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ABSTRACT 

 

Energy Efficient Scheduling Techniques for Real-Time Embedded Systems.  

(May   2004) 

Rajesh Babu Prathipati, B.Tech., R.E.C. Warangal, India 

Chair of Advisory Committee: Dr. Rabi N. Mahapatra 
 
 
 

Battery-powered portable embedded systems have been widely used in many 

applications. These embedded systems have to concurrently perform a multitude of 

complex tasks under stringent time constraints. As these systems become more complex 

and incorporate more functionality, they became more power-hungry. Thus, reducing 

power consumption and extending battery lifespan while guaranteeing the timing 

constraints has became a critical aspect in designing such systems. This gives rise to 

three aspects of research: (i) Guaranteeing the execution of the hard real-time tasks by 

their deadlines, (ii) Determining the minimum voltage under which each task can be 

executed, and (iii) Techniques to take advantage of run-time variations in the execution 

times of tasks. In this research, we present techniques that address the above aspects in 

single and multi processor embedded systems. We study the performance of the 

proposed techniques on various benchmarks in terms of energy savings.
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CHAPTER I 

 

INTRODUCTION 

The rapid progress in semiconductor technology has led to higher chip density 

and operation frequency, making today’s systems more complex and power-hungry. 

The power consumption of microprocessors has increased almost linearly with area-

frequency product over the years. Such high power consumption requires expensive 

packaging and cooling techniques given that insufficient cooling leads to high operating 

temperatures, which tend to exacerbate several silicon failures. To maintain the 

reliability of their products, and avoid expensive packaging and cooling techniques, 

manufacturers are now under strong pressure to reduce the power dissipation of their 

products.  

The advent of portable systems has also emphasized the importance of efficient 

use of energy as a major design objective. This is due to several concerns. The 

convenience of using a portable system relies heavily on its recharging interval. A 

system that requires frequent recharging is inconvenient and hence limits the user’s 

overall satisfaction in using the product. Clearly, power has become a major 

consideration in the design of today’s applications due to portability, reliability, and 

cost concerns. For many years to come, the search for low power and voltage 
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 techniques will continue.  The answers to this ever-increasing demand are the system-

level, architectural-level, and circuit-level low power techniques [29]. 

 

A. MICROPROCESSOR AND ENERGY CONSUMPTION 

 In recent years, processor performance has increased at the expense of 

drastically increased power consumption [18]. The average power dissipation, pav, in 

microprocessors is due to three components: 

 
pav = pcap + pleak + pshort  ……………………..………………………………….           (1) 

 
where pav, pleak, and pshort  represent capacitive switching power, leakage power, and 

short-circuit power respectively. The capacitive switching power, pcap, depends on the 

transition activity ‘alpha’, switched capacitance Cl, the supply voltage vdd, and the clock 

frequency ‘f’. It can be expressed as  

 
pcap = α . Cl . V2

dd . f   …………………………………………………………..           (2) 

 
The leakage power is due to the sub threshold behavior of MOSFETs and is expressed 

as  

 
pleak = Ileak . Vdd  ………………………………………………………………….        (3) 

 
Where Ileak is the leakage current. 
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The short-circuit power is due to the flow of current from power supply to the ground 

for short moment during node transitions between logic states ‘0’ and ‘1’ [20] and is 

given by    

 
 pshort  = 0.5  .  α . (tr . Ishort,max,r/f  +  tf . Ishort,max,r/f) . Vdd . f  ………………………….        (4) 

 
The processor clock frequency, f, can be expressed in terms of supply voltage vdd, and 

threshold voltage vt, as follows: 

 
f = k. (vdd – vt)2 / vdd   ………………………………………..    (5)

 
From equation (2), we can see that there is a quadratic dependence between the supply 

voltage and the capacitive switching power. Therefore, reducing the supply voltage is 

an effective means for the reduction of processor power consumption. In recent years, 

processors running on multiple supply voltages have become available [19]. The supply 

voltage of the processor may be adjusted dynamically for many applications to reduce 

the processor power consumption while meeting the deadlines [1]. 

 

B. MOTIVATION 

 High complexity and performance has led to increased power consumption. 

Recent studies have shown that the processor power consumption has increased almost 

linearly with the performance. Such high power consumption resulted in high operating 

temperatures, which exacerbated the chip failures.  These reliability concerns have put a 

special emphasis on low power design. The portability and user convenience of battery-
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powered portable systems has also emphasized the low-power design. System designers 

are on a look for even better low-power techniques to combat the high manufacturing 

costs and also to improve the reliability and user convenience of their systems.  This 

need for low-power techniques has led to increased research. 

 

C. CONTRIBUTIONS OF THIS THESIS 

The contributions of this thesis are as follows: 

1. A low-power scheduling technique for single processor is presented that 

considers task sets with arbitrary response times. While most of the approaches consider 

task deadline to be less than or equal to its period, we address the tasks that have no 

such restrictions.  

2.  Introduced a connection-based task execution approach for distributed 

systems to model low power. The proposed approach effectively distributes the slack 

available in the connection among the nodes to increase the worst-case delay tolerable 

by the messages of a connection at the nodes involved in the connection. The proposed 

approach also adapts the clock speed periodically to take advantage of run-time 

variations.  
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CHAPTER II 

 

BACKGROUND 

A. INTRODUCTION 

An increasing amount of system functionality tends to be realized through 

software, which is leveraged by the high performance of microprocessors. As a result, 

system-level power reduction techniques, especially at operating systems level, are 

becoming relevant.  The system level power reduction techniques can be broadly 

divided in to two types [2]. The first one is known as dynamic power management 

where the processor is put in power-down mode during idle intervals where only certain 

parts like clock generation and timing circuit are kept running. The second one is low-

power scheduling technique where the processor speed is dynamically varied according 

to the computational demands. This method requires the use of variable supply voltage 

to reduce the processor power consumption. A number of techniques have been 

proposed to reduce the system-level power consumption.  

A detailed taxonomy of the system-level power management techniques is given 

in section B. A detailed discussion of the energy efficient scheduling techniques that has 

been proposed so far for single processor systems is given in section C. A review of the 

research work on low power scheduling in multiprocessor systems is given in Section 

D. Section E briefly discusses the limitations of the existing work and the merits of the 

proposed techniques.  
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B. SYSTEM LEVEL POWER MANAGEMENT TAXONOMY 

 The high level taxonomy of system level power management techniques is 

shown in Figure 1. The techniques of dynamic power management and low power 

scheduling are applied to both the single and multi processor embedded systems with 

fixed or varying task set as shown in Figure 2 and Figure 3 respectively. Fixed task set 

is associated with the systems whose functionality remains constant through out the life 

 

System level power management 

Dynamic power management Low power scheduling (DVS) 

Figure 1:  High-level classification of system level power management 
 
 

time of the system. On the other hand, variable task set is associated with the multi-

mode systems whose functionality can be varied dynamically. As the system mode 

changes, the applications and the corresponding task set associated with it also varies. 

Only limited work [12, 30] has been done so far that employed dynamic power 

management technique. All of this work has been concentrated on single processor 

 

Dynamic Power Management

Fixed Task set Variable Task set

Single processor Multi processor Single processor  Multi processor 

Figure 2: Broad classification of research work on dynamic power management
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systems with fixed task set. Extensive research work has been carried out on low power 

scheduling in single processor embedded systems with fixed task set. As shown in 

Figure 3, this work can be broadly categorized into: 1) real-time systems with tasks 

whose response time is less than or equal to period. 2) real-time with tasks whose 

response time is arbitrary.  

Low Power Scheduling 

Fixed Task Set Variable Task Set 

Single Processor Multi Processor Single Processor Multi Processor 

D ≤ P      periodic

periodic + sporadicNo restrictions  

Figure 3: Broad classification of work on low power scheduling 
 
 

Most of the work that has been done on single processors is targeted on the 

systems with tasks whose response time is less than or equal to the period. As shown in 

Figure 4, this work can be broadly categorized in to: 1) the techniques [24] that address 

multimedia systems that can afford to miss certain percentage of deadlines. 2) The 

techniques that address hard real time systems that can not afford to miss any deadline. 

Most of the work that has been done so far has addressed hard real-time systems with 

periodic and independent tasks [ 2,5,6,,8,9,27]. Only limited work has taken into 

account both the periodic and sporadic tasks [10,11,13]. There is no work that provides 

a general framework that encompasses both periodic task graphs and sporadic tasks. All 



  8 

the work that has been done for multi processor systems has concentrated on fixed task 

systems with periodic and sporadic tasks [ 4,7,21,22,23,26].   

Deadline ≤ Period 

Tolerance to deadline 
i

Hard real time 

No Precedence With Precedence 

Periodic Periodic 

 
Periodic + sporadic Periodic + sporadic 

Figure 4: Broad classification of work on tasks with response time less than or 
equal to the period 

 
 

C. SINGLE PROCESSOR 

A dynamic power management technique that predicts the length of the 

upcoming idle interval is presented in [30]. It uses the idle interval by putting the 

processor in power-down mode. The drawback of this approach is it needs the traces of 

application to determine the predictive formula.  In [9], a power optimization method 

that combines the off-line and on-line components for real-time embedded applications 

on a variable voltage processor is presented. The drawback of this method is that it does 

not maximally exploit the flexibility present in the schedule. It can be easily seen that 

the energy savings can be further improved. Swaminathan et al. has proposed a low-

energy earliest deadline first heuristic [10] that tries to schedule the task with nearest 
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deadline first at a lowest possible voltage. The problem with this approach is that it does 

not guarantee that the required processor speed to meet the deadlines will never be 

greater than the processor clock speed even after accepting the task. In [6] Okuma et al. 

proposed a static voltage assignment technique for each task to minimize the total 

energy consumption. This technique assumes that the task set is statically order-

scheduled in advance. Quan et al. [5] presented a technique that tries to determine the 

minimum constant voltage for each interval. All the jobs that start in an interval will be 

executed at the pre-determined voltage for that interval. An iterative slack distribution 

algorithm to minimize the system energy consumption is proposed in [13]. This 

algorithm takes in to account both periodic and sporadic tasks. An incremental on-line 

heuristic that dynamically adjusts the clock schedule when tasks enter and leave the 

system is proposed in [8].  This heuristic orders tasks according to how tight their 

deadlines are and how often tasks overlap. Hong et al. proposed an on-line scheduling 

algorithm [11] for scheduling the mixed workload of both sporadic and periodic hard 

real-time tasks on variable voltage processor. This technique employs an acceptance test 

on the fly to verify whether a sporadic task can be scheduled with out causing the other 

tasks which are already accepted to miss their deadline. The work in [12] presents 

several dynamic power management policies to enhance the battery-life time. These 

policies are broadly classified in to two: An open-loop policy that takes the decisions 

about shutting down the component independently from battery-voltage measurement. 

Closed-loop policies whose decision rules use to control the state of operation of the 

system are based on the observation of battery’s output voltage. The work in [24] 
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presents several energy reduction techniques for soft real-time applications like 

multimedia that are able to tolerate occasional failures in meeting the deadlines. These 

techniques exploit this tolerance to occasional failure to reduce the system power 

consumption further. An analytical battery model that accurately predicts the battery 

lifetime under various discharge conditions has been proposed in [28]. In this model, 

the tasks are ordered in a sequence that minimizes the cost function to enhance the 

lifetime of the battery. A voltage allocation technique that produces a feasible task 

schedule for tasks with arbitrary arrival-time/deadline constraints is presented in [27].  

This work also addresses the case in which tasks have non-uniform switched 

capacitances. 

 

D. MULTI PROCESSOR 

 Even though there has been extensive work in the literature on the scheduling of 

real-time tasks in an energy-efficient manner on single processor embedded systems, 

relatively little work has been done in the area of multiprocessor embedded systems 

[26]. The work in [3] presents a method for the joint scheduling of distributed complex 

periodic and hard aperiodic tasks in statically scheduled systems. Luo et al. proposed a 

power conscious algorithm [7] for jointly scheduling multi-rate periodic task graphs and 

aperiodic tasks in distributed real-time embedded systems. The algorithm first statically 

schedules the periodic task graphs and then creates the slots in the static schedule to 

accommodate hard aperiodic tasks. The work in [4] employs a list-scheduling algorithm 

to schedule the tasks. It employs a global shifting scheme, which distributes the slack 
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present in the schedule to flatten the discharge power-profile of the system. It then 

performs a series of local schedule transformations starting from an initially valid 

schedule to optimize the discharge current profile. The drawback with the above 

approaches is that they are only suitable to small-scale distributed real-time embedded 

systems.  Zhu et al. proposed a slack reclamation scheme that allows slack sharing 

among processors to effectively reduce the energy consumption of the system [22]. The 

scheme employs a global queue and each processor selects the highest priority task for 

execution from the queue. The approach is limited to homogenous processors that share 

a common memory.  Mishra et al. proposed greedy and gap-filling dynamic power 

management techniques to use the idle periods to execute tasks at reduced speed for 

energy savings [26]. The greedy technique allocates all the available slack on one 

processor to the next expected task running on that processor. The gap-filling technique 

fetches the future ready task and executes it. The execution of the out-of-order task will 

be preempted by the next expected task when it is ready. The approach is only 

applicable to task graphs with a common deadline. The work in [21] presents a static 

schedule algorithm that constructs a variable voltage schedule via critical path analysis 

and task execution order refinement. The approach uses static schedule generated by a 

list-scheduling algorithm. It then distributes the free slack time available in each critical 

path evenly among the tasks involved in the critical path to reduce the system power 

consumption. The approach also guarantees the precedence relationships between the 

tasks. A two-step iterative syntheses approach that partitions, schedules, and voltage 

scales multi-rate task graphs is presented in [23]. The approach considers the processing
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element power profile during the voltage selection for each task. A power-aware 

scheduling algorithm that performs execution order optimization of scheduled events to 

increase the chances of scaling down voltages and frequencies of processing elements is 

presented in [25]. 

 

E. LIMITATIONS AND CONTRIBUTIONS 

 All of the work that has been done on single processor systems has been 

concentrated on systems with periodic and independent tasks. Very limited work exists 

that target the systems with periodic and sporadic tasks. A general frame work that 

encompasses periodic and sporadic tasks is lacking. In this work, we propose a 

technique that addresses periodic task graphs and sporadic tasks with precedence 

constraints. Further, all of the existing work targets the systems with tasks whose 

response time is less than or equal to the period. We take into account the tasks whose 

response time is arbitrary. The later case is particularly important for multimedia 

systems where the deadlines of the tasks are often greater than the period.   

 In this work, we have also introduced a connection based task execution 

approach to model low power in distributed embedded systems. In contrast to the 

existing work that addresses the system with fixed task set, the proposed techniques 

target the systems whose functionality can be configured dynamically. 
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CHAPTER III 

 

ENERGY EFFICIENT SCHEDULING TECHNIQUES FOR SINGLE PROCESSOR 

EMBEDDED SYSTEMS 

A. INTRODUCTION 

As batteries power an increasing number of electronic systems, power efficient 

design of real-time embedded systems become important.  Dynamic voltage scaling and 

power management represents the two system-level techniques to reduce the system 

power consumption and thereby extend the battery lifetime. Dynamic voltage scaling 

refers to dynamically varying the speed of a processor by changing the clock frequency 

along with the supply voltage [22].  Dynamic power management refers to the use of 

power-down modes when the processor is idle to reduce the processor power 

consumption [12].   

Typically, the input specifications of these embedded systems applications are in 

the form of task graphs. A task graph is a directed acyclic graph in which each node is 

associated with a task and each edge is associated with the amount of data that must be 

transferred between the two connected tasks. The task graph is like a data flow graph 

but with higher functional granularity. Task graphs can be periodic or sporadic. Each 

task in a periodic task graph inherits the task graph’s period. Each task in a periodic task 

graph can have a different deadline. For sporadic tasks, generally a minimum inter 

instance arrival interval, τ, denoting the minimum time interval between two 

consecutive instances of a sporadic task is specified [7]. A sporadic task can be invoked 
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for execution at any time and an execution slot must be available at the required time to 

meet the deadline. In our method, we create a periodic execution slot to serve the 

sporadic tasks with out causing the periodic task graphs and other sporadic tasks to miss 

the deadline.   

 Most of the work that has been done so far has concentrated only on periodic 

and independent tasks [2,5,6,8,9,27]. A general framework encompassing periodic and 

sporadic tasks with precedence constraints is lacking. Also, the current work is limited 

to the systems with tasks whose response time is less than the period. However for 

certain multimedia systems where the deadline of tasks is greater than the period, the 

response time of the tasks could be larger than the period. This implies that there could 

be more than one instance of a task active at any point of time. The deadlines of all 

these instances must be guaranteed while determining the minimum speed at which a 

task can be run. However, the existing work assumes that there is only one active 

instance of a task while determining the minimum speed. Consequently, they are limited 

to the systems with tasks whose response time is less than or equal to the period. In this 

work, we take into account of the tasks whose response time could be greater than the 

period. We also consider both periodic task graphs with precedence constraints and 

sporadic tasks. The proposed scheduling method has two components: off-line and on-

line. The “off-line” component determines the lowest possible clock speed for each task 

while guaranteeing the deadlines and precedence constraints. The “on-line” component 

dynamically adjusts the clock speed to take advantage of idle periods and run-time 

variations in the execution time of the tasks. The proposed approach is evaluated on 
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several real-time benchmarks like CNC controller [16], avionics [14] ... Experimental 

results have showed that the proposed approach yields significant energy savings. 

 The rest of the chapter is organized as follows: A brief discussion of the 

preliminaries is given in section B.  The procedure to determine the minimum voltage 

for each task is given in section C. A brief discussion on dynamic power management is 

given in Section D. Section E presents an illustrative example. Section F presents the 

experiments conducted to evaluate the proposed approach. Section G concludes the 

work. 

 

B. PRELIMINARIES 

Each application-specific function executed by an embedded system is made up 

of several sequential and/or concurrent task graphs. Figure 5 shows an example of the 

input specification of typical embedded systems. As discussed earlier each node of a 

task graph represents a task. A periodic real-time task is characterized by (ϕ, P, e, D), 

where  

• P – represents the period between the successive instances of a task 

• e – represents the worst-case execution time demanded by the task. 

• D – represents the deadline associated with the task. 

• φ – represents the phase. 
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Figure 5: Typical input specification of real-time embedded systems 

t1 

t3 t2 

t4 

t7t6

Period =30, Deadline =30 

Period =90, Deadline =90 

t5

 
 

A sporadic task can arrive at the system for execution at any time and an 

execution slot must be available at the required time to meet the deadline. Let  ‘τ’ be the 

minimum inter-instance arrival interval between two successive instances of a sporadic 

task,  ‘µ’ be the worst-case execution time demanded and ‘d’ be the deadline. A 

periodic execution slot with period (d-µ), worst-case execution time ‘µ’, and deadline 

(d-µ) is created to serve the sporadic task. Clearly, this slot can guarantee that the 

sporadic task will meet its deadline. Likewise, a periodic execution slot is modeled for 

every sporadic task. The resultant system contains a set of periodic task graphs and a set 

of periodic execution slots corresponding to sporadic tasks. The periodic task graphs 

and execution slots are scheduled according to their assigned priorities. The assigned 

priorities should guarantee the precedence constraints between various tasks in a task 

graph. Figure 6 depicts a detailed step-by-step approach to assign priorities to tasks in a 

task graph and periodic slots corresponding to sporadic tasks. 
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---------------------------------------------------------------------------------------------------------- 
1: Input: A list G containing the periodic task graphs and execution slots  
2: Output: A priority list σ with the tasks arranged in decreasing 
    order of priorities. 
3: While (G) 
4:       Initialize ActiveList A to NULL 
5:       Remove the task graph or execution slot ‘T’  with the smallest period from G. 
6:       Add the Level 1 nodes of T to ActiveList A 
7:       If A=0 then return σ. 
8:       While  A≠ 0 
9:            Remove the node ‘n’ in A with least slack time. 
10:          Append ‘n’ to σ. 
11:          While (successor(n) ≠ 0) do 
12:                v := extract one node from successor(n) 
                    if ( Pred(v) == 0)          // if there is no predecessor in ActiveList 
13:                   Update the activelist ‘A’ with node ‘v’. 
14:          End While. 
15:      End While 
16:End While 

17: Output  σ. 
--------------------------------------------------------------------------------------------------------- 

Figure 6: Algorithm 1 to assign priorities to task graphs and execution slots 
 
 

The periodic task graphs and the execution slots corresponding to the sporadic 

tasks are arranged in the list in the increasing order of their period. First, a task graph 

with the smallest period is removed from the list and all the tasks in the task graph are 

assigned priorities. A node in a task graph is assigned a priority which is lesser than its 

predecessors and is greater than its successors. In this manner, all the precedence 

constraints between the nodes are guaranteed. The above procedure is repeated until all 

the task graphs are assigned priorities. The complexity of the above algorithm is of the 

order O(n), where ‘n’ is the total number of tasks. 
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C. LOW POWER SCHEDULING 

Let ℑ = {T1,T2,…,TN}be the set of tasks that are arranged in the decreasing 

order of their priorities as determined by algorithm in Figure 6.  Let {Pi, ei, Di} 

represent the period, worst-case execution time, and deadline associated with the task 

Ti. A task set is called feasible if the deadline of each task is satisfied at all times. To 

minimize the energy consumption, lowest possible speed for each task that guarantees 

the feasibility of the task set is to be determined. In order to determine the lowest 

possible speed and the corresponding voltage for each task, schedulability analysis of 

the task set is required. According to the Critical Instant Theorem [17], if a task meets 

its deadline whenever the task is requested simultaneously with all the high priority 

tasks, then the deadline will always be met for all task phasing.  

In other words, the task set ℑ = {T1,T2,…,TN}is schedulable if and only  ti ≤ Di ∀ i =1,.. 

n, where ti  is the response time of the task with priority ‘i’ when the task is requested 

simultaneously with the high priority tasks. The response time of real-time tasks can be 

broadly divided into two cases: 1) the response time of task whose deadline is less than 

or equal to the period and is given by 

 

k

i

k k

i eP
t∑

−

=
⎥⎥
⎤

⎢⎢
⎡1

1
 + ei  ≤  ti   [31]       ………………………………………………             (6)  

 
The first term in the sum on the left hand side of the above inequality represents the 

amount of time the processor has spent in serving the tasks with priority higher than the 
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task Ti. The value of ‘ti’ that satisfies the above inequality gives the response time for 

task Ti. If the response time is less than the period, then only one instance of the task 

will be active at any point of time. In other words, an instance of a task finishes its 

execution before the next instance is released. Hence, in order to guarantee the 

feasibility of the task set, we just have to guarantee that the deadline of the critical 

instance of the task that is released simultaneously with all the high priority tasks. Most 

of the existing work in the literature that has been done so far belongs to this case. 2) 

The response time of a task whose deadline is greater than the period. In this case, more 

than one instance of a task could be active during critical instant. The response time of 

various active instances of the same task when the task is requested along with the high 

priority tasks is given by 

ti,j = Rti,j – (j-1)Pi , where 

 

Rti,j ≤ k

i

k k

ji eP
Rt∑

−

=
⎥⎥
⎤

⎢⎢
⎡1

1

,  + j*ei  [31]  …………………………………………….             (7) 

 
where ‘ti,j’ is the response time for the ‘jth’ instance of task Ti and Rti,j represents the 

length of the interval between the start of the current level-Пi busy interval and the time 

at which ‘jth’ instance of a task has finished its execution. A level-Пi busy interval is an 

interval where the processor is busy serving tasks with priority ‘i' or high. The response 

time ‘ti,j’ for jth instance of a task can be obtained by deducting the interval between the 

start of the current level-Пi busy interval and the time instant at which the ‘jth’ instance 

of task Ti is released from Rti,j. A task set is feasible if and only if  ti,j  ≤ Di,j   ∀    i 
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=1,..n, and ‘j’ instances of  ti , where ‘ti,j’ is the response time for the ‘jth’ instance of 

task with priority ‘i'. Hence, in order to guarantee the feasibility of the task set, the 

deadlines of all the active instances must be guaranteed. There is no work in the 

literature that addresses this case. Even though it is imperative to guarantee the 

deadlines of the real-time tasks, there is no additional benefit in finishing the processing 

early. Instead, we can reduce the clock speed by extending the task execution time. 

Figure 7 depicts the algorithm that determines the lowest possible speed and the 

corresponding voltage for each task. The new speed determined for each task satisfies  

 

--------------------------------------------------------------------------------------------------------- 
1: Input: A “prioritylist” of tasks in the decreasing order of their priorities. 
2: Output: A “voltagefactor” table containing tasks and their corresponding scaling factor. 
3: limit_interval ← 1; 
4: voltagefactor[i] ← 1; ∀  i  =1,2, ..n. 
5:  while limit_interval ≠  n 
6:         for i ← limit_interval  to n do 
7:        determine the response time of the first job in  task Ti according to tl+1 = ei+k=1ΣI-1 ⎡ tl/pk⎤ ek,. 
Solve this iteratively until tl+1 = tl. let this final value of tl+1 be  Wi,1(t). 
8:             if ( Wi,1(t)≤  pi,1 ) && ( Wi,1(t)≤ Di,1 )  then 
10:            Si = { jTk|  k =1,2,…i; j =1,2,…min(Di,1,pi,1) 
11:               scale[i] = max{Si,j / k=1Σiek⎡Si,j / Tk⎤ }, j =1,2,..⎜Si⎢ 
12:         else if ( Wi,1(t)≤  pi,1 ) && ( Wi,1(t ) >  Di,1 )  then task set is not schedulable. 
13:          endif 
14:         if  (Wi,1(t)  > pi,1) then 
15:            compute the length of level-πI busy interval by solving the equation t =k=1Σ.i ⎡t/pk⎤ ek 
iteratively starting from t(1) = k=1ΣIek until tl+1 = tl. The solution tl is length of level-πI busy interval. 
16:             for j←1 to ⎡ tl/pi⎤  do 
17:             find response time Wi,j of jth job by solving the equation t = Wi,j(t+(j-1)pi)-(j-1)pi. Where 
Wi,j( ) is given by Wi,j(t) = jei + k=1ΣI-1 ⎡ t/pk⎤ ek. 
18:            if  Wi,j(t) ∈ ( (j-1)pi , (j-1)pi + Di] then continue; 
19:            else “taskset is not schedulable” 
20:         endfor 
 

Figure 7: Algorithm 2 to determine the minimum possible speed for each task
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21:          scale[i] = min{Wi,j} for j =1,2,… ⎡ tl/pi⎤     
22:           endif 
23:       endfor 
24:     limit_factor ← min { scale[i] }, i= limit_interval, …n. 
25:    limit_index = { i| limit_factor =  min { scale[j] } , j = limit_interval,…n} 
26:   voltagefactor[j] ← voltagefactor[j] * limit_factor, ∀ j = limit_interval, …n 
27:  limit-interval ← limit_index 
28: end while 
29: output “voltagefactor” 

Figure 7: continued 
 
 
equations (6) and (7) and thereby guaranteeing the feasibility of the schedule. Initially, 

all the tasks are arranged in the list in the decreasing order of their priorities. The 

response time of a task at each priority level is determined using either equations (6) or 

(7). This response time is extended to the deadline to determine the factor by which the 

clock speed can be reduced with out causing the task at the current priority level and the 

other high priority tasks miss the deadline. The above procedure is repeated for each 

priority level to determine the minimum speed at which each task can be run. The 

complexity of the above algorithm is O(n), where ‘n’ is the number of tasks. 

 
D. DYNAMIC POWER MANAGEMENT 

 Even if the tasks are scheduled at the speed determined in the above section, still 

there will be the idle intervals. These idle intervals arise due to two reasons: 1) the idle 

intervals that are inherent to fixed priority schedules and 2) the idle intervals that arise 

due to run-time variations in execution time of tasks. During system operation, the 
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execution time of each task frequently deviates from the worst-case execution time. 

Sometimes, the deviations could be very large. These idle intervals cannot be exploited 

by the speeds determined during the off-line phase. An on-line method that adjusts the 

clock speed dynamically to exploit the idle intervals is needed to reduce the power

consumption of the system further. The scheduler maintains a queue called 

“readyqueue”. All the tasks that are ready are kept in the “readyqueue” in the order of 

their priority. The task that is currently being executed is called “active-task”.  Figure 8 

depicts an algorithm for on-line power manager. 

 
--------------------------------------------------------------------------------------------------------- 
1: Input: signal for the new task arrival or completion of the existing task 
     and “voltagefactor” table. 
2: Output: task to be scheduled or power mode for the idle interval. 
3:  if (newtask has arrived) 
4:        if priority(newtask) > priority(activetask) then 
5:               scale the processor to the voltage level given by voltagefactor[newtask].  
6:               switch the tasks. 
7:       endif; 
8:       else “insert the task in readyqueue” 
9: endif 
10:  if (activetask has finished) then 
11:        if (readyqueue is empty) then 
12:             determine the length of idle interval 
13:            determine the optimal power-down mode 
14:       endif 
15:       else 
16:                 if the current task has finished early 
17:                        b ←  current_time 
18:                       e ←  estimated end time of current task 
19:                     t← min { (b-e),( deadline of the task in the ready queue – estimated 
                                 end time) } 
20:                   distribute this slack to the “next expected” task  
 21:            lookup the index for this task in the “voltagefactor” table and scale 
                  the processor to that level. 
 22:              endif 
 23:     endif; 
24: endif. 
25:   output the task to be scheduled or nothing 
--------------------------------------------------------------------------------------------------------- 

Figure 8: Algorithm 3 for on-line power manager
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During the system operation, the scheduler is invoked when of the two 

conditions occur: 1) a new task is ready and 2) the current has finished its execution. 

When a new task is ready and the priority of the new task is higher than the current task, 

then the scheduler preempts the current task and schedules the new task. Other wise, the 

new task is kept in the “readyqueue”.  If the current task has finished its execution and 

there is no task in the “readyqueue”, then the scheduler estimates the length of the idle 

interval. If the length of the idle interval is feasible, the processor is put in the power 

down mode.  The above algorithm has a constant time complexity. 

 

E. ILLUSTRATIVE EXAMPLE 

Let ℑ = {T1, T2, T3} be the set of tasks that are arranged in the decreasing order 

of their priorities as determined by algorithm in Figure 6. Table 1 shows the 

characteristics of the tasks. As shown in Table 1, the deadline of task T3 is greater than 

its period. Hence the response time for task T3 could be larger than the period.  Figure 9 

shows the time valid schedule of the tasks for the length of the hyper period. As shown 

in Figure 9, there is more than one instance of task T3 that is active at any point of time.  

 
Table 1: Characteristics of tasks 

 
 

 

 
   

 Task Period Execution 
time 

Deadline 

T1 10 sec 4sec 10sec 

T2 15 sec 3 sec 15 sec 

T3 20 sec 8 sec 30 sec  
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The deadlines of all these instances must be guaranteed while determining the 

minimum speed at which task T3 can be run. The response times for the tasks and their 

corresponding speeds as determined by Algorithm 2 in Figure 7 on Intel SA-1100 

processor specifications is given in Table 2. 

 
 
T3,1   arrives                                               T3,2 arrives                                          T3,3 arrives 

T1 
 

T2
 

T3 T1 T3 T2 T3 T1 T3 T1 T2 T3 T1 T3 T2 T3 T1 T3

0      4       7     10    14    15    18   20        24            30       34    37    40     44    45     48    
50      54       60 
                                                           T3,1 finishes                T3,2 finishes          T3,3 finishes 

Figure 9: Time valid schedule of the tasks for the length of hyper period  
 
 

The first instance of task T3 has become a limiting instance. The tasks T1, T2, 

and T3 must be scheduled at the speed 0.933 for all the tasks to meet the deadlines. The 

tasks are run at the above determined speed and the on-line power manager in Figure 8 

is employed to take advantage of idle intervals. Simulation results have indicated an 

energy savings of 62.27 %. 

 
Table 2: Response time and speed factors 

 
Task # of active instances response time for 

active instances 
Clock speed on SA-

1100 
T1 1 4 0.4 

T2 1 7 0.466 

T3 3 (26,25,20) (0.933,0.866,0.666) 
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F. CASE STUDY AND EXPERIMENTAL RESULTS 

 An event driven simulator has been developed to evaluate the merit of the 

proposed technique. The simulator runs on the Linux operating system. An instance of 

each task is generated at an interval equal to its period using timing information 

generated by “system clock” functions. The performance of the proposed technique is 

evaluated using traces of various real-time applications on Intel StrongArm SA-1100 

embedded processor specifications. The StrongArm SA-1100 is a dynamically voltage 

scaleable processor with eleven frequency and corresponding voltage levels. The clock 

and voltage specifications of StrongArm processor are given in Appendix A. The test 

cases used to evaluate the proposed approach consist of three synthetic cases and five 

real-world examples.  Table 3 shows the specifications of various test cases.  

 
Table 3: Characteristics of various test cases 

 
Test Cases # periodic task 

graphs 
# sporadic 

tasks 
# tasks with  

D > P 
Synthetic I 3 1 2 

Synthetic II 5 3 4 

Synthetic III 10 5 8 

CNC [16] 8 --- --- 

INS [15] 6 --- --- 

Avionics [14] 14 1 --- 

MP3 Player 1  4 

GSM Decode 1  --- 
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The “mp3 player” consists of tasks “scale factor”, “Huffman decode”, 

“Dequantize sample”, and “sub band synthesis” that are executed in a sequential order. 

“GSM decode” consists of tasks “RPE decoding”, “long term synthesis filter”, “short 

term synthesis filter”, and “post processing” that are executed in a sequential manner. 

Table 4 depicts the characteristics and priorities of tasks that are assigned by Algorithm 

1 for mp3 player and GSM decoder. The tasks are scheduled by on-line power manager  

 
Table 4: Characteristics of various tasks in mp3 player and gsm decoder 

 
Task Priority Period Execution time deadline 

Scale factor 1 20 msec 1024 µsec 150 msec 

Huffman decode 2 20 msec 1890 µsec 150 msec 

Dequantize sample 3 20 msec 4580 µsec 150 msec 

Subband synthesis 4 20 msec 2675 µsec 150 msec 

RPE decoding 5 18000 msec 921 msec 18000 msec 

LT synthesis filter 6 18000 msec 2079 msec 18000 msec 

ST synthesis filter 7 18000 msec 689 msec 18000 msec 

Post processing 8 18000 msec 311 msec 18000 msec 

 
 
according to their priorities in a preemptive manner. The actual execution demanded by 

a task will be less than the worst-case execution time due to run-time variations. This 

will cause the idle intervals. The on-line power manger exploits the idle intervals by 

putting the processor in power down mode. The overhead in performing the shutdown 
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sequence in Intel SA-1100 is 90 microseconds and the worst-case overhead in varying 

the clock speed between various levels is assumed to be 60 microseconds.  The tasks are 

simulated for the length of hyper period, which is 18000 milliseconds. The same 

schedule repeats over and again for the subsequent hyper periods. Table 5 depicts the 

actual execution time demanded by each task during the length of the hyper period and 

the clock speed at which they are executed. During the period of the simulation, the 

processor entered the power down mode 876 times. The percentage associated overhead 

energy consumption due to context switches and shut down sequences in comparison 

with total energy consumption is 0.01 %. The total energy savings are 91.1%. 

 
Table 5: Actual execution time and clock speed 

 
Task Total time actually 

demanded 
Clock speed on SA-
1100 

Scale factor 312 msec 0.5333 

Huffman decode 458 msec 0.533 

Dequantize sample 1839 msec 0.533 

Subband synthesis 908 msec 0.533 

RPE decoding 502 msec 0.533 

LT synthesis filter 1191 msec 0.533 

ST synthesis filter 593 msec 0.533 

Post processing 143 msec 0.533 
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A comparison of % energy savings between the proposed technique and the 

technique “VLPS” in [5] is given in Figure 10.  As shown in the figure, the proposed 

technique yields higher energy savings compared to the technique proposed in [5]. The 

technique in [5] tries to determine the set of intervals in a hyper period that can be run at 

a minimum constant voltage. All the jobs in an interval are run at a constant voltage. It 

fails to take maximum advantage by not exploiting the flexibility available in the 

system to the maximum extent. The system energy savings can be further improved by 
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Figure 10:  Comparison of energy savings with various low power techniques 

 
 

running each job at a minimum possible speed. The proposed technique yields higher 

energy savings by determining the minimum speed for each task. The energy savings 

due to the proposed technique on various test cases is shown in Figure 11. 
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Figure 11: % Energy savings with the proposed technique on various test cases 
 
 
G. CONCLUSIONS 

In this work, an energy efficient scheduling technique for single processor real-

time embedded systems is presented. The scheduling algorithm presented is capable of 

handling both sporadic and periodic task graphs with precedence constraints. The static 

power reduction component determines the minimum voltage at which each tasks can 

be run. The Online power reduction component dynamically adjusts the clock speed to 

take advantage of run-time variations in execution time of the tasks. It also exploits the 

idle intervals by putting the processor in power down modes to reduce the processor 

power consumption. The proposed approach is evaluated on various standard 

benchmarks. Experimental results show that proposed approach yields significant 

energy savings. 
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CHAPTER IV 

 

ENERGY EFFICIENT SCHEDULING TECHNIQUES FOR MULTI PROCESSOR 

EMBEDDED SYSTEMS 

A. INTRODUCTION 

 Many embedded command and control systems used in manufacturing, chemical 

processing, tele-medicine, and sensor networks are mission-critical. These systems are 

usually involved with applications that must accomplish certain tasks before pre-

specified deadlines. An application in these systems comprise of chain of task set that 

are implemented in a distributed fashion. The nodes in the distributed system are 

involved with computation and exchange of messages between them in order to 

accomplish real-time tasks. The messages sent between these nodes have deadlines by 

which they must be processed. It is imperative to make the computation in the above 

systems energy efficient while simultaneously guaranteeing the end-to-end message 

deadlines.  

A connection among chain of tasks is always established to realize computation 

and message communication in an application. To guarantee the message deadlines of a 

particular connection, a bound on the worst-case end-to-end delay experienced by the 

messages must be derived. This objective is accomplished by computing the worst-case 

delay suffered by messages at each node involved in the connection. The worst-case 

end-to-end delay is obtained by summing up the worst-case delays at each node. A 

connection is admitted if the worst-case end-to-end delay is less than or equal to its end-
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to-end deadline. The success of this seemingly straightforward approach hinges on to 

critical issues. The first issue pertains to the description of a connection’s traffic. The 

term traffic descriptor, Γ(I), [32] has been adopted for a method that is used to provide 

relevant information about a connection’s traffic. A traffic descriptor should adequately 

describe connection’s traffic not only at the source node but also throughout the nodes 

involved in the connection. This traffic descriptor specifies the maximum processing 

time demand by the messages of a connection at any point in the network during an 

interval of length I as Γ(I). The second issue pertains to the analysis of the worst-case 

delay suffered by a connection’s message at each node. The scheduling policy 

employed at the node also affects the analysis. We consider First Come First Serve 

(FCFS) and Weighted Round Robin (WRR) scheduling disciplines. 

While the systems must process the messages by their deadlines, there is no 

additional benefit in finishing the computation early. Rather by making the computation 

at these nodes energy efficient, the battery lifetime can be increased. The strategy to 

accomplish this objective is based on three key observations: 1) the processing of the 

messages of a connection at any node can be delayed or extended up to the worst-case 

delay at that node. 2) The slack in the connection is the difference between the end-to-

end deadline and the end-to-end worst-case delay of the messages of a connection.  

This slack can be utilized to increase the worst-case delay tolerable at the computational 

nodes involved in the connection. 3) The actual processing time demanded by the 

messages of a connection during the run-time varies and is less than the worst-case 

specification.  In this work, a heuristic that effectively distributes the slack available in a 
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connection among the nodes involved in the computation of an application is presented. 

A technique to adapt the clock speed according to the run-time variations to make the 

computation at the node energy efficient is also presented. The proposed technique has 

following advantages: 1) it copes very well with the variable message delays that are 

typical to distributed system. 2) It is applicable to both the systems with fixed task set 

and the systems that operate in modal fashion.  3) It yields significant energy savings. 

 The rest of the chapter is organized as follows: Section B presents motivational 

examples. A brief description of the system model and other preliminaries is given in 

Section C. section D presents the slack distribution technique. An elaborate discussion 

on the service rate determination is given in Section E. Section F presents the 

experimental results. Section G concludes the work. 

 

B. MOTIVATIONAL EXAMPLES 

This section presents two examples that motivated the work in this paper. 
 
 

 

 

 
PE3 

PE2 PE1 

M1 

M2

Figure 12: Typical distributed embedded systems with 3 nodes & 2 connections 
 
 

Example 1: Let us consider a simple distributed embedded system consisting of three 

nodes and two connections: M1 and M2 as shown in Figure 12. The connection M1 

involves computation of nodes PE1, PE2, and PE3. The application M2 involves 

computation of nodes PE1 and PE2. Table 6 gives the specification for connection M1. 
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 Let us consider the node PE3. We have chosen PE3 for simplicity. The techniques to 

deal with more complex scenarios involving several connections are presented in 

section D. Let ‘f’ be the normal operational clock frequency of this processor. The 

maximum processing time, Γ(∆), demanded by the messages of connection M1 at node 

PE3 is 5 sec and the messages suffer a worst-case delay of 5 sec. The connection M1 

can be admitted since its end-to-end worst-case delay (65 sec) is less than the end-to-

end deadline (95 sec). At any node involved in the connection, messages must be 

processed by their worst-case delays to guarantee the end-to-end deadlines. Hence, the 

node PE3 must operate at its maximum speed. The slack available in the connection M1 

is 30 sec: (95- (25+35+5)). This slack can be distributed among the nodes to increase 

the upper bound on the delays tolerable by the messages of connection M1. The new 

worst-case delay tolerable by the messages of connection M1 at node PE3 is 15 seconds 

assuming that the slack is distributed equally among the nodes PE1, PE2, and PE3.  

Hence the new clock frequency at node PE3 is 0.33f. An efficient method for 

distributing the slack is presented in section D. 

 
Table 6: Traffic specification for an arbitrary interval of length, ∆ = 9 sec 

 
Nodes Γ(I) Worst-case 

delay 

End-to-end 

deadline 

PE1 6 sec 25 sec 

PE2 8 sec 35 sec 

PE3 5 sec 5 sec 

 

95 sec 
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Example 2: Let us consider the node PE3 from previous example. Table 7 shows the 

actual computational time demanded by the messages of connection M1 at node PE3 

during an arbitrary interval of length ‘∆’ =9sec. We can take advantage of these run-

time variations in the processing time demand to reduce the energy consumption at the 

node. We will determine the service rate that is needed to guarantee the processing of 

the messages by their worst-case delay, ‘d’, at the beginning of each interval ∆.  At the 

beginning of the first interval [t0,t0+∆],  the clock speed is set to 0.33f as determined  

from Example 1.  

 
Table 7: Run-time variations in processing time demands 

 
 

Interval 

 

Actual Computation time demanded 

[t0, t0+∆] 4 sec 

[t0+∆, t0+2∆] 4 sec 

[t0+2∆, t0+3∆] 

: 

2 sec 

 
 

At the beginning of the second interval, though the actual processing time 

demanded during the previous interval was 4 sec, it was possible to serve only 

(Γ(∆)/d)*∆, 3 time units. The remaining 1 sec of computational demand must be 

processed with in (d-∆) time units, i.e., 6. The processor must be able to serve this 

traffic and the expected processing time demand by the messages of the upcoming 
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interval, i.e., 9, by their delays. Hence the required operational frequency is, (1/6 + 

5/15), i.e., 0.46f. However in practical systems, the clock frequency cannot be scaled 

continuously. So, the processor will be put in the lowest suitable frequency mode higher 

than this factor. Figure 13 shows the clock speed for the four consecutive intervals d of 

the original schedule and new schedule.  
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Figure 13: Clock frequency for original and new schedules 

 
 
 
C. SYSTEM MODEL 

 Let us represent the set of connections supporting the currently active 

applications by . A vector triplet, ()M,...(M M 1 n≡ DCP iii ,, ) is used to describe any 

individual connection  served over various nodes. Let us use the symbol ‘∇’ to 

represent an unspecified quantity. This means that there is no restriction on the value of 

the corresponding parameter. We use the set {∂/η} to denote one of the conditions ∂ or 

η but not both.  The vectors 

iM

DCP iii ,,  are described below: 

• The nodes involved in any arbitrary connection Mi communicate with each other by 

exchanging messages. Even though the messages are generated periodically at the start 
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node, they will not adhere to any strict periodic pattern at the subsequent nodes in the 

system. This is because of the variable delays they suffer in the network. This kind of 

behavior is accounted by not making any assumption on the periodicity of the messages 

at the nodes other than the start node. The vector P i  is used to represent the period with 

which the messages of connection Mi arrives at various nodes. It is described by 

( ), where P∇∇,........,P1i i, j represents the period of the messages of connection Mi at a 

node ‘j’. 

• The worst-case processing time of the messages of connection Mi is described by the 

vector ( niii CCC ,..1≡ )  where jiC  represents the worst-case processing time due to 

computation and communication at node ‘j’. The total worst-case processing time of the 

message is given by  .
1

∑
=

n

k

ikC

• The vector D i  represents the deadlines for the messages of connection Mi at various 

nodes and is described by ( )nii DD },.../{ 1 ∇ .  A message may or may not have a local 

deadline at a particular node, but it will have an end-to-end deadline, which is the 

deadline at the last node. The message has to be processed by that deadline .  niD

• The maximum demand function I)(Γi  is used to represent the processing time 

demanded by the messages of connection Mi over duration of length I. 
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D. SLACK DISTRIBUTION 

 As shown in Figure 12, any arbitrary connection Mi passes through a sequence 

of nodes. Let us represent the sequence of the nodes serving connection Mi by Hi = < 

s(i,1),s(i,2),….,s(i,j),..s(i,k)>, where k is the total number of nodes serving connection 

Mi and s(i,j) denotes the node-id of the jth node in the connection’s path. Let us assume 

that di,s(i,,1), di,s(i,2),…,di,s(i,k) are the upper bounds on the delays suffered by Mi. Let Dik be 

the end-to-end deadline for the connection Mi. The total slack available in the 

connection is given by TSi = Dik - .   It is evident, from motivational 

example 1, that this slack can be distributed among the nodes serving connection M

, ( , )

1

k

i s i j

j

d
=
∑

i to 

reduce the energy consumption. Instead of distributing this slack equally, let us allocate 

more slack to the nodes where it will have maximum effect. Let us use the term service 

rate to denote the ratio of current clock speed to the normal clock speed of a processor. 

An efficient way of distributing the slack among the nodes of a connection is to allocate 

slack according to the service rate of the nodes. The amount of slack allocated to a node 

is proportional to the ratio of the service rate of the node to the sum of the service rates 

of the nodes involved in the connection. This is subject to the condition that the new 

worst-case delay is bounded by the local deadline at that node. The slack distribution 

algorithm is invoked at a node during connection admission. Admission of a new 

connection involves two phases: 1) connection setup and 2) reply. During connection 

setup phase, a connection is established between the pre-specified nodes involved in the 

computation of an application. A connection is established only if: i) The worst-case 
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delay suffered by the messages of a connection at each node is less than the local 

deadline, if there is a local deadline. ii) The worst-case end-to-end delay is less than the 

end-to-end deadline. Otherwise, the connection is rejected. If a connection is rejected, 

the behavior of the system is implementation dependent. A particular implementation 

might try to handle the exception, while another might abort the operation and reset. 

Algorithm 4 as shown in Figure 14 gives the pseudo code for connection setup and 

reply phases. The slack distribution algorithm (Algorithm 5) as shown in Figure 15 will 

be triggered during connection reply phase at every node involved in the connection. 

The following are the brief description of the system parameters at an arbitrary node 

s(i,j) involved in connection Mi: 

• tsrate – sum of the service rates of the first ‘j’ nodes involved in the connection. 

• sratei – service rate for connection Mi at s(i,j). 

• tdelay – sum of the worst-case delay suffered by the messages of connection Mi  at the  

   first ‘j’ nodes. 

• n – number of incoming connections at the node s(i,j). 

• tslack – total slack to be distributed among first ‘j’ nodes. 

• slacki – slack allocated to node s(i,j) for connection Mi. 

• delay_wrri – worst-case delay for connection Mi at s(i,j) under WRR policy  

• delay_fcfs – worst-case delay for connection Mi at s(i,j) under FCFS policy.
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--------------------------------------------------------------------------------------------------------- 
Procedure connection_request(tdelayi, tsratei) 
calculate the worst-case delay for connection Mi at s(i,j).  
delay = worst-case delay determined as above 
tdelayi +=delay. 
if  (tdelayi > local_deadline)connection_ reply(REJECT,0); 
determine the service rate for Mi at s(i,j). // see section 4.2. 
sratei = service rate determined as above. 
tsratei =+ sratei. 
if (j==k) // this is the last node in the connection 
      tslacki = deadline – tdelay; 
     if (tslacki >= 0)  
          connection_reply(ACCEPT,tslack); 
    else 
         connection_reply(REJECT,0); 
else 
   connection_request(tdelayi,tsratei); 
end connection_request 
Procedure connection_reply(res,tslk) 
if (res == REJECT) take an implementation dependent action. 
else 
    slack_distribution(tslk); 
end connection_reply 

Figure 14: Algorithm 4 for connection establishment 
 

 
---------------------------------------------------------------------------------------------------------- 
Procedure slack_distribution(tslk) 
slacki  = (tslk * sratei)/tsrate 
if  (tdelay+slacki  > deadline) 
         slacki = deadline –tdelay; 
tslk = tslk – slacki; 
#ifdef WRR 
 delay_wrri  += slacki; // update the delay for connection Mi. 
#ifdef FCFS 
    update_delay(slacki) 
end slack_distribution 
Procedure update_delay(slacki) 
for (i =1;i <=n; i++) 
       if (slacki < 0) return; 
      else  
           if (min > slacki) min = slacki; 
delay_fcfs = delay_fcfs+min; 
end update_delay 

Figure 15: Algorithm 5 for slack distribution 
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E. PERIODICAL SERVICE RATE DETERMINATION 

 In this section, a technique to determine the lowest possible service rate that is 

necessary to guarantee the upper bound on the delays of the messages of incoming 

connections at a given node is presented. The technique also dynamically adapts the 

clock speed to take advantage of the run-time variations. For this purpose, the actual 

processing time demanded by the messages of incoming connections at a given node 

during previous intervals is observed and this feedback is incorporated while 

determining the service rate for the current interval. The new service rate should 

guarantee the processing of the messages that will arrive in the upcoming interval by 

their delay bounds. In addition, the new service rate should also guarantee the 

processing of the messages that arrived during previous intervals and are waiting in the 

queue by their delay bounds.   

a) First Come First Serve (FCFS): The following notation to describe the system 

parameters when the scheduling policy at the node is FCFS: 

•f(t) - represents the actual processing time demanded by the messages that already 

arrived at the node before the time instant ‘t’. 

 •  -  represents the processing time demanded by the unprocessed messages, left in 

the queue, which arrived during the interval (t-j∆,t-(j-1)∆) at time instant ‘t’. 

Qj
t

 • -  represents the required service rate at time instant ‘t’ to guarantee the processing 

of the messages in the queue which arrived during the interval  (t-j∆,t-(j-1)∆) by their 

worst-case delay bounds. 

S j
t
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• let {M1,..Mk} be the incoming connection set at a given node and 

 be the corresponding input traffic descriptor set. Let { ΓΓΓΓ Ki ,..,..., 21 } Γ i
t  

represent the input traffic descriptor function for connection Mi at time‘t’. 

• Let  = be the total maximum processing time demanded by the 

incoming connection set at a given node for the upcoming interval ‘ ’ at time instant 

‘t’. 

( )∆Γt ∑Γ
=

∆
k

i

i
t

1
)(

∆

•  -  represents the worst-case delay suffered by the messages of incoming 

connection set when the scheduling policy at the node is FCFS. 

FCFSd

• Let ‘n’ be the ratio betweend  and ‘∆’. The value for ‘∆’ is chosen such that ‘n’ is 

always greater than 1. 

FCFS

•Let  = ∑   represent the required service rate at the node at time  ‘t’. tS
=

n

i

i

tS
1

• Let ‘ts’ be the system start time. We assume that the queue is zero at ts. 

At the system start time, the service rate is set according to 

 

S st ≥
d FCFS

ts
)(∆Γ …………………………………………………………………            (8) 

 
Clearly, this service rate will guarantee the processing of messages that will arrive in 

the upcoming interval ‘∆’ by their delay bounds. Moreover, this service rate will always 

be less than or equal to 1.  In practice, the actual processing time demanded by the 
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arrived messages will be less than the maximum processing time demand because of the 

run-time variations. We will take advantage of run-time variations by periodically 

adjusting the service rate. At the beginning of each interval, a new service rate is 

determined. This service rate should guarantee the processing of messages that will 

arrive in the upcoming interval and the messages that already arrived in previous 

intervals by their delay bounds. At any point of time, there will be unprocessed 

messages from at most ‘n-1’ outstanding immediate predecessor intervals left in the 

queue. The new service rate at the beginning of every interval is determined according 

to 

 
( )∑

=

∆Γ+=
k

j
FCFS
tj

tt
d

SS
1

  ………………………………………………………           (9) 

 
and the corresponding queue is determined according to  

 

∑
=

=
k

1j

j
tQ  Q t …………………………………………………………………..            (10) 

 
where k = ( ){ } ∆∆−−− /)1(,max nttt s . 

The service rate  should be such that it must process the outstanding messages that 

arrived during the interval      (t-j∆,t-(j-1)∆) by their remaining delay bound. i.e., (d

S j
t

fcfs-

j∆).  

 
QjdS j

t
FCFSj

t   )( . ≥∆− ……………………………………………………….            (11) 
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                      Ψ   if  Ξ > 0 
Q j

t  =                                                  ………………………………………               (12) 
                     Else  Ψ + Ξ 
 

where  Ψ = ) 1()( ∆−−−∆− jtfjtf     and      Ξ = Q -jt ∆−

( )

∑ ∫
=

∆−−

∆−

∆−

j

k

kt

kt
ktS

1

1

 

THEOREM 1: The service rate, St, determined by equation (9) will guarantee the 

processing of the messages  by the upper bound on their delays. 

Proof: To prove that St is a valid service rate, the following cases must be satisfied.   

 Case 1: The unprocessed messages arrived during any arbitrary previous interval (t-j∆, 

t-(j-1)∆) will be processed by the upper bound on their delays by the service rate St.. i.e., 

 QS
j

tt jd ≥∆− )(*

QSSS
j

t

n

t

j

tt jd ≥∆−++++⇒ )(*)....( 1  

QQSS
j

t

j

t

n

tt jd ≥+∆−++⇒ )(*)..( 1  By substituting equation (11) 

 ijdS i

t
∀≥∆−     0)(*   vaildiswhich Q  

Case 2:  The messages that will arrive in the upcoming interval ‘∆’, along with the 

messages that are left in the queue will be processed by their deadlines by the service 

rate St. i.e.,  ( )∆+≥ Γ∑
−

=
t

j

t

n

j
t QS d

1

1

*
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This proves the theorem. ■ 

b) Weighted Round Robin (WRR):  The following notation to describe the system 

parameters when the scheduling policy at the node is WRR:

•  represents the actual processing time demanded by the messages of connection  

M

( )tf i

i that already arrived at the node before the time instant ‘t’. 

 •  represents the processing time demanded by the unprocessed messages from 

connection M

Q ji
t
,

i, left in the queue, which arrived during the interval (t-j∆,t-(j-1)∆) at time 

instant ‘t’. 

•  represent the required service rate at time instant ‘t’ to guarantee the processing of 

the messages from connection M

S ji
t
,

i in the queue which arrived during the interval  (t-j∆,t-

(j-1)∆) by their worst-case delay bounds. 

• let {M1,..Mk} be the incoming connection set at a given node and 

 be the corresponding input traffic descriptor set. Let { ΓΓΓΓ Ki ,..,..., 21 } Γ i
t  

represent the input traffic descriptor function for connection Mi at time ‘t’. 

•  to represent the length of the interval during which the messages from 

connection M

( )TΞi

i  will be processed in a time interval ‘T’.
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•  to represent the worst case delay suffered by the messages from connection Mdi i at 

a given node. 

•  Let ‘ts’ be the system start time. We assume that the queue is zero at ts. 

• let ‘n’ be the the ratio between   and ‘∆’.  di

•Let  =   represent the required service rate at the node at time  ‘t’ to process 

the messages from connection M

Si
t ∑

=

n

j

ji

tS
1

,

i. 

At system start time, the service rate is set to 

 

≥Si

ts )(
)(

dii

i
ts

Ξ
Γ ∆ …………………………………………………………………….        (13) 

 
Clearly, this service rate will guarantee the processing of messages from connection Mi 

that will arrive in the upcoming interval ‘∆’ by their delay bounds. At the beginning of 

each interval, a new service rate is determined. This service rate should guarantee the 

processing of messages from connection Mi  that will arrive in the upcoming interval 

‘∆’ and the messages that already arrived during previous intervals by their delay 

bounds. The new service rate at the beginning of every interval is determined according 

to 
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ji,
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and the corresponding queue is determined according to
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where k = ( ){ }∆−−− )1(,max nttt s  ∆/  

The service rate  and the corresponding processing time demanded by the 

outstanding messages that arrived during the interval      (t-j∆,t-(j-1)∆) are given by 

S ji
t
,
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                                         Else   χ + ǖ 
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THEOREM 2: The service rate, , will guarantee the processing of the messages of 

connection M

S i

t

i by their upper bounds on delays. 

Proof:  To prove that S  is a valid service rate, we must prove two cases:  i

t

Case 1: The unprocessed messages arrived during any arbitrary previous interval (t-j∆, 

t-(j-1)∆) will be processed by the upper bound on their delays by the service rate . 
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Case 2: The messages that will arrive during the upcoming interval and the messages 
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This proves the theorem. ■ 

 

F. EXPERIMENTAL RESULTS 

 An event driven simulator has been developed to evaluate the proposed 

technique. The distributed embedded system is simulated through various independent 

processes running on Linux and communicating through “Socket” interface. A global 

centralized server is used to supply the timing information to all the processes involved 

in the simulation. The performance of the proposed approach is evaluated using traces 

of various real-time applications on Intel PXA250 XScale embedded processor. The 

Xscale is a dynamically voltage scaleable processor with four frequency and 

corresponding voltage levels. The clock and voltage specifications of Xscale processor 
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are given in Appendix. The test cases used to evaluate the proposed approach consist of 

three synthetic cases and two real-world examples. Table 8 shows the specifications of  

 
Table 8: Characteristics of various test cases 

Test Cases Number 
of Nodes 

Number of 
Connections

Number 
of 

Modes 
Synthetic I 3 10 2 
Synthetic II 5 20 2 
Synthetic III 10 30 3 
Multimedia 4 4 3 

DSP  16 31 1 
 
 

various test cases. The Multimedia test case has applications of MPEG, JPEG, MP3, 

and ADPCM running in three different modes. The DSP application operates in a single 

mode. Table 9 shows the mode configurations for various test cases. 

 
Table 9: Mode configurations for multimedia and synthetic test cases 

 
Test Cases Mode 1  

(nodes, connections) 
Mode 2 

(nodes,connections) 
Mode 3 

(nodes,connections) 
Synthetic 
(10,30) 

(9,20) (9,25) (10,30) 

Multimedia 
(4,4) 

(3,2) (3,3) (4,4) 

 
 

A comparison of various slack distribution schemes is depicted in Figure 16. As 

shown in the figure, the slack distribution technique “srate” yields more energy savings 

compared with any other approaches. The “greedy” technique of allocating all the 

available slack to the first node in the connection had eventually lead to severe 

connection drop rate. The “wextime” technique of distributing slack according to the 
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worst-case execution time of tasks at the nodes involved in the connection had a 

marginal effect on the overall energy savings of the system. Even though the “equal” 

technique of distributing slack equally among the nodes involved in the connection 

fared well, it is inferior to the “srate” technique. This indicates that reducing the service 

rate of a node with higher utilization by a factor will have a greater impact on the 

system-wide energy savings than reducing the service rate of a node with lower 

utilization by the same factor. Hence the proposed technique is superior compared with 

“greedy” [26],  “wextime” [26], “equal”. 
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Figure 16: Comparison of energy savings with various slack distribution approaches
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Figure17: Connection setup overhead vs. number of connections 

 
 

The overhead of connection establishment procedure is shown in Figure 17.  

The overhead increases slightly with the number of connections initially and after a 

certain point the overhead increases drastically with the slight increase in the number of 

connections. This overhead is measured on Xscale processor.  The overhead of periodic 

service rate determination is shown in Figure 18. As shown in the above figure, the 

overhead of periodic service rate determination grows in a “super linear” fashion with 

the size of the incoming connection set at the node. Even though the overhead of 

periodic service rate determination is negligible for a large incoming connection set 

(size < 35), it will have a significant impact on the system with a very large incoming 

connection set.  The “super linear” nature of periodic service rate determination is due 

to the fact that the node has to deal with “large” number of messages and computations 

associated with them as the size of the incoming connection set increases. The overhead 

of periodic service rate determination may also become a limiting factor in connection 
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acceptance for a system with huge incoming connection set having very small 

processing time demand.   

The comparison of energy savings with all nodes employing FCFS scheduling 

policy and all nodes employing WRR scheduling policy is shown in Figure 19 on 

synthetic II test case. The advantage of the FCFS scheduling policy is it is easy to 

implement and has a lesser overhead in determining the clock frequency periodically 

compared with the WRR scheduling policy. With WRR scheduling policy, the periodic 

service rate determination algorithm will be called on each individual connection 

separately at the beginning of each interval. This means that the overhead for 

determining the service rate with WRR scheduling policy is roughly the amount, which 

is the size of the incoming set, multiplied by the overhead of determining the service 
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Figure 18: Overhead of periodic service rate determination 
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rate with FCFS scheduling policy. Even though the “WRR’ scheduling policy yields 

better energy savings for nodes with smaller incoming connection set, its benefits will 
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Figure 19: Energy savings with all nodes employing either fcfs or wrr scheduling policy   

 
 
    

become very limited as the size of the incoming connection set grows. This is partially 

because of the “super linear” nature of overhead in determining the periodic service 

rate. Figure 20 presents the energy savings obtained by the proposed technique on 

various real-world and synthetic examples. These measurements are taken using Xscale 

embedded processor clock speed and voltage level specifications. As seen in the below 

figure, the proposed technique yields significant energy savings.  
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Figure 20: % Energy Savings with the proposed technique on various test cases 

 

G. CONCLUSIONS 

In this work, an energy efficient technique that address the issue of guaranteeing 

the end-to-end and local deadlines of the messages in real-time distributed embedded 

systems is presented. The proposed techniques use a comprehensive traffic description 

function that provides adequate information about the worst-case traffic behavior 

anywhere in the network.  The service rate of a node is reduced to take advantage of the 

fact that the processing of the messages can be delayed or extended up to their worst-

case delays. Further, the traffic pattern is periodically analyzed to determine the best 

possible service rate to take advantage of the run time variations in computation 

demands. Experimental results showed that the proposed techniques lead to 

considerable energy savings. 
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CHAPTER V 

 

FUTURE WORK 

A. SINGLE PROCESSOR 

 In this work, an energy efficient scheduling technique for single processor real-

time embedded systems has been presented. This technique takes into account periodic 

task graphs and sporadic tasks with hard deadlines. However, the technique does not 

address on how to deal with soft aperiodic tasks. Soft aperiodic tasks do not have 

deadlines; however the response time for soft aperiodic tasks should be low for the 

system to be used. The proposed technique can be extended to soft aperiodic tasks. 

 

B. MULTI PROCESSOR 

 The proposed technique for multi processor is only applicable to a canonical 

chain of tasks executing on different nodes. The approach does not address the task 

graphs containing tasks with more than one predecessor or one successor. It seems to be 

difficult to incorporate these kinds of task graphs in the existing model. The proposed 

system model can be extended to incorporate the above said task graphs. 
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CHAPTER VI 

 

CONCLUSION 

With the advent of portable systems, low power design has become a major 

consideration in the design of today’s applications. As an increasing amount of system 

functionality tends to be realized through software, system-level power reduction 

techniques, especially at operating systems level, are becoming important.  There have 

been extensive studies in the literature regarding low power system design. Still, for 

many years to come, the search for even better low power system-level techniques will 

continue. In this thesis, novel energy efficient techniques for the scheduling of real-time 

tasks in single and multi processor embedded systems are presented. The performance 

of these techniques has been evaluated on real-life benchmarks on an XScale embedded 

processor specifications. Experimental results showed that the proposed techniques 

yield significant energy savings. 
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APPENDIX A 

 

INTEL STRONG ARM SA-1100 CLOCK SPEED SPECIFICATIONS 

The core clock frequency is configured by software through the core clock 

configuration field (CCF<4:0>) in the power manager phase-locked loop (PLL) 

configuration register (PPCR). This field should be programmed during the boot 

sequence for the desired full-speed operation. 

 
 

Table 10: Intel SA-1100 Core Clock Configuration
CCF<4:0> 3.864 MHz Oscillator 3.5795 MHz Oscillator 

00000 59.0 57.3 

00001 73.7 71.6 

00010 88.5 85.9 

00011 103.2 100.2 

00100 118.0 114.5 

00101 132.7 128.9 

00110 147.5 143.2 

00111 162.2 157.5 

01000 176.9 171.8 

01001 191.7 186.1 

01010 206.4 200.5 

01011 221.2 214.8 

01100-11111 Not supported -- 
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APPENDIX B 

 

INTEL PXA250 XSCALE CLOCK SPEED SPECIFICATIONS 

Table 11: Intel PXA250 Core Clock Specification 
Range Frequency Voltage 

Low Voltage Range 132.7 MHz 0.935 V 

Medium Voltage Range 199.1 MHz 1.1 V 

High Voltage Range 298.7 MHz 1.21 V 

Peak Voltage Range 398.2 MHz 1.43 V 
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