12 research outputs found

    Bayesian Online Multitask Learning of Gaussian Processes

    Full text link

    Online Learning with Multiple Operator-valued Kernels

    Full text link
    We consider the problem of learning a vector-valued function f in an online learning setting. The function f is assumed to lie in a reproducing Hilbert space of operator-valued kernels. We describe two online algorithms for learning f while taking into account the output structure. A first contribution is an algorithm, ONORMA, that extends the standard kernel-based online learning algorithm NORMA from scalar-valued to operator-valued setting. We report a cumulative error bound that holds both for classification and regression. We then define a second algorithm, MONORMA, which addresses the limitation of pre-defining the output structure in ONORMA by learning sequentially a linear combination of operator-valued kernels. Our experiments show that the proposed algorithms achieve good performance results with low computational cost

    Learning Output Kernels for Multi-Task Problems

    Full text link
    Simultaneously solving multiple related learning tasks is beneficial under a variety of circumstances, but the prior knowledge necessary to correctly model task relationships is rarely available in practice. In this paper, we develop a novel kernel-based multi-task learning technique that automatically reveals structural inter-task relationships. Building over the framework of output kernel learning (OKL), we introduce a method that jointly learns multiple functions and a low-rank multi-task kernel by solving a non-convex regularization problem. Optimization is carried out via a block coordinate descent strategy, where each subproblem is solved using suitable conjugate gradient (CG) type iterative methods for linear operator equations. The effectiveness of the proposed approach is demonstrated on pharmacological and collaborative filtering data

    Gaussian process regression for forecasting battery state of health

    Full text link
    Accurately predicting the future capacity and remaining useful life of batteries is necessary to ensure reliable system operation and to minimise maintenance costs. The complex nature of battery degradation has meant that mechanistic modelling of capacity fade has thus far remained intractable; however, with the advent of cloud-connected devices, data from cells in various applications is becoming increasingly available, and the feasibility of data-driven methods for battery prognostics is increasing. Here we propose Gaussian process (GP) regression for forecasting battery state of health, and highlight various advantages of GPs over other data-driven and mechanistic approaches. GPs are a type of Bayesian non-parametric method, and hence can model complex systems whilst handling uncertainty in a principled manner. Prior information can be exploited by GPs in a variety of ways: explicit mean functions can be used if the functional form of the underlying degradation model is available, and multiple-output GPs can effectively exploit correlations between data from different cells. We demonstrate the predictive capability of GPs for short-term and long-term (remaining useful life) forecasting on a selection of capacity vs. cycle datasets from lithium-ion cells.Comment: 13 pages, 7 figures, published in the Journal of Power Sources, 201

    Learning in the Wild with Incremental Skeptical Gaussian Processes

    Full text link
    The ability to learn from human supervision is fundamental for personal assistants and other interactive applications of AI. Two central challenges for deploying interactive learners in the wild are the unreliable nature of the supervision and the varying complexity of the prediction task. We address a simple but representative setting, incremental classification in the wild, where the supervision is noisy and the number of classes grows over time. In order to tackle this task, we propose a redesign of skeptical learning centered around Gaussian Processes (GPs). Skeptical learning is a recent interactive strategy in which, if the machine is sufficiently confident that an example is mislabeled, it asks the annotator to reconsider her feedback. In many cases, this is often enough to obtain clean supervision. Our redesign, dubbed ISGP, leverages the uncertainty estimates supplied by GPs to better allocate labeling and contradiction queries, especially in the presence of noise. Our experiments on synthetic and real-world data show that, as a result, while the original formulation of skeptical learning produces over-confident models that can fail completely in the wild, ISGP works well at varying levels of noise and as new classes are observed.Comment: 7 pages, 3 figures, code: https://gitlab.com/abonte/incremental-skeptical-g

    A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data

    Get PDF
    The ability to determine patient acuity (or severity of illness) has immediate practical use for clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled clinical data, including both physiological signals and clinical notes. The learned multi-task GP (MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments were conducted with two real clinical data sets acquired from ICU patients: firstly, estimating cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic brain injury patients, by learning the interactions between intracranial pressure and mean arterial blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both cases, MTGPs provided improved results: an MTGP model provided better results than single-task GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP hyperparameters obtained improved results when used as additional classification features (0.812 vs 0.788 AUC).Intel Science and Technology Center for Big DataNational Institutes of Health. (U.S.). National Library of Medicine (Biomedical Informatics Research Training Grant NIH/NLM 2T15 LM007092-22)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 Grant EB001659)Singapore. Agency for Science, Technology and Research (Graduate Scholarship

    Nonparametric Bayesian Mixed-effect Model: a Sparse Gaussian Process Approach

    Full text link
    Multi-task learning models using Gaussian processes (GP) have been developed and successfully applied in various applications. The main difficulty with this approach is the computational cost of inference using the union of examples from all tasks. Therefore sparse solutions, that avoid using the entire data directly and instead use a set of informative "representatives" are desirable. The paper investigates this problem for the grouped mixed-effect GP model where each individual response is given by a fixed-effect, taken from one of a set of unknown groups, plus a random individual effect function that captures variations among individuals. Such models have been widely used in previous work but no sparse solutions have been developed. The paper presents the first sparse solution for such problems, showing how the sparse approximation can be obtained by maximizing a variational lower bound on the marginal likelihood, generalizing ideas from single-task Gaussian processes to handle the mixed-effect model as well as grouping. Experiments using artificial and real data validate the approach showing that it can recover the performance of inference with the full sample, that it outperforms baseline methods, and that it outperforms state of the art sparse solutions for other multi-task GP formulations.Comment: Preliminary version appeared in ECML201

    A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data

    Get PDF
    The ability to determine patient acuity (or severity of illness) has immediate practical use for clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled clinical data, including both physiological signals and clinical notes. The learned multi-task GP (MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments were conducted with two real clinical data sets acquired from ICU patients: firstly, estimating cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic brain injury patients, by learning the interactions between intracranial pressure and mean arterial blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both cases, MTGPs provided improved results: an MTGP model provided better results than single-task GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP hyperparameters obtained improved results when used as additional classification features (0.812 vs 0.788 AUC).Intel Science and Technology Center for Big DataNational Institutes of Health. (U.S.). National Library of Medicine (Biomedical Informatics Research Training Grant NIH/NLM 2T15 LM007092-22)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 Grant EB001659)Singapore. Agency for Science, Technology and Research (Graduate Scholarship
    corecore