443 research outputs found

    Energy Awareness and Scheduling in Mobile Devices and High End Computing

    Get PDF
    In the context of the big picture as energy demands rise due to growing economies and growing populations, there will be greater emphasis on sustainable supply, conservation, and efficient usage of this vital resource. Even at a smaller level, the need for minimizing energy consumption continues to be compelling in embedded, mobile, and server systems such as handheld devices, robots, spaceships, laptops, cluster servers, sensors, etc. This is due to the direct impact of constrained energy sources such as battery size and weight, as well as cooling expenses in cluster-based systems to reduce heat dissipation. Energy management therefore plays a paramount role in not only hardware design but also in user-application, middleware and operating system design. At a higher level Datacenters are sprouting everywhere due to the exponential growth of Big Data in every aspect of human life, the buzz word these days is Cloud computing. This dissertation, focuses on techniques, specifically algorithmic ones to scale down energy needs whenever the system performance can be relaxed. We examine the significance and relevance of this research and develop a methodology to study this phenomenon. Specifically, the research will study energy-aware resource reservations algorithms to satisfy both performance needs and energy constraints. Many energy management schemes focus on a single resource that is dedicated to real-time or nonreal-time processing. Unfortunately, in many practical systems the combination of hard and soft real-time periodic tasks, a-periodic real-time tasks, interactive tasks and batch tasks must be supported. Each task may also require access to multiple resources. Therefore, this research will tackle the NP-hard problem of providing timely and simultaneous access to multiple resources by the use of practical abstractions and near optimal heuristics aided by cooperative scheduling. We provide an elegant EAS model which works across the spectrum which uses a run-profile based approach to scheduling. We apply this model to significant applications such as BLAT and Assembly of gene sequences in the Bioinformatics domain. We also provide a simulation for extending this model to cloud computing to answers “what if” scenario questions for consumers and operators of cloud resources to help answers questions of deadlines, single v/s distributed cluster use and impact analysis of energy-index and availability against revenue and ROI

    Battery Aware Dynamic Scheduling for Periodic Task Graphs

    Get PDF
    Battery lifetime is a primary design constraint for mobile embedded systems. It has been shown to depend heavily on the load current profile (i.e. evolution of the current drawn over time). However, up to now, very few low-power scheduling policies take this fact into account. We explore how scheduling guidelines drawn from battery models can help in the extension of battery capacity. We proposed a 'Battery-Aware Scheduling' methodology for periodically arriving task-graphs (Directed Acyclic Graph) with real time deadlines and precedence constraints. The methodology presented divides the problem into two steps. First, a good DVS algorithms dynamically determines the minimum frequency of execution. Then, a greedy algorithm allows a near optimal priority function to choose the task which would maximize slack recovery. Battery simulations carried out on the profile generated by our approach for a large set of task-graphs show that battery life time is extended up to 23.3% compared to existing dynamic scheduling schemes

    Energy efficient scheduling techniques for real-time embedded systems

    Get PDF
    Battery-powered portable embedded systems have been widely used in many applications. These embedded systems have to concurrently perform a multitude of complex tasks under stringent time constraints. As these systems become more complex and incorporate more functionality, they became more power-hungry. Thus, reducing power consumption and extending battery lifespan while guaranteeing the timing constraints has became a critical aspect in designing such systems. This gives rise to three aspects of research: (i) Guaranteeing the execution of the hard real-time tasks by their deadlines, (ii) Determining the minimum voltage under which each task can be executed, and (iii) Techniques to take advantage of run-time variations in the execution times of tasks. In this research, we present techniques that address the above aspects in single and multi processor embedded systems. We study the performance of the proposed techniques on various benchmarks in terms of energy savings

    Block level voltage

    Get PDF
    Over the past years, state-of-art power optimization methods move towards higher abstraction levels that result in more efficient power savings. Among existing power optimization approaches, dynamic power management (DPM) is considered to be one of the most effective strategies. Depending on abstraction levels, DPM can be implemented in different formats but here we focus on scheduling that is more suitable for real-time system design use. This differs from the concurrent scheduling approaches that start from either the HLS (High-Level Synthesis) or RTS (Real-Time System) point of view, we propose a synergy solution of both approaches, namely block-level voltage/frequency scheduling (BLVFS). The presented block-level voltage/ frequency scheduling approach shows a generic solution for low power SoC (System on Chip) system design while the approaches which belong to the HLS and RTS categories have a strong dependency on the system functionalities. Consider a SoC as a combination of heterogeneous functional blocks, our approach provides efficient power savings by dynamically scheduling the scaling of voltage and frequency at the same time. Simulation results indicate that by using heuristic based strategies significant power savings can be achieved

    Rechargeable battery modeling and lifetime optimization

    Get PDF
    Battery lifetime is one of the most important design considerations in rechargeable battery operated devices. Understanding the battery nonlinear properties is essential for appropriate battery modeling. Optimizing the battery lifetime depends greatly on the discharge current profile. Changing the profile shape can be done through averaging techniques, scheduling techniques, introducing recovery periods, etc. This work investigates the different techniques that can be used to enhance the battery lifetime. It is shown that 15-60% of lifetime savings can be achieved through using average current profile instead of variable current profile. This work also provides a comparison between different configuration techniques for multi-cell systems. Also, a new hybrid battery model is introduced which combines the battery electric circuit characteristics together with the nonlinear battery properties

    Multiple voltage scheme with frequency variation for power minimization of pipelined circuits at high-level synthesis

    Full text link
    High-Level Synthesis (HLS) is defined as a translation process from a behavioral description into structural description. The high-level synthesis process consists of three interdependent phases: scheduling, allocation and binDing The order of the three phases varies depending on the design flow. There are three important quality measures used to support design decision, namely size, performance and power consumption. Recently, with the increase in portability, the power consumption has become a very dominant factor in the design of circuits. The aim of low-power high-level synthesis is to schedule operations to minimize switching activity and select low power modules while satisfying timing constraints. This thesis presents a heuristic that helps minimize power consumption by operating the functional units at multiple voltages and varied clock frequencies. The algorithm presented here deals with pipelined operations where multiple instance of the same operation are carried out. The algorithm was implemented using C++, on LINUX platform

    System-level power optimization:techniques and tools

    Get PDF
    This tutorial surveys design methods for energy-efficient system-level design. We consider electronic sytems consisting of a hardware platform and software layers. We consider the three major constituents of hardware that consume energy, namely computation, communication, and storage units, and we review methods of reducing their energy consumption. We also study models for analyzing the energy cost of software, and methods for energy-efficient software design and compilation. This survery is organized around three main phases of a system design: conceptualization and modeling design and implementation, and runtime management. For each phase, we review recent techniques for energy-efficient design of both hardware and software

    Energy-Centric Scheduling for Real-Time Systems

    Get PDF
    Energy consumption is today an important design issue for all kinds of digital systems, and essential for the battery operated ones. An important fraction of this energy is dissipated on the processors running the application software. To reduce this energy consumption, one may, for instance, lower the processor clock frequency and supply voltage. This, however, might lead to a performance degradation of the whole system. In real-time systems, the crucial issue is timing, which is directly dependent on the system speed. Real-time scheduling and energy efficiency are therefore tightly connected issues, being addressed together in this work. Several scheduling approaches for low energy are described in the thesis, most targeting variable speed processor architectures. At task level, a novel speed scheduling algorithm for tasks with probabilistic execution pattern is introduced and compared to an already existing compile-time approach. For task graphs, a list-scheduling based algorithm with an energy-sensitive priority is proposed. For task sets, off-line methods for computing the task maximum required speeds are described, both for rate-monotonic and earliest deadline first scheduling. Also, a run-time speed optimization policy based on slack re-distribution is proposed for rate-monotonic scheduling. Next, an energy-efficient extension of the earliest deadline first priority assignment policy is proposed, aimed at tasks with probabilistic execution time. Finally, scheduling is examined in conjunction with assignment of tasks to processors, as parts of various low energy design flows. For some of the algorithms given in the thesis, energy measurements were carried out on a real hardware platform containing a variable speed processor. The results confirm the validity of the initial assumptions and models used throughout the thesis. These experiments also show the efficiency of the newly introduced scheduling methods

    A coarse-grained dynamically reconfigurable MAC processor for power-sensitive multi-standard devices

    Get PDF
    DRMP, a Dynamically Reconfigurable MAC Processor, is an innovative, dynamically reconfigurable System-on-Chip architecture. The architecture exploits substantial overlaps in the functionality of different wireless MAC layers. Its flexibility is specialized for addressing the requirements of the MAC layer of wireless standards. It is targeted at consumer, multi-standard, handheld devices, and its design is meant to address the balance of flexibility and power-efficiency that this target market demands. The DRMP reconfigures packet-by-packet on the fly, allowing execution of concurrent protocol modes on a single hardware co-processor. An interrupt-driven programming model has also been presented and shown to implement the protocol state-machine of the three protocols on a CPU. These features will allow the DRMP to replace three MAC processors in a hand-held device. The most innovative component of the DRMP architecture is its Interface and Reconfiguration Controller. It uses a combination of asynchronous controllers to dynamically reconfigure the functional units in the architecture and delegate MAC tasks to them. The architecture has been modeled in Simulink at cycle-approximate abstraction. Results of simulations involving transmission and reception of packets have been presented, showing that the platform concurrently handles three protocol streams, reconfigures dynamically, yet meets and exceeds the protocol timing constraints, all at a moderate frequency. Its heterogeneous and coarse-grained functional units, limited connectivity requirements between these units, and proportionally large time that these resources are idle, promise a very modest power-consumption, suitable for mobile devices, while offering flexibility to implement different MAC protocols
    corecore