1,058 research outputs found

    Bayesian interpolation

    Get PDF
    Although Bayesian analysis has been in use since Laplace, the Bayesian method of model-comparison has only recently been developed in depth. In this paper, the Bayesian approach to regularization and model-comparison is demonstrated by studying the inference problem of interpolating noisy data. The concepts and methods described are quite general and can be applied to many other data modeling problems. Regularizing constants are set by examining their posterior probability distribution. Alternative regularizers (priors) and alternative basis sets are objectively compared by evaluating the evidence for them. “Occam's razor” is automatically embodied by this process. The way in which Bayes infers the values of regularizing constants and noise levels has an elegant interpretation in terms of the effective number of parameters determined by the data set. This framework is due to Gull and Skilling

    Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model

    Get PDF
    In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss–Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments

    A variational Bayesian method for inverse problems with impulsive noise

    Full text link
    We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm.Comment: 20 pages, to appear in J. Comput. Phy
    • …
    corecore