with additional samples in the future. 

Moreover, our work provides new leads for molecular approaches on time of death estimation 

using the significantly rhythmic mRNA markers established here.  

 

Keywords: forensic time estimation; blood deposition time; circadian hormones; rhythmic gene 

expression; mRNA 
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Introduction 

The crucial question regarding the time when a human trace was left at a scene of crime 

is frequently encountered during criminal investigations, alongside individual identification of 

the trace donor. While the principle, the markers, the methodology, and the interpretation of 

DNA-based individual identification are all well established and routinely applied to forensic 

casework around the world, estimation of trace deposition time lacks reliable and robust 

techniques as of yet. If possible however, it would permit testing the sample donor’s alibi 

directly from analysing the trace evidence, which would allow linking (or not) the DNA-

identified sample donor with the crime event, and thus is of importance for solving a forensic 

case. Furthermore, molecular alibi testing from crime scene traces could provide information 

useful for finding unknown sample donors. 

Currently, research on estimating trace deposition time is mainly focussed on determining 

the age of a human forensic stain i.e., how much time has passed since the human material was 

left at the scene of a crime. Reflectance spectroscopy and biochemical methods have been 

suggested for estimating the age of blood stains [1,2,3], as well as the principle of differential, 

time-dependent RNA degradation [4,5]. A second aspect of trace timing i.e., determining when 

during the 24 h day/night cycle the human material was left at the crime scene, was introduced in 

the last years by employing knowledge of circadian biology [6]. 

Circadian rhythms are endogenous oscillations with an approximately 24 h period that 

govern the daily lives of most organisms, humans included. These intrinsic rhythms are 

generated by an autoregulatory negative-feedback loop that is formed by a set of core clock 

genes, such as Circadian Locomotor Output Cycles Kaput (CLOCK), Brain and Muscle ARNT-

Like 1 (BMAL1), Cryptochrome (CRY) and Period (PER), together with their respective proteins 

[7-10]. These oscillations, through regulation of expression of other genes, so called clock-
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controlled genes (CCGs), are reflected in various biological processes like hormone secretion, 

metabolic reactions, behaviour, and many others [10-13]. It was shown that approximately 3-

10% of all mRNAs in a respective tissue exhibit diurnal variations in expression, and therefore 

can be considered as CCGs [14-16]. Thus, the ubiquitous nature of these rhythms presents a vast 

amount of potential molecular biomarkers, which in principle are suitable for application in 

forensic trace deposition timing as well as time of death estimation under certain prerequisites 

[17].  

The first study describing the application of the circadian hormone melatonin for forensic 

time estimation i.e., in determining the time of death was published in 1994 [18], and over the 

next years more studies focusing on time estimations with rhythmic biomarkers were reported 

[6,19,20,21]. Estimating time of death is similar to estimating trace deposition time, and 

assessment of both can in principle be done with rhythmic biomarkers,  provided that they are 

stable under post-mortem/post-deposition conditions. In 2010, we reported a proof-of-concept 

study on the use of two circadian hormones, melatonin and cortisol, for determining the 

deposition time of blood and saliva [6], describing for the first time trace deposition timing from 

the chronobiological perspective. The proposed approach and methodology demonstrated the 

feasibility of reproducing circadian profiles of two hormones in blood and saliva samples, and 

highlighted the advantages for forensic applications. For instance, this method requires a small 

sample volume typically encountered in forensic casework, and the assays, as well as the 

laboratory equipment, are commercially available. Furthermore, no or only limited signs of in-

vitro time-wise degradation, as prerequisite for using these markers for trace deposition timing, 

were observed for these hormones. However, the day/night time range that can be estimated with 

melatonin and cortisol alone is limited [6]. Moreover, the effect of external and internal factors 
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on both of the circadian hormones is recognized and, if disregarded, can be a cause of difficulties 

in result interpretation under particular circumstances [6]. For example, melatonin secretion is 

inhibited by exposure to light, in a dose–dependent manner [22,23]. In normal subjects melatonin 

suppression starts between 200 – 400 lux (equivalent to ordinary fluorescent light), however 

upon light removal, melatonin concentration returns to normal night time levels [22]. In another 

study, it has been shown that acute suppression of melatonin secretion occurs after exposure to 

intensive light (600 lux or higher) for an hour [22,23]. Furthermore,  a disruption in melatonin’s 

circadian patter has been noted in subjects suffering from mental disorders such as major 

depressive disorder [24]. Cortisol levels have been shown to be disrupted in individuals suffering 

from addiction, chronic stress, or posttraumatic stress disorder (PTSD) [25-28]. Because of such 

factors influencing these two circadian hormones, and due to the limited time resolution they 

provided when being applied to trace deposition timing, additional rhythmic molecular 

biomarkers are required for increasing the accuracy as well as the reliability of molecular means 

for trace deposition timing. 

In recent years, RNA profiling for forensic purposes has become more enthusiastically 

explored, and many studies describe its utility, especially for forensic tissue and body fluid 

identification [29-34] and, less so, for post-mortem interval determination [35,36]. In 2011 and 

2012, applications of rhythmic mRNA and microRNA markers for the time of death 

determination were reported [19,37]. Kimura et al. [191] analysed the expression levels of three 

circadian genes – BMAL1, PER2 and REV-ERB (also known as NR1D1 – Nuclear Receptor 

Subfamily 1, Group D, Member 1) – in kidney, liver and heart samples obtained from forensic 

autopsy material. Based on gene expression values, the authors constructed a range of ratios used 

for time of death estimation. Odriozola et al. [37] reported two microRNAs, miR-541 and miR-
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142-5p, with diurnal variations in their abundance in vitreous humour samples from deceased 

individuals, further proposed as suitable candidate markers for time of death estimation. 

Recently, we demonstrated that these two microRNA markers are not suitable for blood trace 

deposition timing [38]. In this study, miR-541 was shown to be present in very low levels in 

blood, not allowing for meaningful conclusions, whereas miR-142-5p was not rhythmic in the 

tested blood samples [38]. Among other reasons, these findings may be explained by possible 

tissue specificity of miR-541 and miR-142-5p expression, which should be further explored. 

Because in all those previous studies only a small number of biomarkers were tested, this 

ultimately limited the precision and significance of the obtained time estimates [6,19,37]. 

Expectedly, a larger set of biomarkers is needed, in order to achieve reliable and narrow time 

predictions, suitable for forensic applications. In the present study, we provide the first attempt 

for assessing the suitability of mRNA markers for estimating blood deposition time. Recently, 

we analysed the expression of 12 well-known clock and clock-related genes [39] and of 9 

candidate clock-controlled genes [40] and measured the concentration of melatonin and cortisol, 

in blood samples drawn from 12 individuals around the clock at 2 h intervals for 48 h under 

controlled conditions of a sleep/sleep deprivation (S/SD) study protocol, and under a separate 

constant routine study protocol (CR) [39-41]. Data analysis in these previous biologically-

motivated studies focused on identifying diurnal and circadian genes, understanding their 

biological function, and assessing the influence of sleep and no-sleep on gene expression.  

In the present forensically-motivated study, we used the raw expression data of the 21 

genes as well as melatonin and cortisol from the 2 hourly collected samples during the first 36 

hours of the S/SD study. Here, we did not consider data from the samples collected during the 

one night of sleep deprivation in the S/SD study and did not use any data from the samples 
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collected in the CR study. Both sampling scenarios represent non-natural conditions not relevant 

for the present study, where we like to simulate real-life conditions as much as possible for 

selecting time predictive mRNA markers for future forensic applications. Based on these data, 

we selected the statistically significant rhythmic mRNA markers, and performed multinomial 

logistic regression modelling with and without melatonin and cortisol for predicting day/night 

time categories.   

 

Materials and Methods 

Gene expression data  

The gene expression data used in this study is part of a larger data set we previously generated 

from the blood samples collected during the Sleep/Sleep Deprivation Study (S/SD) conducted at 

Surrey Clinical Research Centre (CRC) at the University of Surrey, UK. Full details of the study 

protocol, eligibility criteria, and the data acquisition procedure were reported elsewhere [39-41]. 

However, for the present analysis we used 18 two-hourly blood samples per each of 12 male 

participants (mean age ± SD = 23 ± 5 years) i.e., 216 samples in total. These samples spanned 

the first 36 h of the S/SD study (from 12:00 h Day 2 to 22:00 h Day 3), excluding the sleep 

deprivation condition (00:00 h Day 3 to 12:00 h Day 4). The reason for selecting this sample set 

was that while conditions such as lighting intensity, food intake, posture and physical activity 

etc., were controlled throughout the study, the in-laboratory day/night layout still resembled that 

of real life [39-41]. We also did not consider the data previously generated from the samples 

collected under the constant routine (CR) protocol [40], as they do not represent real-life 

conditions. For blood sample collection procedure, RNA extraction method, cDNA synthesis, 

qPCR data and subsequent analyses we refer to the Method sections of the two previous articles 
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[40,41]. Expression data from the following mRNA markers were used: Brain and Muscle 

ARNT-Like 1 (BMAL1) [39,42,44], Circadian Locomotor Output Cycles Kaput (CLOCK) 

[39,45], Cryptochrome 1 (CRY1) [39,45], Cryptochrome 2 (CRY2) [39,45], D site of albumin 

promoter (albumin D-box) binding protein (DBP) [39], Deleted In Esophageal Cancer 1 (DEC1) 

[39,43,45], Heat shock 70kDa protein 1B (HSPA1B) [39], Period 1 (PER1) [39,43-46], Period 2 

(PER2) [39,42-45], Period 3 (PER3) [39,42,43,45], Nuclear receptor subfamily 1, group D, 

member 1 (REV-ERBA) [39], RAR-related orphan receptor alpha (RORA) [39] and of Cell Cycle 

Associated Protein 1 (CAPRIN1) [14,40], MAP Kinase Interacting Serine/Threonine Kinase 2 

(MKNK2) [40,46], Rho-Associated, Coiled-Coil Containing Protein Kinase 2 (ROCK2) [40,47], 

Sirtuin 1 (SIRT1) [40,48], Sterol Regulatory Element-Binding Transcription Factor 1 (SREBF1) 

[40,49], Signal Transducer and Activator of Transcription 3 (STAT3) [9,40,49], Thyroid 

Hormone Receptor Alpha (THRA1) [40,50], Tribbles Homolog 1 (TRIB1) [40,51], Upstream 

Transcription Factor 1 (USF1) [40,52], and Actin Beta (ACTB), used here as the reference gene. 

Melatonin and cortisol concentration measurements, obtained in the same samples [39,41] were 

used as well.  

In short, gene expression data were analysed with the delta-delta-cycle-threshold (ΔΔ

CT) method [53], and afterwards with the single cosinor and nonlinear curve fitting (nlcf) and 

nonlinear mixed model (nlm) methods, to determine the presence of 24 h rhythmicity, as 

described previously [39-41]. Selection of genes for time category prediction was based on the 

statistically significant outcomes from the nlcf, nlm, and single cosinor methods. The 

requirements to be met were statistically significant outcomes of either the nlcf (for 2 out of 3 

conditions: sleep, sleep deprivation and collapsed) or nlm methods, and presence of statistically 

significant rhythms in at least 25% of tested individuals (single cosinor method). Afterwards, 
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based on the mean peak time estimates (obtained via either nlcf or nlm method) of the selected 

genes were used for establishing the most suitable time categories that were subsequently used in 

the prediction modelling.  

 

Model building and time predictions 

Prediction models were constructed based on multinomial logistic regression, where the ACTB-

normalized expression levels of the genes and the concentration values of the hormones were 

considered as the predictors, and the multinomial time categories as the response variable, 

similar as described elsewhere [54]. Note that for model building the expression levels of gene 

markers and hormone measurements were not z-scored, because the z-scoring will not be 

possible for evidentiary samples in future forensic application. Multinomial logistic regression 

was used to predict the probabilities of different possible outcomes of a categorically distributed 

dependent variable, given a set of independent variables, as previously applied for prediction of 

eye and hair colour categories based on SNP genotypes [54,55]. Besides logistic regression, there 

is an array of well-established statistics or machine-learning techniques for prediction modeling, 

such as linear discriminant analysis [56] and support vector machines [57]. It has been shown 

that different methods often perform similarly in the work of eye colour prediction [54]. We 

chose multinomial logistic regression here for its simplicity (only regression betas needed), 

portability (compatible to all statistical platforms), and robustness (without the fundamental 

assumption on normality of explanatory variables). The most suitable time categories used in the 

prediction modelling were selected by considering the mean peak time estimates of the selected 

genes and hormones. We then tested different combinations of molecular predictors: hormones 

alone, genes alone, and hormones and genes together. Selection of the final set of molecular 
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predictors was based on their contribution to the prediction accuracy, and mRNA markers with 

an insignificant effect were removed from the models, which were then rebuilt.  

Due to the relatively small sample size, the performances of the prediction models were 

evaluated using the leaving-one-out cross-validation (LOOCV) approach [58] i.e., building the 

prediction model from 215 observations and predicting the day/night category for the remaining 

observation. This procedure was then repeated 216 times (one time for each observation). The 

area under the receiver operating characteristic (ROC) curves, the AUC, was measured. Its 

values range from 0.5, representing random prediction to 1.0, representing perfect prediction. 

The concordance between the predicted and observed categories was categorized into 4 groups: 

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). We 

derived 4 accuracy parameters: sensitivity = TP/(TP+FN)*100, specificity = TN/(TN+FP)*100, 

positive predictive value (PPV) = TP/(TP+FP)*100, and negative predictive value (NPV) = 

TN/(TN+FN)*100. Note that, although the 216 observations were not completely independent 

from each other, the prediction results are unlikely to be biased, since all prediction results were 

cross validated. Because the variability (such as confidence intervals) cannot be directly derived 

from LOOCV results, we conducted a permutation analysis to estimate the variability of our 

accuracy estimates under the null hypothesis, i.e., assuming no relationship between predictors 

and time categories, by randomly reshuffling the dependent variable (time categories, k=1000). 

For each shuffling, we derived the accuracy estimates based on the above described multinomial 

logistic regression and LOOCV. The resultant average values and 5%-95% quantiles (Table S1) 

provide unbiased estimates about the variability of our accuracy estimates under the null that is 

specific to our data set. 
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Results and Discussion 

Choosing mRNA predictors of blood deposition time  

From the 21 genes tested for day/night rhythms in expression (Table 1), we identified 11 genes 

i.e., BMAL1, CAPRIN1, HSPA1B, MKNK2, PER1, PER3, ROCK2, SIRT1, STAT3, THRA1 and 

TRIB1 that showed statistically significant results according to either the nlcf or nlm method, and 

at the same time had statistically significant rhythms in at least 25% of the individuals according 

to the cosinor method (Table 1). Their expression patterns are presented in Figure 1.  

Next, we assigned the 11 significantly rhythmic mRNA markers, as well as melatonin 

and cortisol, to day/night time categories based on their mean expression/concentration peak 

time estimates. We found that peak times of several of the 13 molecular biomarkers were 

overlapping. In particular, expression of PER1 and cortisol concentration were highest in the 

same time range i.e., between 08:00 h and 10:00 h, whereas expression of ROCK2, SIRT1, and 

THRA1 as well as melatonin concentration were highest between 01:00 h and 03:00 h. The 

expression of PER3 was highest around 04:00 h, and the expression of BMAL1, HSPA1B, TRIB1, 

MKNK2, and STAT3 were highest in the afternoon between 15:30 h and 17:00 h. Consequently, 

we established three time categories of peak expression/concentration of these 13 biomarkers, 

i.e., night/early morning (23:00 – 06:59), morning/noon (07:00 – 14:59) and afternoon/evening 

(15:00 – 22:59), together comprising one complete day/night cycle.  

 

Modelling blood deposition time using molecular biomarkers 

We then performed statistical prediction modelling of these three day/night time 

categories using the 11 mRNA markers (BMAL1, CAPRIN1, HSPA1B, MKNK2, PER1, PER3, 

ROCK2, SIRT1, STAT3, THRA1 and TRIB1) and the 2 hormone markers (melatonin and cortisol) 
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in different combinations (see Methods) to establish the most accurate and robust model, while 

minimizing the number of biomarkers involved. The latter was done by keeping the final 

forensic application in mind, where typically the amount of biological material is limited, and 

thus is the number of molecular tests possible before the evidence material is exhausted. We 

tested the genes with and without the hormones, as well as the hormones alone to work out the 

relationship between these two types of molecular biomarkers in the time prediction modelling.  

We noticed that some of the mRNA markers used for model building did not contribute 

significantly to the prediction accuracy obtained with the models. From this, we concluded that 

their effect was “masked” by other, more robust markers included in the respective model. The 

markers with negligible independent input into the prediction accuracy were consequently 

excluded from the respective models to keep the number of markers at the minimum, which were 

then rebuilt with only considering the independently contributing molecular predictors.  

In the model considering all 11 significantly rhythmic mRNA markers, 5 were excluded 

due to redundant predictive effects, while 6 mRNA markers with independent predictive effects 

were identified i.e., HSPA1B, MKNK2, PER1, PER3, THRA1, and TRIB1. The model based on 

these 6 independent mRNA predictors achieved AUC values of 0.75 for morning/noon, 0.80 for 

afternoon/evening, and 0.93 for night/early morning (Table 2). A model considering only 

melatonin and cortisol provided lower AUC for the night/early morning (0.85) but somewhat 

higher AUCs for the afternoon/evening (0.83) and morning/noon (0.85) time categories 

compared with the model based on 6 mRNA markers (Table 2). These results indicate that at 

least for the night/early morning category the use of mRNA markers is largely beneficial. The 

results for the hormone-based model were not surprising, as the two hormones are characterized 

by robust, truly circadian patterns of secretion with sharp, distinct peaks and high amplitude 
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[39,59,60], and melatonin is an established marker of circadian phase, also used in sleep-related 

studies [39,61]. It is clear that all AUC values from all models are far beyond the corresponding 

95% upper boundaries (max AUCNULL=0.58) from a permutation analysis under the null 

hypothesis assuming no relationship between predictors and time category (Table S1). 

Additionally, regression parameters from the final models are provided in Table S2 in the 

Supplementary Material. 

Because of the higher AUCs for one but the lower AUCs for the other time categories as 

achieved with the genes and the hormones separately, we then combined all 11 significant 

mRNA markers and the 2 hormone markers in a prediction model and tested for redundant 

biomarker effects. As a result, 8 (BMAL1, CAPRIN1, PER1 , ROCK2, SIRT1, STAT3, THRA1 

and TRIB1) out of the 11 mRNA markers were removed from the model.  

The final model comprising of five biomarkers (MKNK2, HSPA1B, PER3, melatonin and 

cortisol) predicted the night/early morning category with particularly high accuracy AUC of 

0.95, while the other two time categories were both predicted with an AUC of 0.88 (Table 2). 

Compared with the model based solely on the two circadian hormones, and with the model based 

solely on mRNA markers, the combined hormone/mRNA model achieved higher accuracies for 

all three predicted time categories (Table 2). Hence, the use of mRNA markers, particularly 

HSPA1B, MKNK2 and PER3, did overall increase the day/night time prediction accuracy, 

compared to those achieved with hormones only, underlining the beneficial use of mRNA 

markers for blood deposition timing. 
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Future forensic application considerations  

We chose to conduct our trace timing analyses in blood mainly because bloodstains are 

amongst the most commonly found biological evidence on scenes of violent crimes. It is 

important to keep in mind that without additional testing in other forensically relevant tissues, 

the results we present here are to be regarded as specific for blood. Even though blood has been 

proposed as sort of a “gate to access and analyse the transcriptome of various organs” [62], it 

should be noted that our findings would need to be properly revalidated in other forensically 

relevant tissue types, such as saliva, semen, skin, vaginal secretion, and menstrual blood, before 

applying them to such forensic traces. Besides expanding molecular trace deposition timing to 

other forensically relevant tissue types than blood, additional testing in various human tissues 

would also be advantageous in determining whether the mRNA markers proposed here are also 

informative for time of death estimations, as previously suggested for melatonin [18].  

Another crucial aspect that shall be tested carefully in future studies is the time-wise 

stability of the proposed mRNA markers. Since blood stains are found at various crime scenes, 

they are exposed to a multitude of variable conditions, i.e., high/low humidity, drought, 

temperature changes, but are also located on different types of surfaces. All these factors can 

possibly influence the stability of the mRNA, which should be tested for the specific mRNA 

markers proposed here. Many mRNA markers previously suggested for forensic tissue 

identification purposes have shown strong time-wise stability [29,32], which has to be 

demonstrated for the candidate mRNA markers we suggest here for blood timing before they can 

be introduced to molecular alibi testing in forensic case-work.  

Finally, our results were established from 12 male individuals, and additional samples 

shall be analysed in the future to further validate our prediction model.   



15 
 

Conclusions 

In this study, we investigated whether mRNA provides a suitable resource for 

establishing biomarkers to estimate blood deposition time. We demonstrated that particular 

mRNA markers have added value for blood deposition timing over the previously established 

two circadian hormones melatonin and cortisol. We introduced a prediction model comprising 

three mRNA markers, HSPA1B, MKNK2 and PER3, together with two circadian hormones 

melatonin and cortisol, provides improved prediction accuracy of three day/night categories 

compared to those achieved with a model based on the two hormones alone or mRNA markers 

alone. To our knowledge this is the first study assessing the suitability of mRNA markers for 

trace deposition timing and the first time a statistical model for estimating blood deposition time 

with molecular biomarkers is presented. To achieve a more detailed level of time category 

prediction than revealed here, additional rhythmic biomarkers with different peak times will be 

needed. Future studies should focus on identifying them, and eventually incorporating them 

together with the markers used here to develop a final prediction model. Moreover, our work 

provides new leads for future studies on time of death investigation using the significantly 

rhythmic mRNA markers established here, which represents a second aspect of forensic time 

estimation in need of improved biomarkers, methodology, and technology. 
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Figure legends: 

Figure 1. Individual profiles of 11 genes/mRNA markers with significantly rhythmic expression 

patterns in 2-hourly collected blood samples from 12 male individuals over a period of 36h hours 

under controlled real-life conditions. Data are presented as ACTB-normalized z-scores, with 

individual-based colour coding. The black line represents the superimposed mean cosine curve, 

as calculated by the nlcf method. 

 

  



25 
 

Table 1. Results of the single cosinor, non-linear curve fitting (nlcf) or non-linear mixed model 

methods for all 21 genes/mRNA markers tested.  

Gene/mRNA marker 

SINGLE COSINOR NON-LINEAR CURVE FITTING/NON-

LINEAR MIXED MODEL 

 

% of significant 

subjects 

BMAL1 50 significant 

CAPRIN1 25  significant 

CLOCK 42  significant 

CRY1 25 not significant 

CRY2 42  not significant 

DBP 25  not significant 

DEC1 0  not significant 

HSPA1B 42  significant 

MKNK2 42  significant 

PER1 25  significant 

PER2 25  not significant 

PER3 67  significant 

REV-ERBa 58  not significant 

ROCK2 25  significant 

RORa 8  not significant 

SIRT1 42  significant 

SREBF1 17  not significant 

STAT3 25  significant 

THRA1 75  significant 

TRIB1 58  significant 

USF1 17  not significant 
Presented are the percentages of subjects with significant rhythms in expression (as calculated with the 

single cosinor) and outcomes of the nlcf or nlm method). Underlined are the significantly rhythmic genes 

selected for prediction modelling.  
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Table 2. Results of time prediction modelling using multinomial logistic regression and 

LOOCV. 

melatonin & cortisol 

 Predicted time category AUC sens spec ppv npv 

morning/noon  0.85 0.66 0.85 0.68 0.84 

afternoon/evening  0.83 0.81 0.69 0.68 0.82 

night/early morning 0.85 0.46 0.95 0.71 0.86 

HSPA1B, PER1, PER3, TRIB1, THRA1, MKNK2 

 Predicted time category AUC sens spec ppv npv 

morning/noon  0.75 0.51 0.90 0.71 0.79 

afternoon/evening  0.80 0.83 0.69 0.68 0.84 

night/early morning 0.93 0.78 0.94 0.79 0.93 

MKNK2, HSPA1B, PER3, melatonin & cortisol 

 Predicted time category AUC sens spec ppv npv 

morning/noon  0.88 0.73 0.91 0.80 0.87 

afternoon/evening  0.88 0.79 0.79 0.75 0.83 

night/early morning 0.95 0.75 0.93 0.75 0.93 
 AUC – area under the receiver operating characteristic (ROC) curves; PPV – positive predictive value; NPV – 

negative predictive value, spec – specificity; sens – sensitivity. 

 


