7,367 research outputs found

    Bayesian Estimation of Turbulent Motion

    Full text link

    Self-similar prior and wavelet bases for hidden incompressible turbulent motion

    Get PDF
    This work is concerned with the ill-posed inverse problem of estimating turbulent flows from the observation of an image sequence. From a Bayesian perspective, a divergence-free isotropic fractional Brownian motion (fBm) is chosen as a prior model for instantaneous turbulent velocity fields. This self-similar prior characterizes accurately second-order statistics of velocity fields in incompressible isotropic turbulence. Nevertheless, the associated maximum a posteriori involves a fractional Laplacian operator which is delicate to implement in practice. To deal with this issue, we propose to decompose the divergent-free fBm on well-chosen wavelet bases. As a first alternative, we propose to design wavelets as whitening filters. We show that these filters are fractional Laplacian wavelets composed with the Leray projector. As a second alternative, we use a divergence-free wavelet basis, which takes implicitly into account the incompressibility constraint arising from physics. Although the latter decomposition involves correlated wavelet coefficients, we are able to handle this dependence in practice. Based on these two wavelet decompositions, we finally provide effective and efficient algorithms to approach the maximum a posteriori. An intensive numerical evaluation proves the relevance of the proposed wavelet-based self-similar priors.Comment: SIAM Journal on Imaging Sciences, 201

    Bayesian Methods for Analysis and Adaptive Scheduling of Exoplanet Observations

    Full text link
    We describe work in progress by a collaboration of astronomers and statisticians developing a suite of Bayesian data analysis tools for extrasolar planet (exoplanet) detection, planetary orbit estimation, and adaptive scheduling of observations. Our work addresses analysis of stellar reflex motion data, where a planet is detected by observing the "wobble" of its host star as it responds to the gravitational tug of the orbiting planet. Newtonian mechanics specifies an analytical model for the resulting time series, but it is strongly nonlinear, yielding complex, multimodal likelihood functions; it is even more complex when multiple planets are present. The parameter spaces range in size from few-dimensional to dozens of dimensions, depending on the number of planets in the system, and the type of motion measured (line-of-sight velocity, or position on the sky). Since orbits are periodic, Bayesian generalizations of periodogram methods facilitate the analysis. This relies on the model being linearly separable, enabling partial analytical marginalization, reducing the dimension of the parameter space. Subsequent analysis uses adaptive Markov chain Monte Carlo methods and adaptive importance sampling to perform the integrals required for both inference (planet detection and orbit measurement), and information-maximizing sequential design (for adaptive scheduling of observations). We present an overview of our current techniques and highlight directions being explored by ongoing research.Comment: 29 pages, 11 figures. An abridged version is accepted for publication in Statistical Methodology for a special issue on astrostatistics, with selected (refereed) papers presented at the Astronomical Data Analysis Conference (ADA VI) held in Monastir, Tunisia, in May 2010. Update corrects equation (3

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Autonomous search for a diffusive source in an unknown environment

    Full text link
    The paper presents an approach to olfactory search for a diffusive emitting source of tracer (e.g. aerosol, gas) in an environment with unknown map of randomly placed and shaped obstacles. The measurements of tracer concentration are sporadic, noisy and without directional information. The search domain is discretised and modelled by a finite two-dimensional lattice. The links is the lattice represent the traversable paths for emitted particles and for the searcher. A missing link in the lattice indicates a blocked paths, due to the walls or obstacles. The searcher must simultaneously estimate the source parameters, the map of the search domain and its own location within the map. The solution is formulated in the sequential Bayesian framework and implemented as a Rao-Blackwellised particle filter with information-driven motion control. The numerical results demonstrate the concept and its performance.Comment: 11 pages, 7 figure

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore