

ENERGY EFFICIENT SCHEDULING TECHNIQUES FOR

REAL-TIME EMBEDDED SYSTEMS

A Thesis

by

RAJESH BABU PRATHIPATI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2004

 Major Subject: Computer Science

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M Repository

https://core.ac.uk/display/4268083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ENERGY EFFICIENT SCHEDULING TECHNIQUES FOR

REAL-TIME EMBEDDED SYSTEMS

A Thesis

by

RAJESH BABU PRATHIPATI

Submitted to Texas A&M University
in partial fulfillment of the requirements

 for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

 Rabi N. Mahapatra Wei Zhao
 (Chair of Committee) (Member)

 Krishna R. Narayanan Valerie E. Taylor
 (Member) (Head of Department)

May 2004

Major Subject: Computer Science

iii

ABSTRACT

Energy Efficient Scheduling Techniques for Real-Time Embedded Systems.

(May 2004)

Rajesh Babu Prathipati, B.Tech., R.E.C. Warangal, India

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

Battery-powered portable embedded systems have been widely used in many

applications. These embedded systems have to concurrently perform a multitude of

complex tasks under stringent time constraints. As these systems become more complex

and incorporate more functionality, they became more power-hungry. Thus, reducing

power consumption and extending battery lifespan while guaranteeing the timing

constraints has became a critical aspect in designing such systems. This gives rise to

three aspects of research: (i) Guaranteeing the execution of the hard real-time tasks by

their deadlines, (ii) Determining the minimum voltage under which each task can be

executed, and (iii) Techniques to take advantage of run-time variations in the execution

times of tasks. In this research, we present techniques that address the above aspects in

single and multi processor embedded systems. We study the performance of the

proposed techniques on various benchmarks in terms of energy savings.

 iv

To my Parents and the Real-Time Embedded Systems Research Community

 v

ACKNOWLEDGMENTS

I would like to thank Dr. Mahapatra for all the help and guidance that he

offered. The quality of this work has been improved tremendously by his persistence

and unwavering interest. I would also like to thank him for giving me an opportunity to

do research.

I would also like to thank Dr. Zhao for helping me in taking up this interesting

work. This work wouldn’t have been possible without his initial direction.

I would like to thank Dr. Narayanan for serving on my committee.

I would like to thank Subrata Acharaya and Nitesh Goyal for candid discussions

and infinite patience in reading the manuscript to improve the work. Those lengthy

discussions reinforced my understanding on this work. I would also like to thank Anand

and Junyi for all the support they rendered during the final days.

Finally, I am grateful to my parents for the hard work and the ethics they have

taught me. Their constant encouragement and the strong belief in my abilities had kept

me going in turbulent times. I am greatly indebted to them for their sacrifices to create a

better life for me.

 vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION ………………………………………….. 1

 A. Microprocessor and energy consumption ………. 2
 B. Motivation ……………………………………… 3
 C. Contributions of this thesis ……………………. . 4

II BACKGROUND …………………………………………… 5

A. Introduction ……………………………………... 5
B. System level power management taxonomy ……. 6
C. Single processor ………………………………… 8
D. Multi processor …………………………………. 10
E. Limitations and contributions ………………….. 12

III ENERGY EFFICIENT SCHEDULING TECHNIQUES FOR
 SINGLE PROCESSOR EMBEDDED SYSTEMS ………… 13

 A. Introduction ……………………………………... 13
 B. Preliminaries ……………………………………. 15
 C. Low power scheduling .………………………… 18
 D. Dynamic power management …………………... 21
 E. Illustrative example ……………………………... 23
 F. Case studies and experimental results ………….. 25
 G. Conclusions …………………………………….. 29

IV ENERGY EFFICIENT SCHEDULING TECHNIQUES FOR
 MULTI PROCESSOR EMBEDDED SYSTEMS ………… 30

 A. Introduction …………………………………….. 30
 B. Motivational examples …………………………. 32
 C. System model …………………………………... 35
 D. Slack distribution ………………………………. 37
 E. Periodical service rate determination …………... 40
 F. Experimental results ……………………………. 47
 G. Conclusions …………………………………….. 53

 vii

CHAPTER Page

V FUTURE WORK …………………………………………. 54

 A. Single processor ……………………………………… 54
 B. Multi processor ………………………………………. 54

VI CONCLUSION …………………………………………… 55

REFERENCES …………………………………………………… 56

APPENDIX A ……………………………………………………. 61

APPENDIX B ……………………………………………………. 62

VITA ……………………………………………………………... 63

 viii

LIST OF TABLES

TABLE Page

1 Characteristics of tasks …………………………………… 23

2 Response times and speed factors …………………………. 24

3 Characteristics of various test cases ………………………… 25

4 Characteristics of various tasks in mp3 player and
 gsm decoder ……………………………………………… 26

5 Actual execution time and clock speed ……………………. 27

6 Traffic specification for an arbitrary interval of length,
 ∆ = 9 sec ……………………………………………………. 33

7 Run-time variations in processing time demands …………… 34

8 Characteristics of various test cases ………………………… 48

9 Mode configurations for multimedia and synthetic test cases... 48

10 Intel sa-1100 core clock configuration …………………….. 61

11 Intel pxa250 core clock specification ……………………… 62

 ix

LIST OF FIGURES

FIGURE Page

1 High-level classification of system-level power management … 6

2 Broad classification of research work on dynamic power
management ………………………….………………………. 6

3 Broad classification of work on low power scheduling ……….. 7

4 Broad classification of work on tasks with response time less
than or equal to the period …………………………………….. 8

5 Typical input specification of real-time embedded systems … 16

6 Algorithm 1 to assign priorities to task graphs and execution
 slots …………………………………………………………… 17

7 Algorithm 2 to determine the minimum possible speed for
 each task …………………………………………………. 20

8 Algorithm 3 for on-line power manager …………………….. 22

9 Time valid schedule of tasks for the length of hyper period …. 24

10 Comparison of energy savings with various low power
 techniques …………………………………………………… 28

11 % Energy savings with the proposed technique on various
 test cases ………………………………………………….. . 29

12 Typical distributed embedded systems with 3 nodes &
 2 connections ……………………………………………….. 32

13 Clock frequency for original and new schedules …………… 35

14 Algorithm 4 for connection establishment ………………… . 39

15 Algorithm 5 for slack distribution ………………………….. 39

 x

FIGURE Page

16 Comparison of energy savings with various slack distribution
approaches ………………………………….......................... 49

17 Connection setup overhead vs. number of connections ……. 50

18 Overhead of periodic service rate determination …………... 51

19 Energy savings with all nodes employing either fcfs or
wrr scheduling policy ………………………………………. 52

20 % Energy Savings with the proposed technique on various
test cases …………………………………………………… 53

 1

CHAPTER I

INTRODUCTION

The rapid progress in semiconductor technology has led to higher chip density

and operation frequency, making today’s systems more complex and power-hungry.

The power consumption of microprocessors has increased almost linearly with area-

frequency product over the years. Such high power consumption requires expensive

packaging and cooling techniques given that insufficient cooling leads to high operating

temperatures, which tend to exacerbate several silicon failures. To maintain the

reliability of their products, and avoid expensive packaging and cooling techniques,

manufacturers are now under strong pressure to reduce the power dissipation of their

products.

The advent of portable systems has also emphasized the importance of efficient

use of energy as a major design objective. This is due to several concerns. The

convenience of using a portable system relies heavily on its recharging interval. A

system that requires frequent recharging is inconvenient and hence limits the user’s

overall satisfaction in using the product. Clearly, power has become a major

consideration in the design of today’s applications due to portability, reliability, and

cost concerns. For many years to come, the search for low power and voltage

The journal model is IEEE Transactions on Parallel and Distributed Systems.

 2

 techniques will continue. The answers to this ever-increasing demand are the system-

level, architectural-level, and circuit-level low power techniques [29].

A. MICROPROCESSOR AND ENERGY CONSUMPTION

 In recent years, processor performance has increased at the expense of

drastically increased power consumption [18]. The average power dissipation, pav, in

microprocessors is due to three components:

pav = pcap + pleak + pshort ……………………..…………………………………. (1)

where pav, pleak, and pshort represent capacitive switching power, leakage power, and

short-circuit power respectively. The capacitive switching power, pcap, depends on the

transition activity ‘alpha’, switched capacitance Cl, the supply voltage vdd, and the clock

frequency ‘f’. It can be expressed as

pcap = α . Cl . V2

dd . f ………………………………………………………….. (2)

The leakage power is due to the sub threshold behavior of MOSFETs and is expressed

as

pleak = Ileak . Vdd …………………………………………………………………. (3)

Where Ileak is the leakage current.

 3

The short-circuit power is due to the flow of current from power supply to the ground

for short moment during node transitions between logic states ‘0’ and ‘1’ [20] and is

given by

 pshort = 0.5 . α . (tr . Ishort,max,r/f + tf . Ishort,max,r/f) . Vdd . f …………………………. (4)

The processor clock frequency, f, can be expressed in terms of supply voltage vdd, and

threshold voltage vt, as follows:

f = k. (vdd – vt)2 / vdd ……………………………………….. (5)

From equation (2), we can see that there is a quadratic dependence between the supply

voltage and the capacitive switching power. Therefore, reducing the supply voltage is

an effective means for the reduction of processor power consumption. In recent years,

processors running on multiple supply voltages have become available [19]. The supply

voltage of the processor may be adjusted dynamically for many applications to reduce

the processor power consumption while meeting the deadlines [1].

B. MOTIVATION

 High complexity and performance has led to increased power consumption.

Recent studies have shown that the processor power consumption has increased almost

linearly with the performance. Such high power consumption resulted in high operating

temperatures, which exacerbated the chip failures. These reliability concerns have put a

special emphasis on low power design. The portability and user convenience of battery-

 4

powered portable systems has also emphasized the low-power design. System designers

are on a look for even better low-power techniques to combat the high manufacturing

costs and also to improve the reliability and user convenience of their systems. This

need for low-power techniques has led to increased research.

C. CONTRIBUTIONS OF THIS THESIS

The contributions of this thesis are as follows:

1. A low-power scheduling technique for single processor is presented that

considers task sets with arbitrary response times. While most of the approaches consider

task deadline to be less than or equal to its period, we address the tasks that have no

such restrictions.

2. Introduced a connection-based task execution approach for distributed

systems to model low power. The proposed approach effectively distributes the slack

available in the connection among the nodes to increase the worst-case delay tolerable

by the messages of a connection at the nodes involved in the connection. The proposed

approach also adapts the clock speed periodically to take advantage of run-time

variations.

 5

CHAPTER II

BACKGROUND

A. INTRODUCTION

An increasing amount of system functionality tends to be realized through

software, which is leveraged by the high performance of microprocessors. As a result,

system-level power reduction techniques, especially at operating systems level, are

becoming relevant. The system level power reduction techniques can be broadly

divided in to two types [2]. The first one is known as dynamic power management

where the processor is put in power-down mode during idle intervals where only certain

parts like clock generation and timing circuit are kept running. The second one is low-

power scheduling technique where the processor speed is dynamically varied according

to the computational demands. This method requires the use of variable supply voltage

to reduce the processor power consumption. A number of techniques have been

proposed to reduce the system-level power consumption.

A detailed taxonomy of the system-level power management techniques is given

in section B. A detailed discussion of the energy efficient scheduling techniques that has

been proposed so far for single processor systems is given in section C. A review of the

research work on low power scheduling in multiprocessor systems is given in Section

D. Section E briefly discusses the limitations of the existing work and the merits of the

proposed techniques.

 6

B. SYSTEM LEVEL POWER MANAGEMENT TAXONOMY

 The high level taxonomy of system level power management techniques is

shown in Figure 1. The techniques of dynamic power management and low power

scheduling are applied to both the single and multi processor embedded systems with

fixed or varying task set as shown in Figure 2 and Figure 3 respectively. Fixed task set

is associated with the systems whose functionality remains constant through out the life

System level power management

Dynamic power management Low power scheduling (DVS)

Figure 1: High-level classification of system level power management

time of the system. On the other hand, variable task set is associated with the multi-

mode systems whose functionality can be varied dynamically. As the system mode

changes, the applications and the corresponding task set associated with it also varies.

Only limited work [12, 30] has been done so far that employed dynamic power

management technique. All of this work has been concentrated on single processor

Dynamic Power Management

Fixed Task set Variable Task set

Single processor Multi processor Single processor Multi processor

Figure 2: Broad classification of research work on dynamic power management

 7

systems with fixed task set. Extensive research work has been carried out on low power

scheduling in single processor embedded systems with fixed task set. As shown in

Figure 3, this work can be broadly categorized into: 1) real-time systems with tasks

whose response time is less than or equal to period. 2) real-time with tasks whose

response time is arbitrary.

Low Power Scheduling

Fixed Task Set Variable Task Set

Single Processor Multi Processor Single Processor Multi Processor

D ≤ P periodic

periodic + sporadicNo restrictions

Figure 3: Broad classification of work on low power scheduling

Most of the work that has been done on single processors is targeted on the

systems with tasks whose response time is less than or equal to the period. As shown in

Figure 4, this work can be broadly categorized in to: 1) the techniques [24] that address

multimedia systems that can afford to miss certain percentage of deadlines. 2) The

techniques that address hard real time systems that can not afford to miss any deadline.

Most of the work that has been done so far has addressed hard real-time systems with

periodic and independent tasks [2,5,6,,8,9,27]. Only limited work has taken into

account both the periodic and sporadic tasks [10,11,13]. There is no work that provides

a general framework that encompasses both periodic task graphs and sporadic tasks. All

 8

the work that has been done for multi processor systems has concentrated on fixed task

systems with periodic and sporadic tasks [4,7,21,22,23,26].

Deadline ≤ Period

Tolerance to deadline
i

Hard real time

No Precedence With Precedence

Periodic Periodic

Periodic + sporadic Periodic + sporadic

Figure 4: Broad classification of work on tasks with response time less than or
equal to the period

C. SINGLE PROCESSOR

A dynamic power management technique that predicts the length of the

upcoming idle interval is presented in [30]. It uses the idle interval by putting the

processor in power-down mode. The drawback of this approach is it needs the traces of

application to determine the predictive formula. In [9], a power optimization method

that combines the off-line and on-line components for real-time embedded applications

on a variable voltage processor is presented. The drawback of this method is that it does

not maximally exploit the flexibility present in the schedule. It can be easily seen that

the energy savings can be further improved. Swaminathan et al. has proposed a low-

energy earliest deadline first heuristic [10] that tries to schedule the task with nearest

 9

deadline first at a lowest possible voltage. The problem with this approach is that it does

not guarantee that the required processor speed to meet the deadlines will never be

greater than the processor clock speed even after accepting the task. In [6] Okuma et al.

proposed a static voltage assignment technique for each task to minimize the total

energy consumption. This technique assumes that the task set is statically order-

scheduled in advance. Quan et al. [5] presented a technique that tries to determine the

minimum constant voltage for each interval. All the jobs that start in an interval will be

executed at the pre-determined voltage for that interval. An iterative slack distribution

algorithm to minimize the system energy consumption is proposed in [13]. This

algorithm takes in to account both periodic and sporadic tasks. An incremental on-line

heuristic that dynamically adjusts the clock schedule when tasks enter and leave the

system is proposed in [8]. This heuristic orders tasks according to how tight their

deadlines are and how often tasks overlap. Hong et al. proposed an on-line scheduling

algorithm [11] for scheduling the mixed workload of both sporadic and periodic hard

real-time tasks on variable voltage processor. This technique employs an acceptance test

on the fly to verify whether a sporadic task can be scheduled with out causing the other

tasks which are already accepted to miss their deadline. The work in [12] presents

several dynamic power management policies to enhance the battery-life time. These

policies are broadly classified in to two: An open-loop policy that takes the decisions

about shutting down the component independently from battery-voltage measurement.

Closed-loop policies whose decision rules use to control the state of operation of the

system are based on the observation of battery’s output voltage. The work in [24]

 10

presents several energy reduction techniques for soft real-time applications like

multimedia that are able to tolerate occasional failures in meeting the deadlines. These

techniques exploit this tolerance to occasional failure to reduce the system power

consumption further. An analytical battery model that accurately predicts the battery

lifetime under various discharge conditions has been proposed in [28]. In this model,

the tasks are ordered in a sequence that minimizes the cost function to enhance the

lifetime of the battery. A voltage allocation technique that produces a feasible task

schedule for tasks with arbitrary arrival-time/deadline constraints is presented in [27].

This work also addresses the case in which tasks have non-uniform switched

capacitances.

D. MULTI PROCESSOR

 Even though there has been extensive work in the literature on the scheduling of

real-time tasks in an energy-efficient manner on single processor embedded systems,

relatively little work has been done in the area of multiprocessor embedded systems

[26]. The work in [3] presents a method for the joint scheduling of distributed complex

periodic and hard aperiodic tasks in statically scheduled systems. Luo et al. proposed a

power conscious algorithm [7] for jointly scheduling multi-rate periodic task graphs and

aperiodic tasks in distributed real-time embedded systems. The algorithm first statically

schedules the periodic task graphs and then creates the slots in the static schedule to

accommodate hard aperiodic tasks. The work in [4] employs a list-scheduling algorithm

to schedule the tasks. It employs a global shifting scheme, which distributes the slack

 11

present in the schedule to flatten the discharge power-profile of the system. It then

performs a series of local schedule transformations starting from an initially valid

schedule to optimize the discharge current profile. The drawback with the above

approaches is that they are only suitable to small-scale distributed real-time embedded

systems. Zhu et al. proposed a slack reclamation scheme that allows slack sharing

among processors to effectively reduce the energy consumption of the system [22]. The

scheme employs a global queue and each processor selects the highest priority task for

execution from the queue. The approach is limited to homogenous processors that share

a common memory. Mishra et al. proposed greedy and gap-filling dynamic power

management techniques to use the idle periods to execute tasks at reduced speed for

energy savings [26]. The greedy technique allocates all the available slack on one

processor to the next expected task running on that processor. The gap-filling technique

fetches the future ready task and executes it. The execution of the out-of-order task will

be preempted by the next expected task when it is ready. The approach is only

applicable to task graphs with a common deadline. The work in [21] presents a static

schedule algorithm that constructs a variable voltage schedule via critical path analysis

and task execution order refinement. The approach uses static schedule generated by a

list-scheduling algorithm. It then distributes the free slack time available in each critical

path evenly among the tasks involved in the critical path to reduce the system power

consumption. The approach also guarantees the precedence relationships between the

tasks. A two-step iterative syntheses approach that partitions, schedules, and voltage

scales multi-rate task graphs is presented in [23]. The approach considers the processing

 12

element power profile during the voltage selection for each task. A power-aware

scheduling algorithm that performs execution order optimization of scheduled events to

increase the chances of scaling down voltages and frequencies of processing elements is

presented in [25].

E. LIMITATIONS AND CONTRIBUTIONS

 All of the work that has been done on single processor systems has been

concentrated on systems with periodic and independent tasks. Very limited work exists

that target the systems with periodic and sporadic tasks. A general frame work that

encompasses periodic and sporadic tasks is lacking. In this work, we propose a

technique that addresses periodic task graphs and sporadic tasks with precedence

constraints. Further, all of the existing work targets the systems with tasks whose

response time is less than or equal to the period. We take into account the tasks whose

response time is arbitrary. The later case is particularly important for multimedia

systems where the deadlines of the tasks are often greater than the period.

 In this work, we have also introduced a connection based task execution

approach to model low power in distributed embedded systems. In contrast to the

existing work that addresses the system with fixed task set, the proposed techniques

target the systems whose functionality can be configured dynamically.

 13

CHAPTER III

ENERGY EFFICIENT SCHEDULING TECHNIQUES FOR SINGLE PROCESSOR

EMBEDDED SYSTEMS

A. INTRODUCTION

As batteries power an increasing number of electronic systems, power efficient

design of real-time embedded systems become important. Dynamic voltage scaling and

power management represents the two system-level techniques to reduce the system

power consumption and thereby extend the battery lifetime. Dynamic voltage scaling

refers to dynamically varying the speed of a processor by changing the clock frequency

along with the supply voltage [22]. Dynamic power management refers to the use of

power-down modes when the processor is idle to reduce the processor power

consumption [12].

Typically, the input specifications of these embedded systems applications are in

the form of task graphs. A task graph is a directed acyclic graph in which each node is

associated with a task and each edge is associated with the amount of data that must be

transferred between the two connected tasks. The task graph is like a data flow graph

but with higher functional granularity. Task graphs can be periodic or sporadic. Each

task in a periodic task graph inherits the task graph’s period. Each task in a periodic task

graph can have a different deadline. For sporadic tasks, generally a minimum inter

instance arrival interval, τ, denoting the minimum time interval between two

consecutive instances of a sporadic task is specified [7]. A sporadic task can be invoked

 14

for execution at any time and an execution slot must be available at the required time to

meet the deadline. In our method, we create a periodic execution slot to serve the

sporadic tasks with out causing the periodic task graphs and other sporadic tasks to miss

the deadline.

 Most of the work that has been done so far has concentrated only on periodic

and independent tasks [2,5,6,8,9,27]. A general framework encompassing periodic and

sporadic tasks with precedence constraints is lacking. Also, the current work is limited

to the systems with tasks whose response time is less than the period. However for

certain multimedia systems where the deadline of tasks is greater than the period, the

response time of the tasks could be larger than the period. This implies that there could

be more than one instance of a task active at any point of time. The deadlines of all

these instances must be guaranteed while determining the minimum speed at which a

task can be run. However, the existing work assumes that there is only one active

instance of a task while determining the minimum speed. Consequently, they are limited

to the systems with tasks whose response time is less than or equal to the period. In this

work, we take into account of the tasks whose response time could be greater than the

period. We also consider both periodic task graphs with precedence constraints and

sporadic tasks. The proposed scheduling method has two components: off-line and on-

line. The “off-line” component determines the lowest possible clock speed for each task

while guaranteeing the deadlines and precedence constraints. The “on-line” component

dynamically adjusts the clock speed to take advantage of idle periods and run-time

variations in the execution time of the tasks. The proposed approach is evaluated on

 15

several real-time benchmarks like CNC controller [16], avionics [14] ... Experimental

results have showed that the proposed approach yields significant energy savings.

 The rest of the chapter is organized as follows: A brief discussion of the

preliminaries is given in section B. The procedure to determine the minimum voltage

for each task is given in section C. A brief discussion on dynamic power management is

given in Section D. Section E presents an illustrative example. Section F presents the

experiments conducted to evaluate the proposed approach. Section G concludes the

work.

B. PRELIMINARIES

Each application-specific function executed by an embedded system is made up

of several sequential and/or concurrent task graphs. Figure 5 shows an example of the

input specification of typical embedded systems. As discussed earlier each node of a

task graph represents a task. A periodic real-time task is characterized by (ϕ, P, e, D),

where

• P – represents the period between the successive instances of a task

• e – represents the worst-case execution time demanded by the task.

• D – represents the deadline associated with the task.

• φ – represents the phase.

 16

Figure 5: Typical input specification of real-time embedded systems

t1

t3 t2

t4

t7t6

Period =30, Deadline =30

Period =90, Deadline =90

t5

A sporadic task can arrive at the system for execution at any time and an

execution slot must be available at the required time to meet the deadline. Let ‘τ’ be the

minimum inter-instance arrival interval between two successive instances of a sporadic

task, ‘µ’ be the worst-case execution time demanded and ‘d’ be the deadline. A

periodic execution slot with period (d-µ), worst-case execution time ‘µ’, and deadline

(d-µ) is created to serve the sporadic task. Clearly, this slot can guarantee that the

sporadic task will meet its deadline. Likewise, a periodic execution slot is modeled for

every sporadic task. The resultant system contains a set of periodic task graphs and a set

of periodic execution slots corresponding to sporadic tasks. The periodic task graphs

and execution slots are scheduled according to their assigned priorities. The assigned

priorities should guarantee the precedence constraints between various tasks in a task

graph. Figure 6 depicts a detailed step-by-step approach to assign priorities to tasks in a

task graph and periodic slots corresponding to sporadic tasks.

 17

--
1: Input: A list G containing the periodic task graphs and execution slots
2: Output: A priority list σ with the tasks arranged in decreasing
 order of priorities.
3: While (G)
4: Initialize ActiveList A to NULL
5: Remove the task graph or execution slot ‘T’ with the smallest period from G.
6: Add the Level 1 nodes of T to ActiveList A
7: If A=0 then return σ.
8: While A≠ 0
9: Remove the node ‘n’ in A with least slack time.
10: Append ‘n’ to σ.
11: While (successor(n) ≠ 0) do
12: v := extract one node from successor(n)
 if (Pred(v) == 0) // if there is no predecessor in ActiveList
13: Update the activelist ‘A’ with node ‘v’.
14: End While.
15: End While
16:End While

17: Output σ.

Figure 6: Algorithm 1 to assign priorities to task graphs and execution slots

The periodic task graphs and the execution slots corresponding to the sporadic

tasks are arranged in the list in the increasing order of their period. First, a task graph

with the smallest period is removed from the list and all the tasks in the task graph are

assigned priorities. A node in a task graph is assigned a priority which is lesser than its

predecessors and is greater than its successors. In this manner, all the precedence

constraints between the nodes are guaranteed. The above procedure is repeated until all

the task graphs are assigned priorities. The complexity of the above algorithm is of the

order O(n), where ‘n’ is the total number of tasks.

 18

C. LOW POWER SCHEDULING

Let ℑ = {T1,T2,…,TN}be the set of tasks that are arranged in the decreasing

order of their priorities as determined by algorithm in Figure 6. Let {Pi, ei, Di}

represent the period, worst-case execution time, and deadline associated with the task

Ti. A task set is called feasible if the deadline of each task is satisfied at all times. To

minimize the energy consumption, lowest possible speed for each task that guarantees

the feasibility of the task set is to be determined. In order to determine the lowest

possible speed and the corresponding voltage for each task, schedulability analysis of

the task set is required. According to the Critical Instant Theorem [17], if a task meets

its deadline whenever the task is requested simultaneously with all the high priority

tasks, then the deadline will always be met for all task phasing.

In other words, the task set ℑ = {T1,T2,…,TN}is schedulable if and only ti ≤ Di ∀ i =1,..

n, where ti is the response time of the task with priority ‘i’ when the task is requested

simultaneously with the high priority tasks. The response time of real-time tasks can be

broadly divided into two cases: 1) the response time of task whose deadline is less than

or equal to the period and is given by

k

i

k k

i eP
t∑

−

=
⎥⎥
⎤

⎢⎢
⎡1

1
 + ei ≤ ti [31] ……………………………………………… (6)

The first term in the sum on the left hand side of the above inequality represents the

amount of time the processor has spent in serving the tasks with priority higher than the

 19

task Ti. The value of ‘ti’ that satisfies the above inequality gives the response time for

task Ti. If the response time is less than the period, then only one instance of the task

will be active at any point of time. In other words, an instance of a task finishes its

execution before the next instance is released. Hence, in order to guarantee the

feasibility of the task set, we just have to guarantee that the deadline of the critical

instance of the task that is released simultaneously with all the high priority tasks. Most

of the existing work in the literature that has been done so far belongs to this case. 2)

The response time of a task whose deadline is greater than the period. In this case, more

than one instance of a task could be active during critical instant. The response time of

various active instances of the same task when the task is requested along with the high

priority tasks is given by

ti,j = Rti,j – (j-1)Pi , where

Rti,j ≤ k

i

k k

ji eP
Rt∑

−

=
⎥⎥
⎤

⎢⎢
⎡1

1

, + j*ei [31] ……………………………………………. (7)

where ‘ti,j’ is the response time for the ‘jth’ instance of task Ti and Rti,j represents the

length of the interval between the start of the current level-Пi busy interval and the time

at which ‘jth’ instance of a task has finished its execution. A level-Пi busy interval is an

interval where the processor is busy serving tasks with priority ‘i' or high. The response

time ‘ti,j’ for jth instance of a task can be obtained by deducting the interval between the

start of the current level-Пi busy interval and the time instant at which the ‘jth’ instance

of task Ti is released from Rti,j. A task set is feasible if and only if ti,j ≤ Di,j ∀ i

 20

=1,..n, and ‘j’ instances of ti , where ‘ti,j’ is the response time for the ‘jth’ instance of

task with priority ‘i'. Hence, in order to guarantee the feasibility of the task set, the

deadlines of all the active instances must be guaranteed. There is no work in the

literature that addresses this case. Even though it is imperative to guarantee the

deadlines of the real-time tasks, there is no additional benefit in finishing the processing

early. Instead, we can reduce the clock speed by extending the task execution time.

Figure 7 depicts the algorithm that determines the lowest possible speed and the

corresponding voltage for each task. The new speed determined for each task satisfies

1: Input: A “prioritylist” of tasks in the decreasing order of their priorities.
2: Output: A “voltagefactor” table containing tasks and their corresponding scaling factor.
3: limit_interval ← 1;
4: voltagefactor[i] ← 1; ∀ i =1,2, ..n.
5: while limit_interval ≠ n
6: for i ← limit_interval to n do
7: determine the response time of the first job in task Ti according to tl+1 = ei+k=1ΣI-1 ⎡ tl/pk⎤ ek,.
Solve this iteratively until tl+1 = tl. let this final value of tl+1 be Wi,1(t).
8: if (Wi,1(t)≤ pi,1) && (Wi,1(t)≤ Di,1) then
10: Si = { jTk| k =1,2,…i; j =1,2,…min(Di,1,pi,1)
11: scale[i] = max{Si,j / k=1Σiek⎡Si,j / Tk⎤ }, j =1,2,..⎜Si⎢
12: else if (Wi,1(t)≤ pi,1) && (Wi,1(t) > Di,1) then task set is not schedulable.
13: endif
14: if (Wi,1(t) > pi,1) then
15: compute the length of level-πI busy interval by solving the equation t =k=1Σ.i ⎡t/pk⎤ ek
iteratively starting from t(1) = k=1ΣIek until tl+1 = tl. The solution tl is length of level-πI busy interval.
16: for j←1 to ⎡ tl/pi⎤ do
17: find response time Wi,j of jth job by solving the equation t = Wi,j(t+(j-1)pi)-(j-1)pi. Where
Wi,j() is given by Wi,j(t) = jei + k=1ΣI-1 ⎡ t/pk⎤ ek.
18: if Wi,j(t) ∈ ((j-1)pi , (j-1)pi + Di] then continue;
19: else “taskset is not schedulable”
20: endfor

Figure 7: Algorithm 2 to determine the minimum possible speed for each task

 21

21: scale[i] = min{Wi,j} for j =1,2,… ⎡ tl/pi⎤
22: endif
23: endfor
24: limit_factor ← min { scale[i] }, i= limit_interval, …n.
25: limit_index = { i| limit_factor = min { scale[j] } , j = limit_interval,…n}
26: voltagefactor[j] ← voltagefactor[j] * limit_factor, ∀ j = limit_interval, …n
27: limit-interval ← limit_index
28: end while
29: output “voltagefactor”

Figure 7: continued

equations (6) and (7) and thereby guaranteeing the feasibility of the schedule. Initially,

all the tasks are arranged in the list in the decreasing order of their priorities. The

response time of a task at each priority level is determined using either equations (6) or

(7). This response time is extended to the deadline to determine the factor by which the

clock speed can be reduced with out causing the task at the current priority level and the

other high priority tasks miss the deadline. The above procedure is repeated for each

priority level to determine the minimum speed at which each task can be run. The

complexity of the above algorithm is O(n), where ‘n’ is the number of tasks.

D. DYNAMIC POWER MANAGEMENT

 Even if the tasks are scheduled at the speed determined in the above section, still

there will be the idle intervals. These idle intervals arise due to two reasons: 1) the idle

intervals that are inherent to fixed priority schedules and 2) the idle intervals that arise

due to run-time variations in execution time of tasks. During system operation, the

 22

execution time of each task frequently deviates from the worst-case execution time.

Sometimes, the deviations could be very large. These idle intervals cannot be exploited

by the speeds determined during the off-line phase. An on-line method that adjusts the

clock speed dynamically to exploit the idle intervals is needed to reduce the power

consumption of the system further. The scheduler maintains a queue called

“readyqueue”. All the tasks that are ready are kept in the “readyqueue” in the order of

their priority. The task that is currently being executed is called “active-task”. Figure 8

depicts an algorithm for on-line power manager.

1: Input: signal for the new task arrival or completion of the existing task
 and “voltagefactor” table.
2: Output: task to be scheduled or power mode for the idle interval.
3: if (newtask has arrived)
4: if priority(newtask) > priority(activetask) then
5: scale the processor to the voltage level given by voltagefactor[newtask].
6: switch the tasks.
7: endif;
8: else “insert the task in readyqueue”
9: endif
10: if (activetask has finished) then
11: if (readyqueue is empty) then
12: determine the length of idle interval
13: determine the optimal power-down mode
14: endif
15: else
16: if the current task has finished early
17: b ← current_time
18: e ← estimated end time of current task
19: t← min { (b-e),(deadline of the task in the ready queue – estimated
 end time) }
20: distribute this slack to the “next expected” task
 21: lookup the index for this task in the “voltagefactor” table and scale
 the processor to that level.
 22: endif
 23: endif;
24: endif.
25: output the task to be scheduled or nothing

Figure 8: Algorithm 3 for on-line power manager

 23

During the system operation, the scheduler is invoked when of the two

conditions occur: 1) a new task is ready and 2) the current has finished its execution.

When a new task is ready and the priority of the new task is higher than the current task,

then the scheduler preempts the current task and schedules the new task. Other wise, the

new task is kept in the “readyqueue”. If the current task has finished its execution and

there is no task in the “readyqueue”, then the scheduler estimates the length of the idle

interval. If the length of the idle interval is feasible, the processor is put in the power

down mode. The above algorithm has a constant time complexity.

E. ILLUSTRATIVE EXAMPLE

Let ℑ = {T1, T2, T3} be the set of tasks that are arranged in the decreasing order

of their priorities as determined by algorithm in Figure 6. Table 1 shows the

characteristics of the tasks. As shown in Table 1, the deadline of task T3 is greater than

its period. Hence the response time for task T3 could be larger than the period. Figure 9

shows the time valid schedule of the tasks for the length of the hyper period. As shown

in Figure 9, there is more than one instance of task T3 that is active at any point of time.

Table 1: Characteristics of tasks

 Task Period Execution
time

Deadline

T1 10 sec 4sec 10sec

T2 15 sec 3 sec 15 sec

T3 20 sec 8 sec 30 sec

 24

The deadlines of all these instances must be guaranteed while determining the

minimum speed at which task T3 can be run. The response times for the tasks and their

corresponding speeds as determined by Algorithm 2 in Figure 7 on Intel SA-1100

processor specifications is given in Table 2.

T3,1 arrives T3,2 arrives T3,3 arrives

T1

T2

T3 T1 T3 T2 T3 T1 T3 T1 T2 T3 T1 T3 T2 T3 T1 T3

0 4 7 10 14 15 18 20 24 30 34 37 40 44 45 48
50 54 60
 T3,1 finishes T3,2 finishes T3,3 finishes

Figure 9: Time valid schedule of the tasks for the length of hyper period

The first instance of task T3 has become a limiting instance. The tasks T1, T2,

and T3 must be scheduled at the speed 0.933 for all the tasks to meet the deadlines. The

tasks are run at the above determined speed and the on-line power manager in Figure 8

is employed to take advantage of idle intervals. Simulation results have indicated an

energy savings of 62.27 %.

Table 2: Response time and speed factors

Task # of active instances response time for

active instances
Clock speed on SA-

1100
T1 1 4 0.4

T2 1 7 0.466

T3 3 (26,25,20) (0.933,0.866,0.666)

 25

F. CASE STUDY AND EXPERIMENTAL RESULTS

 An event driven simulator has been developed to evaluate the merit of the

proposed technique. The simulator runs on the Linux operating system. An instance of

each task is generated at an interval equal to its period using timing information

generated by “system clock” functions. The performance of the proposed technique is

evaluated using traces of various real-time applications on Intel StrongArm SA-1100

embedded processor specifications. The StrongArm SA-1100 is a dynamically voltage

scaleable processor with eleven frequency and corresponding voltage levels. The clock

and voltage specifications of StrongArm processor are given in Appendix A. The test

cases used to evaluate the proposed approach consist of three synthetic cases and five

real-world examples. Table 3 shows the specifications of various test cases.

Table 3: Characteristics of various test cases

Test Cases # periodic task

graphs
sporadic

tasks
tasks with

D > P
Synthetic I 3 1 2

Synthetic II 5 3 4

Synthetic III 10 5 8

CNC [16] 8 --- ---

INS [15] 6 --- ---

Avionics [14] 14 1 ---

MP3 Player 1 4

GSM Decode 1 ---

 26

The “mp3 player” consists of tasks “scale factor”, “Huffman decode”,

“Dequantize sample”, and “sub band synthesis” that are executed in a sequential order.

“GSM decode” consists of tasks “RPE decoding”, “long term synthesis filter”, “short

term synthesis filter”, and “post processing” that are executed in a sequential manner.

Table 4 depicts the characteristics and priorities of tasks that are assigned by Algorithm

1 for mp3 player and GSM decoder. The tasks are scheduled by on-line power manager

Table 4: Characteristics of various tasks in mp3 player and gsm decoder

Task Priority Period Execution time deadline

Scale factor 1 20 msec 1024 µsec 150 msec

Huffman decode 2 20 msec 1890 µsec 150 msec

Dequantize sample 3 20 msec 4580 µsec 150 msec

Subband synthesis 4 20 msec 2675 µsec 150 msec

RPE decoding 5 18000 msec 921 msec 18000 msec

LT synthesis filter 6 18000 msec 2079 msec 18000 msec

ST synthesis filter 7 18000 msec 689 msec 18000 msec

Post processing 8 18000 msec 311 msec 18000 msec

according to their priorities in a preemptive manner. The actual execution demanded by

a task will be less than the worst-case execution time due to run-time variations. This

will cause the idle intervals. The on-line power manger exploits the idle intervals by

putting the processor in power down mode. The overhead in performing the shutdown

 27

sequence in Intel SA-1100 is 90 microseconds and the worst-case overhead in varying

the clock speed between various levels is assumed to be 60 microseconds. The tasks are

simulated for the length of hyper period, which is 18000 milliseconds. The same

schedule repeats over and again for the subsequent hyper periods. Table 5 depicts the

actual execution time demanded by each task during the length of the hyper period and

the clock speed at which they are executed. During the period of the simulation, the

processor entered the power down mode 876 times. The percentage associated overhead

energy consumption due to context switches and shut down sequences in comparison

with total energy consumption is 0.01 %. The total energy savings are 91.1%.

Table 5: Actual execution time and clock speed

Task Total time actually

demanded
Clock speed on SA-
1100

Scale factor 312 msec 0.5333

Huffman decode 458 msec 0.533

Dequantize sample 1839 msec 0.533

Subband synthesis 908 msec 0.533

RPE decoding 502 msec 0.533

LT synthesis filter 1191 msec 0.533

ST synthesis filter 593 msec 0.533

Post processing 143 msec 0.533

 28

A comparison of % energy savings between the proposed technique and the

technique “VLPS” in [5] is given in Figure 10. As shown in the figure, the proposed

technique yields higher energy savings compared to the technique proposed in [5]. The

technique in [5] tries to determine the set of intervals in a hyper period that can be run at

a minimum constant voltage. All the jobs in an interval are run at a constant voltage. It

fails to take maximum advantage by not exploiting the flexibility available in the

system to the maximum extent. The system energy savings can be further improved by

0

20

40

60

80

100

VLPS [5] proposed technique

CNC

INS

% Energy
 savings

Figure 10: Comparison of energy savings with various low power techniques

running each job at a minimum possible speed. The proposed technique yields higher

energy savings by determining the minimum speed for each task. The energy savings

due to the proposed technique on various test cases is shown in Figure 11.

 29

0 . 0 0 %

10 . 0 0 %

2 0 . 0 0 %

3 0 . 0 0 %

4 0 . 0 0 %

5 0 . 0 0 %

6 0 . 0 0 %

7 0 . 0 0 %

8 0 . 0 0 %

9 0 . 0 0 %

10 0 . 0 0 %

Synthet i c I Synthet i c I I Synthet i c I I I CNC INS Avi oni cs

various test cases

%
 E

ne
rg

y
Sa

vi
ng

s

%Energy Savings

Figure 11: % Energy savings with the proposed technique on various test cases

G. CONCLUSIONS

In this work, an energy efficient scheduling technique for single processor real-

time embedded systems is presented. The scheduling algorithm presented is capable of

handling both sporadic and periodic task graphs with precedence constraints. The static

power reduction component determines the minimum voltage at which each tasks can

be run. The Online power reduction component dynamically adjusts the clock speed to

take advantage of run-time variations in execution time of the tasks. It also exploits the

idle intervals by putting the processor in power down modes to reduce the processor

power consumption. The proposed approach is evaluated on various standard

benchmarks. Experimental results show that proposed approach yields significant

energy savings.

 30

CHAPTER IV

ENERGY EFFICIENT SCHEDULING TECHNIQUES FOR MULTI PROCESSOR

EMBEDDED SYSTEMS

A. INTRODUCTION

 Many embedded command and control systems used in manufacturing, chemical

processing, tele-medicine, and sensor networks are mission-critical. These systems are

usually involved with applications that must accomplish certain tasks before pre-

specified deadlines. An application in these systems comprise of chain of task set that

are implemented in a distributed fashion. The nodes in the distributed system are

involved with computation and exchange of messages between them in order to

accomplish real-time tasks. The messages sent between these nodes have deadlines by

which they must be processed. It is imperative to make the computation in the above

systems energy efficient while simultaneously guaranteeing the end-to-end message

deadlines.

A connection among chain of tasks is always established to realize computation

and message communication in an application. To guarantee the message deadlines of a

particular connection, a bound on the worst-case end-to-end delay experienced by the

messages must be derived. This objective is accomplished by computing the worst-case

delay suffered by messages at each node involved in the connection. The worst-case

end-to-end delay is obtained by summing up the worst-case delays at each node. A

connection is admitted if the worst-case end-to-end delay is less than or equal to its end-

 31

to-end deadline. The success of this seemingly straightforward approach hinges on to

critical issues. The first issue pertains to the description of a connection’s traffic. The

term traffic descriptor, Γ(I), [32] has been adopted for a method that is used to provide

relevant information about a connection’s traffic. A traffic descriptor should adequately

describe connection’s traffic not only at the source node but also throughout the nodes

involved in the connection. This traffic descriptor specifies the maximum processing

time demand by the messages of a connection at any point in the network during an

interval of length I as Γ(I). The second issue pertains to the analysis of the worst-case

delay suffered by a connection’s message at each node. The scheduling policy

employed at the node also affects the analysis. We consider First Come First Serve

(FCFS) and Weighted Round Robin (WRR) scheduling disciplines.

While the systems must process the messages by their deadlines, there is no

additional benefit in finishing the computation early. Rather by making the computation

at these nodes energy efficient, the battery lifetime can be increased. The strategy to

accomplish this objective is based on three key observations: 1) the processing of the

messages of a connection at any node can be delayed or extended up to the worst-case

delay at that node. 2) The slack in the connection is the difference between the end-to-

end deadline and the end-to-end worst-case delay of the messages of a connection.

This slack can be utilized to increase the worst-case delay tolerable at the computational

nodes involved in the connection. 3) The actual processing time demanded by the

messages of a connection during the run-time varies and is less than the worst-case

specification. In this work, a heuristic that effectively distributes the slack available in a

 32

connection among the nodes involved in the computation of an application is presented.

A technique to adapt the clock speed according to the run-time variations to make the

computation at the node energy efficient is also presented. The proposed technique has

following advantages: 1) it copes very well with the variable message delays that are

typical to distributed system. 2) It is applicable to both the systems with fixed task set

and the systems that operate in modal fashion. 3) It yields significant energy savings.

 The rest of the chapter is organized as follows: Section B presents motivational

examples. A brief description of the system model and other preliminaries is given in

Section C. section D presents the slack distribution technique. An elaborate discussion

on the service rate determination is given in Section E. Section F presents the

experimental results. Section G concludes the work.

B. MOTIVATIONAL EXAMPLES

This section presents two examples that motivated the work in this paper.

PE3

PE2 PE1

M1

M2

Figure 12: Typical distributed embedded systems with 3 nodes & 2 connections

Example 1: Let us consider a simple distributed embedded system consisting of three

nodes and two connections: M1 and M2 as shown in Figure 12. The connection M1

involves computation of nodes PE1, PE2, and PE3. The application M2 involves

computation of nodes PE1 and PE2. Table 6 gives the specification for connection M1.

 33

 Let us consider the node PE3. We have chosen PE3 for simplicity. The techniques to

deal with more complex scenarios involving several connections are presented in

section D. Let ‘f’ be the normal operational clock frequency of this processor. The

maximum processing time, Γ(∆), demanded by the messages of connection M1 at node

PE3 is 5 sec and the messages suffer a worst-case delay of 5 sec. The connection M1

can be admitted since its end-to-end worst-case delay (65 sec) is less than the end-to-

end deadline (95 sec). At any node involved in the connection, messages must be

processed by their worst-case delays to guarantee the end-to-end deadlines. Hence, the

node PE3 must operate at its maximum speed. The slack available in the connection M1

is 30 sec: (95- (25+35+5)). This slack can be distributed among the nodes to increase

the upper bound on the delays tolerable by the messages of connection M1. The new

worst-case delay tolerable by the messages of connection M1 at node PE3 is 15 seconds

assuming that the slack is distributed equally among the nodes PE1, PE2, and PE3.

Hence the new clock frequency at node PE3 is 0.33f. An efficient method for

distributing the slack is presented in section D.

Table 6: Traffic specification for an arbitrary interval of length, ∆ = 9 sec

Nodes Γ(I) Worst-case

delay

End-to-end

deadline

PE1 6 sec 25 sec

PE2 8 sec 35 sec

PE3 5 sec 5 sec

95 sec

 34

Example 2: Let us consider the node PE3 from previous example. Table 7 shows the

actual computational time demanded by the messages of connection M1 at node PE3

during an arbitrary interval of length ‘∆’ =9sec. We can take advantage of these run-

time variations in the processing time demand to reduce the energy consumption at the

node. We will determine the service rate that is needed to guarantee the processing of

the messages by their worst-case delay, ‘d’, at the beginning of each interval ∆. At the

beginning of the first interval [t0,t0+∆], the clock speed is set to 0.33f as determined

from Example 1.

Table 7: Run-time variations in processing time demands

Interval

Actual Computation time demanded

[t0, t0+∆] 4 sec

[t0+∆, t0+2∆] 4 sec

[t0+2∆, t0+3∆]

:

2 sec

At the beginning of the second interval, though the actual processing time

demanded during the previous interval was 4 sec, it was possible to serve only

(Γ(∆)/d)*∆, 3 time units. The remaining 1 sec of computational demand must be

processed with in (d-∆) time units, i.e., 6. The processor must be able to serve this

traffic and the expected processing time demand by the messages of the upcoming

 35

interval, i.e., 9, by their delays. Hence the required operational frequency is, (1/6 +

5/15), i.e., 0.46f. However in practical systems, the clock frequency cannot be scaled

continuously. So, the processor will be put in the lowest suitable frequency mode higher

than this factor. Figure 13 shows the clock speed for the four consecutive intervals d of

the original schedule and new schedule.

0

0.2

0.4

0.6

0.8

1

1.2

1st interval 2nd interval 3rd interval 4th interval

time

cl
oc

k
fr

eq
ue

nc
y

Original
New

Figure 13: Clock frequency for original and new schedules

C. SYSTEM MODEL

 Let us represent the set of connections supporting the currently active

applications by . A vector triplet, ()M,...(M M 1 n≡ DCP iii ,,) is used to describe any

individual connection served over various nodes. Let us use the symbol ‘∇’ to

represent an unspecified quantity. This means that there is no restriction on the value of

the corresponding parameter. We use the set {∂/η} to denote one of the conditions ∂ or

η but not both. The vectors

iM

DCP iii ,, are described below:

• The nodes involved in any arbitrary connection Mi communicate with each other by

exchanging messages. Even though the messages are generated periodically at the start

 36

node, they will not adhere to any strict periodic pattern at the subsequent nodes in the

system. This is because of the variable delays they suffer in the network. This kind of

behavior is accounted by not making any assumption on the periodicity of the messages

at the nodes other than the start node. The vector P i is used to represent the period with

which the messages of connection Mi arrives at various nodes. It is described by

(), where P∇∇,........,P1i i, j represents the period of the messages of connection Mi at a

node ‘j’.

• The worst-case processing time of the messages of connection Mi is described by the

vector (niii CCC ,..1≡) where jiC represents the worst-case processing time due to

computation and communication at node ‘j’. The total worst-case processing time of the

message is given by .
1

∑
=

n

k

ikC

• The vector D i represents the deadlines for the messages of connection Mi at various

nodes and is described by ()nii DD },.../{ 1 ∇ . A message may or may not have a local

deadline at a particular node, but it will have an end-to-end deadline, which is the

deadline at the last node. The message has to be processed by that deadline . niD

• The maximum demand function I)(Γi is used to represent the processing time

demanded by the messages of connection Mi over duration of length I.

 37

D. SLACK DISTRIBUTION

 As shown in Figure 12, any arbitrary connection Mi passes through a sequence

of nodes. Let us represent the sequence of the nodes serving connection Mi by Hi = <

s(i,1),s(i,2),….,s(i,j),..s(i,k)>, where k is the total number of nodes serving connection

Mi and s(i,j) denotes the node-id of the jth node in the connection’s path. Let us assume

that di,s(i,,1), di,s(i,2),…,di,s(i,k) are the upper bounds on the delays suffered by Mi. Let Dik be

the end-to-end deadline for the connection Mi. The total slack available in the

connection is given by TSi = Dik - . It is evident, from motivational

example 1, that this slack can be distributed among the nodes serving connection M

, (,)

1

k

i s i j

j

d
=
∑

i to

reduce the energy consumption. Instead of distributing this slack equally, let us allocate

more slack to the nodes where it will have maximum effect. Let us use the term service

rate to denote the ratio of current clock speed to the normal clock speed of a processor.

An efficient way of distributing the slack among the nodes of a connection is to allocate

slack according to the service rate of the nodes. The amount of slack allocated to a node

is proportional to the ratio of the service rate of the node to the sum of the service rates

of the nodes involved in the connection. This is subject to the condition that the new

worst-case delay is bounded by the local deadline at that node. The slack distribution

algorithm is invoked at a node during connection admission. Admission of a new

connection involves two phases: 1) connection setup and 2) reply. During connection

setup phase, a connection is established between the pre-specified nodes involved in the

computation of an application. A connection is established only if: i) The worst-case

 38

delay suffered by the messages of a connection at each node is less than the local

deadline, if there is a local deadline. ii) The worst-case end-to-end delay is less than the

end-to-end deadline. Otherwise, the connection is rejected. If a connection is rejected,

the behavior of the system is implementation dependent. A particular implementation

might try to handle the exception, while another might abort the operation and reset.

Algorithm 4 as shown in Figure 14 gives the pseudo code for connection setup and

reply phases. The slack distribution algorithm (Algorithm 5) as shown in Figure 15 will

be triggered during connection reply phase at every node involved in the connection.

The following are the brief description of the system parameters at an arbitrary node

s(i,j) involved in connection Mi:

• tsrate – sum of the service rates of the first ‘j’ nodes involved in the connection.

• sratei – service rate for connection Mi at s(i,j).

• tdelay – sum of the worst-case delay suffered by the messages of connection Mi at the

 first ‘j’ nodes.

• n – number of incoming connections at the node s(i,j).

• tslack – total slack to be distributed among first ‘j’ nodes.

• slacki – slack allocated to node s(i,j) for connection Mi.

• delay_wrri – worst-case delay for connection Mi at s(i,j) under WRR policy

• delay_fcfs – worst-case delay for connection Mi at s(i,j) under FCFS policy.

 39

Procedure connection_request(tdelayi, tsratei)
calculate the worst-case delay for connection Mi at s(i,j).
delay = worst-case delay determined as above
tdelayi +=delay.
if (tdelayi > local_deadline)connection_ reply(REJECT,0);
determine the service rate for Mi at s(i,j). // see section 4.2.
sratei = service rate determined as above.
tsratei =+ sratei.
if (j==k) // this is the last node in the connection
 tslacki = deadline – tdelay;
 if (tslacki >= 0)
 connection_reply(ACCEPT,tslack);
 else
 connection_reply(REJECT,0);
else
 connection_request(tdelayi,tsratei);
end connection_request
Procedure connection_reply(res,tslk)
if (res == REJECT) take an implementation dependent action.
else
 slack_distribution(tslk);
end connection_reply

Figure 14: Algorithm 4 for connection establishment

--
Procedure slack_distribution(tslk)
slacki = (tslk * sratei)/tsrate
if (tdelay+slacki > deadline)
 slacki = deadline –tdelay;
tslk = tslk – slacki;
#ifdef WRR
 delay_wrri += slacki; // update the delay for connection Mi.
#ifdef FCFS
 update_delay(slacki)
end slack_distribution
Procedure update_delay(slacki)
for (i =1;i <=n; i++)
 if (slacki < 0) return;
 else
 if (min > slacki) min = slacki;
delay_fcfs = delay_fcfs+min;
end update_delay

Figure 15: Algorithm 5 for slack distribution

 40

E. PERIODICAL SERVICE RATE DETERMINATION

 In this section, a technique to determine the lowest possible service rate that is

necessary to guarantee the upper bound on the delays of the messages of incoming

connections at a given node is presented. The technique also dynamically adapts the

clock speed to take advantage of the run-time variations. For this purpose, the actual

processing time demanded by the messages of incoming connections at a given node

during previous intervals is observed and this feedback is incorporated while

determining the service rate for the current interval. The new service rate should

guarantee the processing of the messages that will arrive in the upcoming interval by

their delay bounds. In addition, the new service rate should also guarantee the

processing of the messages that arrived during previous intervals and are waiting in the

queue by their delay bounds.

a) First Come First Serve (FCFS): The following notation to describe the system

parameters when the scheduling policy at the node is FCFS:

•f(t) - represents the actual processing time demanded by the messages that already

arrived at the node before the time instant ‘t’.

 • - represents the processing time demanded by the unprocessed messages, left in

the queue, which arrived during the interval (t-j∆,t-(j-1)∆) at time instant ‘t’.

Qj
t

 • - represents the required service rate at time instant ‘t’ to guarantee the processing

of the messages in the queue which arrived during the interval (t-j∆,t-(j-1)∆) by their

worst-case delay bounds.

S j
t

 41

• let {M1,..Mk} be the incoming connection set at a given node and

 be the corresponding input traffic descriptor set. Let { ΓΓΓΓ Ki ,..,..., 21 } Γ i
t

represent the input traffic descriptor function for connection Mi at time‘t’.

• Let = be the total maximum processing time demanded by the

incoming connection set at a given node for the upcoming interval ‘ ’ at time instant

‘t’.

()∆Γt ∑Γ
=

∆
k

i

i
t

1
)(

∆

• - represents the worst-case delay suffered by the messages of incoming

connection set when the scheduling policy at the node is FCFS.

FCFSd

• Let ‘n’ be the ratio betweend and ‘∆’. The value for ‘∆’ is chosen such that ‘n’ is

always greater than 1.

FCFS

•Let = ∑ represent the required service rate at the node at time ‘t’. tS
=

n

i

i

tS
1

• Let ‘ts’ be the system start time. We assume that the queue is zero at ts.

At the system start time, the service rate is set according to

S st ≥
d FCFS

ts
)(∆Γ ………………………………………………………………… (8)

Clearly, this service rate will guarantee the processing of messages that will arrive in

the upcoming interval ‘∆’ by their delay bounds. Moreover, this service rate will always

be less than or equal to 1. In practice, the actual processing time demanded by the

 42

arrived messages will be less than the maximum processing time demand because of the

run-time variations. We will take advantage of run-time variations by periodically

adjusting the service rate. At the beginning of each interval, a new service rate is

determined. This service rate should guarantee the processing of messages that will

arrive in the upcoming interval and the messages that already arrived in previous

intervals by their delay bounds. At any point of time, there will be unprocessed

messages from at most ‘n-1’ outstanding immediate predecessor intervals left in the

queue. The new service rate at the beginning of every interval is determined according

to

()∑

=

∆Γ+=
k

j
FCFS
tj

tt
d

SS
1

 ……………………………………………………… (9)

and the corresponding queue is determined according to

∑
=

=
k

1j

j
tQ Q t ………………………………………………………………….. (10)

where k = (){ } ∆∆−−− /)1(,max nttt s .

The service rate should be such that it must process the outstanding messages that

arrived during the interval (t-j∆,t-(j-1)∆) by their remaining delay bound. i.e., (d

S j
t

fcfs-

j∆).

QjdS j

t
FCFSj

t)(. ≥∆− ………………………………………………………. (11)

 43

 Ψ if Ξ > 0
Q j

t = ……………………………………… (12)
 Else Ψ + Ξ

where Ψ =) 1()(∆−−−∆− jtfjtf and Ξ = Q -jt ∆−

()

∑ ∫
=

∆−−

∆−

∆−

j

k

kt

kt
ktS

1

1

THEOREM 1: The service rate, St, determined by equation (9) will guarantee the

processing of the messages by the upper bound on their delays.

Proof: To prove that St is a valid service rate, the following cases must be satisfied.

 Case 1: The unprocessed messages arrived during any arbitrary previous interval (t-j∆,

t-(j-1)∆) will be processed by the upper bound on their delays by the service rate St.. i.e.,

 QS
j

tt jd ≥∆−)(*

QSSS
j

t

n

t

j

tt jd ≥∆−++++⇒)(*)....(1

QQSS
j

t

j

t

n

tt jd ≥+∆−++⇒)(*)..(1 By substituting equation (11)

 ijdS i

t
∀≥∆− 0)(* vaildiswhich Q

Case 2: The messages that will arrive in the upcoming interval ‘∆’, along with the

messages that are left in the queue will be processed by their deadlines by the service

rate St. i.e., ()∆+≥ Γ∑
−

=
t

j

t

n

j
t QS d

1

1

*

 44

()

() ()

i

d
id

d

t

j

t

n

j
t

n

i

i

t

t

j

t

n

j

n

t

j

tt

QQ

QSSS

∀≥∆

∆+≥∆+
∆−

⇒

∆+≥++++⇒

Γ∑Γ∑

Γ∑

−

=

−

=

−

=

 0i validis which

*)(

*)....(

1

1

1

1

1

1

1

Q

This proves the theorem. ■

b) Weighted Round Robin (WRR): The following notation to describe the system

parameters when the scheduling policy at the node is WRR:

• represents the actual processing time demanded by the messages of connection

M

()tf i

i that already arrived at the node before the time instant ‘t’.

 • represents the processing time demanded by the unprocessed messages from

connection M

Q ji
t
,

i, left in the queue, which arrived during the interval (t-j∆,t-(j-1)∆) at time

instant ‘t’.

• represent the required service rate at time instant ‘t’ to guarantee the processing of

the messages from connection M

S ji
t
,

i in the queue which arrived during the interval (t-j∆,t-

(j-1)∆) by their worst-case delay bounds.

• let {M1,..Mk} be the incoming connection set at a given node and

 be the corresponding input traffic descriptor set. Let { ΓΓΓΓ Ki ,..,..., 21 } Γ i
t

represent the input traffic descriptor function for connection Mi at time ‘t’.

• to represent the length of the interval during which the messages from

connection M

()TΞi

i will be processed in a time interval ‘T’.

 45

• to represent the worst case delay suffered by the messages from connection Mdi i at

a given node.

• Let ‘ts’ be the system start time. We assume that the queue is zero at ts.

• let ‘n’ be the the ratio between and ‘∆’. di

•Let = represent the required service rate at the node at time ‘t’ to process

the messages from connection M

Si
t ∑

=

n

j

ji

tS
1

,

i.

At system start time, the service rate is set to

≥Si

ts)(
)(

dii

i
ts

Ξ
Γ ∆ ……………………………………………………………………. (13)

Clearly, this service rate will guarantee the processing of messages from connection Mi

that will arrive in the upcoming interval ‘∆’ by their delay bounds. At the beginning of

each interval, a new service rate is determined. This service rate should guarantee the

processing of messages from connection Mi that will arrive in the upcoming interval

‘∆’ and the messages that already arrived during previous intervals by their delay

bounds. The new service rate at the beginning of every interval is determined according

to

()
()d

S
ii

i
t

j

i
t

Ξ

∆Γ+= ∑
=

 S
k

1

ji,
t ………………………………………………………… (14)

and the corresponding queue is determined according to

 46

∑
=

=
k

j

ji
t

i
t QQ

1

, …………………………………………………………………… (15)

where k = (){ }∆−−−)1(,max nttt s ∆/

The service rate and the corresponding processing time demanded by the

outstanding messages that arrived during the interval (t-j∆,t-(j-1)∆) are given by

S ji
t
,

() Q - . ji,

t
, ≥∆jdS i
ji

t ……………………………………………………………… (16)

 χ if ǖ > 0
 Q = ……………………………………. (17) ji

t
,

 Else χ + ǖ

where χ =)1()(∆−−−∆− jtfjtf ii and ǖ = 0
1

1

>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ∑ ∫

=

∆−−

∆−

∆−∆−

j

k

kt

kt

i
kt

i
jt SQ

THEOREM 2: The service rate, , will guarantee the processing of the messages of

connection M

S i

t

i by their upper bounds on delays.

Proof: To prove that S is a valid service rate, we must prove two cases: i

t

Case 1: The unprocessed messages arrived during any arbitrary previous interval (t-j∆,

t-(j-1)∆) will be processed by the upper bound on their delays by the service rate .

si

t

Qs
ji

t

i

t
jdei

,
)(*.,. ≥∆−

QSSS
ji

t

ni

t

ji

t

i

t
jd

,,,1,)(*).....(≥∆−++++⇒

 47

QQSS
ji

t

ji

t

ni

t

i

t
jd

,,,1,)(*)...(≥+∆−++⇒ by substituting equation (16)

k 0)(* validiswhich S ki,

t
∀≥∆− jdQ

Case 2: The messages that will arrive during the upcoming interval and the messages

that are in the queue will be processed by their deadlines by the service rate . si

t

∑Ξ
Γ −

=

+
∆

≥
1

1

,

)(
)(

* i.e., S
n

j

ji

t
ii

i
ti

t Qd
d

()

() () k 0 validiswhich *)
j-d

(

 *)...(

1

1

,1-n

1j

,

t

i
t

,1

1

,1,

∀≥∆∆+≥∆+
∆

⇒

∆+≥++⇒

∑ Γ∑ Γ

Γ∑

−

==

−

=

kd

d

n

j

i
t

ji

t

i
t

ji

ji

t

n

j

ni

t

i

t

QQ

QSS

Q

This proves the theorem. ■

F. EXPERIMENTAL RESULTS

 An event driven simulator has been developed to evaluate the proposed

technique. The distributed embedded system is simulated through various independent

processes running on Linux and communicating through “Socket” interface. A global

centralized server is used to supply the timing information to all the processes involved

in the simulation. The performance of the proposed approach is evaluated using traces

of various real-time applications on Intel PXA250 XScale embedded processor. The

Xscale is a dynamically voltage scaleable processor with four frequency and

corresponding voltage levels. The clock and voltage specifications of Xscale processor

 48

are given in Appendix. The test cases used to evaluate the proposed approach consist of

three synthetic cases and two real-world examples. Table 8 shows the specifications of

Table 8: Characteristics of various test cases

Test Cases Number
of Nodes

Number of
Connections

Number
of

Modes
Synthetic I 3 10 2
Synthetic II 5 20 2
Synthetic III 10 30 3
Multimedia 4 4 3

DSP 16 31 1

various test cases. The Multimedia test case has applications of MPEG, JPEG, MP3,

and ADPCM running in three different modes. The DSP application operates in a single

mode. Table 9 shows the mode configurations for various test cases.

Table 9: Mode configurations for multimedia and synthetic test cases

Test Cases Mode 1

(nodes, connections)
Mode 2

(nodes,connections)
Mode 3

(nodes,connections)
Synthetic
(10,30)

(9,20) (9,25) (10,30)

Multimedia
(4,4)

(3,2) (3,3) (4,4)

A comparison of various slack distribution schemes is depicted in Figure 16. As

shown in the figure, the slack distribution technique “srate” yields more energy savings

compared with any other approaches. The “greedy” technique of allocating all the

available slack to the first node in the connection had eventually lead to severe

connection drop rate. The “wextime” technique of distributing slack according to the

 49

worst-case execution time of tasks at the nodes involved in the connection had a

marginal effect on the overall energy savings of the system. Even though the “equal”

technique of distributing slack equally among the nodes involved in the connection

fared well, it is inferior to the “srate” technique. This indicates that reducing the service

rate of a node with higher utilization by a factor will have a greater impact on the

system-wide energy savings than reducing the service rate of a node with lower

utilization by the same factor. Hence the proposed technique is superior compared with

“greedy” [26], “wextime” [26], “equal”.

0

5

10

15

20

25

30

35

40

Small Medium Large

Slack Distribution Techniques

%
 E

ne
rg

y
Sa

vi
ng

s

Wextime
Equal
Service Rate

Figure 16: Comparison of energy savings with various slack distribution approaches

 50

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100

Number Of Connections

Ti
m

e
(m

se
c)

Overhead

Figure17: Connection setup overhead vs. number of connections

The overhead of connection establishment procedure is shown in Figure 17.

The overhead increases slightly with the number of connections initially and after a

certain point the overhead increases drastically with the slight increase in the number of

connections. This overhead is measured on Xscale processor. The overhead of periodic

service rate determination is shown in Figure 18. As shown in the above figure, the

overhead of periodic service rate determination grows in a “super linear” fashion with

the size of the incoming connection set at the node. Even though the overhead of

periodic service rate determination is negligible for a large incoming connection set

(size < 35), it will have a significant impact on the system with a very large incoming

connection set. The “super linear” nature of periodic service rate determination is due

to the fact that the node has to deal with “large” number of messages and computations

associated with them as the size of the incoming connection set increases. The overhead

of periodic service rate determination may also become a limiting factor in connection

 51

acceptance for a system with huge incoming connection set having very small

processing time demand.

The comparison of energy savings with all nodes employing FCFS scheduling

policy and all nodes employing WRR scheduling policy is shown in Figure 19 on

synthetic II test case. The advantage of the FCFS scheduling policy is it is easy to

implement and has a lesser overhead in determining the clock frequency periodically

compared with the WRR scheduling policy. With WRR scheduling policy, the periodic

service rate determination algorithm will be called on each individual connection

separately at the beginning of each interval. This means that the overhead for

determining the service rate with WRR scheduling policy is roughly the amount, which

is the size of the incoming set, multiplied by the overhead of determining the service

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120

Number of Connections

Ti
m

e
(M

ic
ro

se
co

nd
s)

Overhead

Figure 18: Overhead of periodic service rate determination

 52

rate with FCFS scheduling policy. Even though the “WRR’ scheduling policy yields

better energy savings for nodes with smaller incoming connection set, its benefits will

0

10

20

30

40

50

60

70

80

90

Energy Savings

Scheduling Policies

%
 E

ne
rg

y
Sa

vi
ng

s

FCFS
WRR

Figure 19: Energy savings with all nodes employing either fcfs or wrr scheduling policy

become very limited as the size of the incoming connection set grows. This is partially

because of the “super linear” nature of overhead in determining the periodic service

rate. Figure 20 presents the energy savings obtained by the proposed technique on

various real-world and synthetic examples. These measurements are taken using Xscale

embedded processor clock speed and voltage level specifications. As seen in the below

figure, the proposed technique yields significant energy savings.

 53

0

10

20

30

40

50

60

Syn
the

tic
 I

Syn
the

tic
 II

Syn
the

tic
 III

Mult
im

ed
ia

DSP

Various Bench Marks

%
En

er
gy

 S
av

in
gs

Energy Savings

Figure 20: % Energy Savings with the proposed technique on various test cases

G. CONCLUSIONS

In this work, an energy efficient technique that address the issue of guaranteeing

the end-to-end and local deadlines of the messages in real-time distributed embedded

systems is presented. The proposed techniques use a comprehensive traffic description

function that provides adequate information about the worst-case traffic behavior

anywhere in the network. The service rate of a node is reduced to take advantage of the

fact that the processing of the messages can be delayed or extended up to their worst-

case delays. Further, the traffic pattern is periodically analyzed to determine the best

possible service rate to take advantage of the run time variations in computation

demands. Experimental results showed that the proposed techniques lead to

considerable energy savings.

 54

CHAPTER V

FUTURE WORK

A. SINGLE PROCESSOR

 In this work, an energy efficient scheduling technique for single processor real-

time embedded systems has been presented. This technique takes into account periodic

task graphs and sporadic tasks with hard deadlines. However, the technique does not

address on how to deal with soft aperiodic tasks. Soft aperiodic tasks do not have

deadlines; however the response time for soft aperiodic tasks should be low for the

system to be used. The proposed technique can be extended to soft aperiodic tasks.

B. MULTI PROCESSOR

 The proposed technique for multi processor is only applicable to a canonical

chain of tasks executing on different nodes. The approach does not address the task

graphs containing tasks with more than one predecessor or one successor. It seems to be

difficult to incorporate these kinds of task graphs in the existing model. The proposed

system model can be extended to incorporate the above said task graphs.

 55

CHAPTER VI

CONCLUSION

With the advent of portable systems, low power design has become a major

consideration in the design of today’s applications. As an increasing amount of system

functionality tends to be realized through software, system-level power reduction

techniques, especially at operating systems level, are becoming important. There have

been extensive studies in the literature regarding low power system design. Still, for

many years to come, the search for even better low power system-level techniques will

continue. In this thesis, novel energy efficient techniques for the scheduling of real-time

tasks in single and multi processor embedded systems are presented. The performance

of these techniques has been evaluated on real-life benchmarks on an XScale embedded

processor specifications. Experimental results showed that the proposed techniques

yield significant energy savings.

 56

REFERENCES

[1] K.Lahiri, A.Raghunathan, S. Dey and D. Panigraphi, “Battery-Driven System

 Design: A New Frontier in Low Power Design,” Proc. Int’l Conf. Very Large

 Scale Integration Design, pp. 261-267, January 2002.

[2] Y.Shin and K.Choi, “Power Conscious Fixed Priority Scheduling for Hard Real-

 Time Systems,” Proc. Int’l Design Automation Conference, pp.134-139, June 1999.

[3] G.Fohler, “Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic

 Tasks in Statically Scheduled Systems,” Proc. Int’l Symp. Real-time Systems,

 pp.152-161, December 1995.

[4] J.Luo and N.K.Jha, “Battery-Aware Static Scheduling for Distributed Real-Time

 Embedded Systems,” Proc. Int’l Design Automation Conference, pp. 444-449, June

 2001.

[5] G.Quan and X.Hu, “Energy Efficient Fixed Priority Scheduling for Real-Time

 Systems on Variable Voltage Processors,” Proc. Int’l Design Automation

 Conference, pp.828 –833, June 2001.

[6] T.Okuma, T.Ishihara and H.Yasuura, “Real-Time Task Scheduling for a Variable

 Voltage Processor,” Proc. Int’l Symp. System Synthesis, pp. 24-29, November 1999.

[7] J.Luo and N.K.Jha, “Power-Conscious Joint Scheduling of Periodic Task Graphs

 and Aperiodic Tasks in Distributed Real-Time Embedded Systems,” Proc. Int’l

 57

 Conf. Computer-Aided Design, pp.357-364, November 2000.

[8] J.Pouwelse, K.Langendoen and H.sips, “Energy Priority Scheduling for Variable

 Voltage Processors,” Proc. Int’l. Symp. Low Power Electronics and Design,

 pp. 28-33, August 2001.

[9] Y.Shin, K.Choi and T.Sakurai, “Power Optimization of Real-Time Embedded

 Systems on Variable Speed Processors,” Proc. IEEE/ACM Int’l Conf. Computer

 Aided Design, pp. 365-368, November 2000.

[10] V.Swaminathan and K.Chakrabarty, “Real-Time Task Scheduling for Energy-

 Aware Embedded Systems,” Proc. IEEE Int’l Symp. Real-Time Systems (RTSS) –

 Work-in-Progress Session, November 2000.

[11] I. Hong, M. Potkonjak and M. B. Srivastava, “On-Line Scheduling of Hard Real-

 Time Tasks on Variable Voltage Processor,” Proc. Int’l Conf. Computer-Aided

Design (ICCAD), pp. 653-656, November 1998.

[12] L. Benini, G. Castelli, A. Macii, and R. Scarsi, “Battery-Driven Dynamic Power

 Management,'' IEEE Design and Test of Computers, vol. 18, no. 2, pp. 53-60, April

 2001.

[13] A. Manzak and C. Chakrabarti, “Variable Voltage Task Scheduling Algorithms

 for Minimizing Energy,” Proc. Int’l Symp. Low Power Electronics and Design, pp.

 279-282, August 2001.

[14] C. Locke, D. Vogel, and T. Mesler, “Building a Predictable Avionics Platform in

 58

 Ada: A Casestudy,” Proc. IEEE Int’l Symp. Real-Time Systems, pp. 181-189,

 December 1991.

[15] A. Burns, K. Tindell, and A. Wellings, “Effective Analysis for Engineering Real-

 Time Fixed Priority Schedulers,” IEEE Trans. Software Eng., vol. 21, no. 5, pp.

 475–480, May 1995.

[16] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, “Visual Assessment

 of a Realtime System Design: A Case Study on a CNC Controller,” Proc. IEEE

 Int’l Symp. Real-Time Systems, pp. 300-310, December 1996.

[17] C.L.Liu and Layland, “Scheduling Algorithms for Multiprogramming in a Hard

 Real-Time Environment,” ACM Journal, vol.20, no. 1, pp. 46-61, January 1973.

[18] R. Gonzalez and M. Horowitz, “Energy Dissipation in General Purpose

 Microprocessors,” IEEE Journal of Solid State Circuits, vol. 31, no. 9, pp. 1277-

 1284, September 1996.

[19] T. Okuma, H. Yasuura, and T. Ishihara, “Software Energy Reduction Techniques

 for Variable Voltage Processors,” IEEE Design & Test of Computers, vol. 18, no. 2,

 pp. 31-41, March 2001.

[20] W. Nebel, and J. Mermet, “Low Power Design in Deep Submicron Electronics,”

 Boston, Massachusetts: Kluwer Academic Publishers, 1997.

[21] J. Luo, and N. Jha, “Static and Dynamic Variable Voltage Scheduling Algorithms

 59

 for Real-Time Heterogeneous Distributed Embedded Systems,” Proc. ASP-DAC,

 pp. 719- 728, January 2002.

[22] D.Zhu, R. Melhem, and B. Childers, “Scheduling with Dynamic Voltage/Speed

 Adjustment Using Slack Reclamation in Multi Processor Real-Time Systems,”

 IEEE Trans. On Parallel and Distributed Systems, vol.14, no. 7, pp. 686-700,

 December 2001.

[23] M.T.Schmitz, and B.M. Al-Hashimi, “Energy-Efficient Mapping and Scheduling

 for DVS Enabled Distributed Embedded Systems,” Proc. Int’l Conf. Design,

 Automation and Test in Europe, pp. 514 -521, March 2002.

[24] S. Hua, G. Qu, and S. Bhattacharyya, “Energy Reduction Techniques for

 Multimedia Applications with Tolerance to Deadline Misses,” Proc. Int’l Design

 Automation Conference, pp. 131-136, June 2003.

[25] J. Luo, and N. Jha, “Power-Profile Driven Variable Voltage Scaling for

 Heterogeneous Distributed Real-Time Embedded Systems,” Proc. Int’l Conf. Very

 Large Scale Integration Design, pp. 369-375, January 2003.

[26] R. Mishra, N. Rastogi, and D. Zhu, “Energy Aware Scheduling for Distributed

 Real-Time Systems,” Proc. Int’l Symp. Parallel and Distributed Processing,

 pp. 21-29, April 2003.

[27] W.C. Kwon, and T. Kim, “Optimal Voltage Allocation Techniques for

 60

 Dynamically Variable Voltage Processors,” Proc. Design automation Conference,

 pp. 125-130, June 2003.

[28] D. Rakhmatov, and S. Vrudhula, “Battery-Conscious Task Sequencing for Portable

 Devices Including Voltage/Clock scaling,” Proc. Design Automation Conference,

 pp. 189-194, June 2002.

[29] C. Hughes, J. Srinivasan, and S. Adve, “Saving Energy with Architectural and

 Frequency Adaptations for Multimedia Applications,” Proc. Int’l Symp. Micro

 Architecture, pp. 250-261, December 2001.

[30] C. Hwang, and A. Wu, “A Predictive System Shutdown Method for Energy Saving

 of Event Driven Computation,” Proc. Int’l Conf. Computer Aided Design,

 pp. 28-32, November 1997.

[31] J. W. S. Liu, “Real-Time Systems,” Upper Saddle River, New Jersey: Prentice Hall

 Publishers, 2000.

[32] A. Raha, N. Malcolm, and W. Zhao, “Guaranteeing End-To-End Deadlines in

 ATM Networks,” Proc. Int’l Conf. Distributed Computing Systems, pp.60-68,

 May 1995.

 61

APPENDIX A

INTEL STRONG ARM SA-1100 CLOCK SPEED SPECIFICATIONS

The core clock frequency is configured by software through the core clock

configuration field (CCF<4:0>) in the power manager phase-locked loop (PLL)

configuration register (PPCR). This field should be programmed during the boot

sequence for the desired full-speed operation.

Table 10: Intel SA-1100 Core Clock Configuration
CCF<4:0> 3.864 MHz Oscillator 3.5795 MHz Oscillator

00000 59.0 57.3

00001 73.7 71.6

00010 88.5 85.9

00011 103.2 100.2

00100 118.0 114.5

00101 132.7 128.9

00110 147.5 143.2

00111 162.2 157.5

01000 176.9 171.8

01001 191.7 186.1

01010 206.4 200.5

01011 221.2 214.8

01100-11111 Not supported --

 62

APPENDIX B

INTEL PXA250 XSCALE CLOCK SPEED SPECIFICATIONS

Table 11: Intel PXA250 Core Clock Specification
Range Frequency Voltage

Low Voltage Range 132.7 MHz 0.935 V

Medium Voltage Range 199.1 MHz 1.1 V

High Voltage Range 298.7 MHz 1.21 V

Peak Voltage Range 398.2 MHz 1.43 V

 63

VITA

Rajesh Babu Prathipati received his undergraduate degree in computer science and

engineering in 2000 from Regional Engineering College, Warangal, India. He worked

as a Software Engineer at Nortel Networks, where he developed software for second

generation wireless networks. He began his study for his Master of Science degree in

computer science at Texas A&M University in 2001. He received his Master of Science

degree in May 2004.

Permanent Address

P.V.V. SubbaRayudu

5-3-71, Opp: T.V. Station

Amalapuram - 533201

INDIA

The typist for this thesis was Rajesh Prathipati.

	Figure 7: continued

