6,840 research outputs found

    Bayesian Nonparametric Inference of Switching Linear Dynamical Systems

    Get PDF
    Many complex dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our Bayesian nonparametric approach utilizes a hierarchical Dirichlet process prior to learn an unknown number of persistent, smooth dynamical modes. We additionally employ automatic relevance determination to infer a sparse set of dynamic dependencies allowing us to learn SLDS with varying state dimension or switching VAR processes with varying autoregressive order. We develop a sampling algorithm that combines a truncated approximation to the Dirichlet process with efficient joint sampling of the mode and state sequences. The utility and flexibility of our model are demonstrated on synthetic data, sequences of dancing honey bees, the IBOVESPA stock index, and a maneuvering target tracking application.Comment: 50 pages, 7 figure

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    A Bayesian Nonparametric Markovian Model for Nonstationary Time Series

    Full text link
    Stationary time series models built from parametric distributions are, in general, limited in scope due to the assumptions imposed on the residual distribution and autoregression relationship. We present a modeling approach for univariate time series data, which makes no assumptions of stationarity, and can accommodate complex dynamics and capture nonstandard distributions. The model for the transition density arises from the conditional distribution implied by a Bayesian nonparametric mixture of bivariate normals. This implies a flexible autoregressive form for the conditional transition density, defining a time-homogeneous, nonstationary, Markovian model for real-valued data indexed in discrete-time. To obtain a more computationally tractable algorithm for posterior inference, we utilize a square-root-free Cholesky decomposition of the mixture kernel covariance matrix. Results from simulated data suggest the model is able to recover challenging transition and predictive densities. We also illustrate the model on time intervals between eruptions of the Old Faithful geyser. Extensions to accommodate higher order structure and to develop a state-space model are also discussed

    Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments

    Get PDF
    Optical microscopy provides rich spatio-temporal information characterizing in vivo molecular motion. However, effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study focuses on techniques for analyzing Single Particle Tracking (SPT) data experiencing abrupt state changes. We demonstrate the approach on GFP tagged chromatids experiencing metaphase in yeast cells and probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes are induced by factors such as microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, etc. Simulations are used to demonstrate the relevance of the approach in more general SPT data analyses. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and subjective information.Comment: 25 pages, 6 figures. Differs only typographically from PLoS One publication available freely as an open-access article at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.013763

    A flexible approach to parametric inference in nonlinear time series models

    Get PDF
    Many structural break and regime-switching models have been used with macroeconomic and ā€¦nancial data. In this paper, we develop an extremely flexible parametric model which can accommodate virtually any of these speciā€¦cations and does so in a simple way which allows for straightforward Bayesian inference. The basic idea underlying our model is that it adds two simple concepts to a standard state space framework. These ideas are ordering and distance. By ordering the data in various ways, we can accommodate a wide variety of nonlinear time series models, including those with regime-switching and structural breaks. By allowing the state equation variances to depend on the distance between observations, the parameters can evolve in a wide variety of ways, allowing for everything from models exhibiting abrupt change (e.g. threshold autoregressive models or standard structural break models) to those which allow for a gradual evolution of parameters (e.g. smooth transition autoregressive models or time varying parameter models). We show how our model will (approximately) nest virtually every popular model in the regime-switching and structural break literatures. Bayesian econometric methods for inference in this model are developed. Because we stay within a state space framework, these methods are relatively straightforward, drawing on the existing literature. We use artiā€¦cial data to show the advantages of our approach, before providing two empirical illustrations involving the modeling of real GDP growth

    Online Discrimination of Nonlinear Dynamics with Switching Differential Equations

    Full text link
    How to recognise whether an observed person walks or runs? We consider a dynamic environment where observations (e.g. the posture of a person) are caused by different dynamic processes (walking or running) which are active one at a time and which may transition from one to another at any time. For this setup, switching dynamic models have been suggested previously, mostly, for linear and nonlinear dynamics in discrete time. Motivated by basic principles of computations in the brain (dynamic, internal models) we suggest a model for switching nonlinear differential equations. The switching process in the model is implemented by a Hopfield network and we use parametric dynamic movement primitives to represent arbitrary rhythmic motions. The model generates observed dynamics by linearly interpolating the primitives weighted by the switching variables and it is constructed such that standard filtering algorithms can be applied. In two experiments with synthetic planar motion and a human motion capture data set we show that inference with the unscented Kalman filter can successfully discriminate several dynamic processes online

    A flexible approach to parametric inference in nonlinear and time varying time series models

    Get PDF
    Many structural break and regime-switching models have been used with macroeconomic and ā€¦nancial data. In this paper, we develop an extremely flexible parametric model which can accommodate virtually any of these speciā€¦cations and does so in a simple way which allows for straightforward Bayesian inference. The basic idea underlying our model is that it adds two simple concepts to a standard state space framework. These ideas are ordering and distance. By ordering the data in various ways, we can accommodate a wide variety of nonlinear time series models, including those with regime-switching and structural breaks. By allowing the state equation variances to depend on the distance between observations, the parameters can evolve in a wide variety of ways, allowing for everything from models exhibiting abrupt change (e.g. threshold autoregressive models or standard structural break models) to those which allow for a gradual evolution of parameters (e.g. smooth transition autoregressive models or time varying parameter models). We show how our model will (approximately) nest virtually every popular model in the regime-switching and structural break literatures. Bayesian econometric methods for inference in this model are developed. Because we stay within a state space framework, these methods are relatively straightforward, drawing on the existing literature. We use artiā€¦cial data to show the advantages of our approach, before providing two empirical illustrations involving the modeling of real GDP growth
    • ā€¦
    corecore