6 research outputs found

    Estimation and validation of temporal gait features using a markerless 2D video system

    Get PDF
    Background and Objective: Estimation of temporal gait features, such as stance time, swing time and gait cycle time, can be used for clinical evaluations of various patient groups having gait pathologies, such as Parkinson’s diseases, neuropathy, hemiplegia and diplegia. Most clinical laboratories employ an optoelectronic motion capture system to acquire such features. However, the operation of these systems requires specially trained operators, a controlled environment and attaching reflective markers to the patient’s body. To allow the estimation of the same features in a daily life setting, this paper presents a novel vision based system whose operation does not require the presence of skilled technicians or markers and uses a single 2D camera. Method: The proposed system takes as input a 2D video, computes the silhouettes of the walking person, and then estimates key biomedical gait indicators, such as the initial foot contact with the ground and the toe off instants, from which several other temporal gait features can be derived. Results: The proposed system is tested on two datasets: (i) a public gait dataset made available by CASIA, which contains 20 users, with 4 sequences per user; and (ii) a dataset acquired simultaneously by a marker-based optoelectronic motion capture system and a simple 2D video camera, containing 10 users, with 5 sequences per user. For the CASIA gait dataset A the relevant temporal biomedical gait indicators were manually annotated, and the proposed automated video analysis system achieved an accuracy of 99% on their identification. It was able to obtain accurate estimations even on segmented silhouettes where, the state-of-the-art markerless 2D video based systems fail. For the second database, the temporal features obtained by the proposed system achieved an average intra-class correlation coefficient of 0.86, when compared to the "gold standard" optoelectronic motion capture system. Conclusions: The proposed markerless 2D video based system can be used to evaluate patients’ gait without requiring the usage of complex laboratory settings and without the need for physical attachment of sensors/markers to the patients. The good accuracy of the results obtained suggests that the proposed system can be used as an alternative to the optoelectronic motion capture system in non-laboratory environments, which can be enable more regular clinical evaluations.info:eu-repo/semantics/acceptedVersio

    Markerless Kinematics of Pediatric Manual Wheelchair Mobility

    Get PDF
    Pediatric manual wheelchair users face substantial risk of orthopaedic injury to the upper extremities, particularly the shoulders, during transition to wheelchair use and during growth and development. Propulsion strategy can influence mobility efficiency, activity participation, and quality of life. The current forefront of wheelchair biomechanics research includes translating findings from adult to pediatric populations, improving the quality and efficiency of care under constrained clinical funding, and understanding injury mechanisms and risk factors. Typically, clinicians evaluate wheelchair mobility using marker-based motion capture and instrumentation systems that are precise and accurate but also time-consuming, inconvenient, and expensive for repeated assessments. There is a substantial need for technology that evaluates and improves wheelchair mobility outside of the laboratory to provide better outcomes for wheelchair users, enhancing clinical data. Advancement in this area gives physical therapists better tools and the supporting research necessary to improve treatment efficacy, mobility, and quality of life in pediatric wheelchair users. This dissertation reports on research studies that evaluate the effect of physiotherapeutic training on manual wheelchair mobility. In particular, these studies (1) develop and characterize a novel markerless motion capture-musculoskeletal model systems interface for kinematic assessment of manual wheelchair propulsion biomechanics, (2) conduct a longitudinal investigation of pediatric manual wheelchair users undergoing intensive community-based therapy to determine predictors of kinematic response, and (3) evaluate propulsion pattern-dependent training efficacy and musculoskeletal behavior using visual biofeedback.Results of the research studies show that taking a systems approach to the kinematic interface produces an effective and reliable system for kinematic assessment and training of manual wheelchair propulsion. The studies also show that the therapeutic outcomes and orthopaedic injury risk of pediatric manual wheelchair users are significantly related to the propulsion pattern employed. Further, these subjects can change their propulsion pattern in response to therapy even in the absence of wheelchair-based training, and have pattern-dependent differences in joint kinematics, musculotendon excursion, and training response. Further clinical research in this area is suggested, with a focus on refining physiotherapeutic training strategies for pediatric manual wheelchair users to develop safer and more effective propulsion patterns

    БистСм Π·Π° ΠΏΠΎΠ΄Ρ€ΡˆΠΊΡƒ ΠΎΠ΄Π»ΡƒΡ‡ΠΈΠ²Π°ΡšΡƒ, Π΅Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Ρƒ ΠΈ ΠΏΡ€Π°Ρ›Π΅ΡšΠ΅ ΡΡ‚Π°ΡšΠ° ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Π°Ρ‚Π° ΠΎΠ±ΠΎΠ»Π΅Π»ΠΈΡ… ΠΎΠ΄ Π½Π΅ΡƒΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… болСсти

    Get PDF
    БистСми Π·Π° ΠΏΠΎΠ΄Ρ€ΡˆΠΊΡƒ ΠΊΠ»ΠΈΠ½ΠΈΡ‡ΠΊΠΎΠΌ ΠΎΠ΄Π»ΡƒΡ‡ΠΈΠ²Π°ΡšΡƒ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π°Ρ˜Ρƒ рачунарскС Π°Π»Π°Ρ‚Π΅ који ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π΅Π΄Π½ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° ΠΌΠΎΠ³Ρƒ ΡƒΡ‚ΠΈΡ†Π°Ρ‚ΠΈ Π½Π° доношСњС ΠΎΠ΄Π»ΡƒΠΊΠ° Ρƒ Π²Π΅Π·ΠΈ са ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Ρ‚ΠΈΠΌΠ°. Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ прСдстављСни су ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ ΠΈ Ρ€Π°Π·Π²ΠΎΡ˜ Π½ΠΎΠ²ΠΎΠ³ систСма Π·Π° ΠΏΠΎΠ΄Ρ€ΡˆΠΊΡƒ ΠΎΠ΄Π»ΡƒΡ‡ΠΈΠ²Π°ΡšΡƒ, Π΅Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Ρƒ ΠΈ ΠΏΡ€Π°Ρ›Π΅ΡšΠ΅ ΡΡ‚Π°ΡšΠ° ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Π°Ρ‚Π° ΠΎΠ±ΠΎΠ»Π΅Π»ΠΈΡ… ΠΎΠ΄ Π½Π΅ΡƒΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… болСсти. Анализа ΠΊΠ»ΠΈΠ½ΠΈΡ‡ΠΊΠΈ Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½ΠΈΡ… ΠΈ свакоднСвних ΠΏΠΎΠΊΡ€Π΅Ρ‚Π° Ρ‡ΠΈΠ½ΠΈ основу ΠΎΠ²ΠΎΠ³ систСма. ΠžΠ±Ρ€Π°ΡΡ†ΠΈ ΠΎΠ²ΠΈΡ… ΠΏΠΎΠΊΡ€Π΅Ρ‚Π° снимљСни су ΠΏΠΎΠΌΠΎΡ›Ρƒ Π±Π΅ΠΆΠΈΡ‡Π½ΠΈΡ…, носивих сСнзора ΠΌΠ°Π»ΠΈΡ… димСнзија ΠΈ Ρ‚Π΅ΠΆΠΈΠ½Π΅, који Π½Π΅ Π·Π°Ρ…Ρ‚Π΅Π²Π°Ρ˜Ρƒ ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠΎΠ²Π°Π½Ρƒ поставку ΠΈ ΠΌΠΎΠ³Ρƒ сС Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΠΈ Ρƒ Π±ΠΈΠ»ΠΎ ΠΊΠΎΠΌ ΠΎΠΊΡ€ΡƒΠΆΠ΅ΡšΡƒ. ΠŸΡ€Π²ΠΈ Π΄Π΅ΠΎ систСма намСњСн јС (Ρ€Π°Π½ΠΎΠΌ) ΠΏΡ€Π΅ΠΏΠΎΠ·Π½Π°Π²Π°ΡšΡƒ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½ΠΎΠ²Π΅ болСсти (ΠŸΠ‘) Π½Π° основу Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ…ΠΎΠ΄Π° ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌΠ° Π΄ΡƒΠ±ΠΎΠΊΠΎΠ³ ΡƒΡ‡Π΅ΡšΠ°. Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ су ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π΄Π° јС ΠŸΠ‘ ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Ρ‚Π΅ ΠΌΠΎΠ³ΡƒΡ›Π΅ ΠΏΡ€Π΅ΠΏΠΎΠ·Π½Π°Ρ‚ΠΈ са високом Ρ‚Π°Ρ‡Π½ΠΎΡˆΡ›Ρƒ. Π”Ρ€ΡƒΠ³ΠΈ Π΄Π΅ΠΎ систСма посвСћСн јС ΠΏΡ€Π°Ρ›Π΅ΡšΡƒ симптома ΠŸΠ‘ Π±Ρ€Π°Π΄ΠΈΠΊΠΈΠ½Π΅Π·ΠΈΡ˜Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ Ρ€Π΅Π·ΠΎΠ½ΠΎΠ²Π°ΡšΠ° који сС Π±Π°Π·ΠΈΡ€Π° Π½Π° Π·Π½Π°ΡšΡƒ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π΅Π½Π° јС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π·Π° Π°Π½Π°Π»ΠΈΠ·Ρƒ ΠΏΠΎΠΊΡ€Π΅Ρ‚Π° који сС користС Π·Π° Π΅Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Ρƒ Π±Ρ€Π°Π΄ΠΈΠΊΠΈΠ½Π΅Π·ΠΈΡ˜Π΅. ΠŸΠΎΡ€Π΅Π΄ Ρ‚ΠΎΠ³Π°, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠ±Ρ€Π°Π΄Π΅ сигнала Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π° јС Π½ΠΎΠ²Π° ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠ° Π·Π° ΠΊΠ²Π°Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Π²Π°ΠΆΠ½ΠΈΡ… карактСристика ΠΎΠ²ΠΈΡ… ΠΏΠΎΠΊΡ€Π΅Ρ‚Π°. ΠŸΡ€Π΅Π΄ΠΈΠΊΡ†ΠΈΡ˜Π° стСпСна Ρ€Π°Π·Π²ΠΎΡ˜Π° симптома сС заснива Π½Π° Π½ΠΎΠ²ΠΎΠΌ СкспСртском систСму који Ρƒ потпуности ΠΎΠ±Ρ˜Π΅ΠΊΡ‚ΠΈΠ²ΠΈΠ·ΡƒΡ˜Π΅ ΠΊΠ»ΠΈΠ½ΠΈΡ‡ΠΊΠ΅ Π΅Π²Π°Π»ΡƒΠ°Ρ†ΠΈΠΎΠ½Π΅ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡ˜ΡƒΠΌΠ΅. Π’Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡ˜Π° јС ΡƒΡ€Π°Ρ’Π΅Π½Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ ΠΏΠΎΠΊΡ€Π΅Ρ‚Π° Ρ‚Π°ΠΏΠΊΠ°ΡšΠ° ΠΏΡ€ΡΡ‚ΠΈΡ˜Ρƒ, који јС снимљСн Π½Π° ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Π°Ρ‚ΠΈΠΌΠ° са Ρ‚ΠΈΠΏΠΈΡ‡Π½ΠΈΠΌ ΠΈ Π°Ρ‚ΠΈΠΏΠΈΡ‡Π½ΠΈΠΌ паркинсонизимом. Показана јС висока ΡƒΡΠ°Π³Π»Π°ΡˆΠ΅Π½ΠΎΡΡ‚ Ρƒ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ са ΠΊΠ»ΠΈΠ½ΠΈΡ‡ΠΊΠΈΠΌ ΠΏΠΎΠ΄Π°Ρ†ΠΈΠΌΠ°. РазвијСни систСм јС ΠΎΠ±Ρ˜Π΅ΠΊΡ‚ΠΈΠ²Π°Π½, Π°ΡƒΡ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΎΠ²Π°Π½, Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΎ сС користи, садрТи ΠΈΠ½Ρ‚ΡƒΠΈΡ‚ΠΈΠ²Π°Π½ Π³Ρ€Π°Ρ„ΠΈΡ‡ΠΊΠΈ ΠΈ парамСтарски ΠΏΡ€ΠΈΠΊΠ°Π· Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° ΠΈ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ доприноси ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅ΡšΡƒ ΠΊΠ»ΠΈΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° Π·Π° Π΅Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Ρƒ ΠΈ ΠΏΡ€Π°Ρ›Π΅ΡšΠ΅ ΡΡ‚Π°ΡšΠ° ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Π°Ρ‚Π° са Π½Π΅ΡƒΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΠΌ болСстима.Clinical decision support system represents a computer-aided tool that utilizes advanced technologies for influencing clinical decisions about patients. This dissertation presents research and development of a new decision support system for the assessment of patients with neurodegenerative diseases. The analysis of movements that are part of standard clinical scales or everyday activities represents the basis of the system. These movements are recorded using small and lightweight wearable, wireless sensors, which do not require complicated setup and can be easily applied in any environment. The first part of system is dedicated to the (early) recognition of Parkinson’s disease (PD) based on gait analysis and deep learning algorithms. PD patients could be identified with a high accuracy. The other part of the system is dedicated to the assessment of PD symptoms, more specifically, bradykinesia, utilizing the knowledge-based reasoning. A method for analysis of bradykinesia related movements is defined and presented. Moreover, by applying different signal processing techniques, new metrics have been developed to quantify the essential characteristics of these movements. The prediction of symptom severity was performed using new expert system that completely objectified the clinical evaluation criteria. Validation was performed on the example of the finger-tapping movement of patients with typical and atypical parkinsonism. A high compliance rate was obtained compared to clinical data. The developed system is objective, automated, easy to use, contains an intuitive graphical and parametric presentation of results, and significantly contributes to the improvement of clinical assessment of patients with neurodegenerative diseases
    corecore