7,602 research outputs found

    Monitoring the defoliation of hardwood forests in Pennsylvania using LANDSAT

    Get PDF
    An automated system for conducting annual gypsy moth defoliation surveys using LANDSAT MSS data and digital processing techniques is described. A two-step preprocessing procedure was developed that uses multitemporal data sets representing forest canopy conditions before and after defoliation to create a digital image in which all nonforest cover types are eliminated or masked out of a LANDSAT image that exhibits insect defoliation. A temporal window for defoliation assessment was identified and a statewide data base was established. A data management system to interface image analysis software with the statewide data base was developed and a cost benefit analysis of this operational system was conducted

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Classification of dental x-ray images

    Get PDF
    Forensic dentistry is concerned with identifying people based on their dental records. Forensic specialists have a large number of cases to investigate and hence, it has become important to automate forensic identification systems. The radiographs acquired after a person is deceased are called the Post-mortem (PM) radiographs, and the radiographs acquired while the person is alive are called the Ante-mortem (AM) radiographs. Dental biometrics automatically analyzes dental radiographs to identify the deceased individuals. While, ante mortem (AM) identification is usually possible through comparison of many biometric identifiers, postmortem (PM) identification is impossible using behavioral biometrics (e.g. speech, gait). Moreover, under severe circumstances, such as those encountered in mass disasters (e.g. airplane crashes and natural disasters such as Tsunami) most physiological biometrics may not be employed for identification, because of the decay of soft tissues of the body to unidentifiable states. Under such circumstances, the best candidates for postmortem biometric identification are the dental features because of their survivability and diversity.;In my work, I present two different techniques to classify periapical images as maxilla (upper jaw) or mandible (lower jaw) images and we show a third technique to classify dental bitewing images as horizontally flipped/rotated or horizontally un-flipped/un-rotated. In our first technique I present an algorithm to classify whether a given dental periapical image is of a maxilla (upper jaw) or a mandible (lower jaw) using texture analysis of the jaw bone. While the bone analysis method is manual, in our second technique, I propose an automated approach for the identification of dental periapical images using the crown curve detection Algorithm. The third proposed algorithm works in an automated manner for a large number of database comprised of dental bitewing images. Each dental bitewing image in the data base can be classified as a horizontally flipped or un-flipped image in a time efficient manner

    Informative sample generation using class aware generative adversarial networks for classification of chest Xrays

    Full text link
    Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an active learning (AL) framework to select most informative samples for training our model using a Bayesian neural network. Informative samples are then used within a novel class aware generative adversarial network (CAGAN) to generate realistic chest xray images for data augmentation by transferring characteristics from one class label to another. Experiments show our proposed AL framework is able to achieve state-of-the-art performance by using about 35%35\% of the full dataset, thus saving significant time and effort over conventional methods
    corecore