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Abstract

A key challenge faced by Body Sensor Networks (BSN) is the efficient

utilization of energy at the various processing nodes. Being portable and

unobtrusive, the preferred choice of energy source for these nodes is the

battery. In this work we propose a static battery and QoS aware schedul-

ing algorithm to schedule an application modeled as a Directed Acyclic

Graph (DAG), with dependency and deadline constraints, on to the het-

erogeneous processing elements that comprise the BSN. This work is the

first in literature to address the battery-aware multi-processor scheduling

problem, which happens to be a traditional task, under the context of

each processing node being powered by individual heterogeneous batteries.

The proposed algorithm exploits rate-capacity effect and recovery effect to

maximize the charge drawn from a battery. The algorithm also strives

to achieve uniform wear-off of the batteries in the BSN. A novel battery

model previously developed in literature is utilized to guide the scheduling

process. The DC-DC converter is eliminated and the battery is interfaced

directly to the processing element to minimize converter losses and achieve

better control over the battery discharge current. The developed algorithm

is suitable for systems that do not support Dynamic Voltage Scaling (DVS)

and where charge utilization can be maximized by profiling the discharge

current drawn from the battery. An application tool is also developed as

part of this work to provide a graphical front-end to simulate and evaluate

performance of scheduling algorithms.
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Chapter 1

Introduction

A hallmark of the past decade is the explosive growth of embedded com-

puting, in terms of capability as well as pervasiveness. Advancements in

microprocessors, sensors, wireless communications, semiconductor manu-

facturing, software/hardware design tools etc. have produced embedded

devices that offer tremendous computing as well as networking power in

form factors never witnessed before. A simple example of such a device

would be the mobile phone which has witnessed double-digit growth rate

in most parts of the glove [3]. This trend is expected to accelerate and

culminate into the concept of Wearable Computing [4][5]. An exciting

application of such a realization would be Body Sensor Networks (BSN).

BSN consist of a number of tiny sensor nodes, each capable of communi-

cation over a wireless medium, typically tethered to the human body for

autonomous 24-7 monitoring of physiological data. It is envisioned that

BSN will provide a major breakthrough in medical practices since it facili-

ties autonomous and remote administration of healthcare.
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One of the key hurdles that BSN have to surmount before they can be

adopted for widespread usage is the efficient utilization of energy available

at the various sensor nodes. The sensor nodes of the BSN are wearable and

perhaps even implantable, and are thus powered by a mobile energy source

such as an electro-chemical battery. Being ambulatory in nature, recharg-

ing or replacing the node batteries might not be practical. Consequently,

energy-aware design techniques to prolong the operational lifetime of BSN

have to be employed. Moreover, the battery is a non-linear energy source

whose behavior deviates significantly from that of an ideal energy source.

Thus, designing BSN battery-aware, as opposed to just energy-aware, is of

paramount importance. Energy losses such as those occurring in energy

transmission components like DC-DC converters need to be minimized as

well if battery utilization is to be maximized.

1.1 Research Scope

In this work we adopt a system-level approach to inject battery awareness

into BSN as opposed to gate/circuit/board level optimization techniques.

We specifically deal with the problem of scheduling a BSN application,

modeled as a Directed Acyclic Graph (DAG), on to the nodes of the BSN

in a battery-efficient manner. The predominant energy sinks in a modern

sensor node are the microprocessor and the radio-frequency (RF) module

[6]. In line with this, our work considers the energy requirements of these

two sub-components only and ignores other energy sinks that might exist on

a sensor node such as sensor or storage elements. To cater for the wide range

of battery-chemistry available in today’s market, the batteries powering
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the sensor nodes are assumed to be heterogeneous. Due to complexities

involved in accurately predicting battery run time behavior, only static

(offline) scheduling is considered. We survey various battery models and

adopt one suitable for our needs. Developing a battery model from grounds

up would be out of scope of this research work.

1.2 Research Contributions

The research contributions of this dissertation are as follows:

1. We propose a static battery and QoS aware scheduling algorithm

called List Based Minimum Damage(LMBD)to schedule an appli-

cation DAG, with deadline constraints and non-negligible inter-task

communication costs, on to the heterogeneous processing elements

that comprise a BSN. The proposed algorithm exploits non-ideal

battery characteristics, namely, rate-capacity and recovery effect to

maximize the charge drawn from the battery. A network-wide opti-

mization is adopted such that uniform wear-off of the batteries in the

system is achieved. A novel battery model previously developed in

literature is utilized to guide the scheduling process. The developed

algorithm is suitable for systems that do not support the traditional

Dynamic Voltage Scaling (DVS) technique and where charge utiliza-

tion can be maximized by profiling the discharge current drawn from

the battery. The proposed algorithm is validated via rigorous simu-

lation runs.
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We believe our work to be the first in literature to address the battery-

aware multi-processor scheduling problem, which happens to be a

traditional task, under the context of each processing node being

powered by individual heterogeneous batteries.

2. The effect of the DC-DC converter on battery performance is studied

and an energy delivery setup to mitigate converter losses is adopted.

A novel physical setup known as Passive Voltage Scaling(PVS)[2]

eliminates converter losses totally by interfacing the battery directly

to the hardware. This setup is found to be highly suitable for wireless

sensor nodes. It is also found to provide greater control over the

battery discharge current as compared to conventional setups. We

have adopted PVS as the physical setup of the BSN under study and

the proposed algorithm operates under this setup.

3. An application called Graphical Simulator Tool(GST) is developed

that acts as a graphical front-end via which an user can intuitively

launch and evaluate the performance of LMBD along with other

scheduling algorithms. All interactions with the user is graphical

making the entire simulation process highly interactive. Simulation

inputs such as DAGs and outputs such as schedules can be viewed

graphically from within the tool itself. The tool also incorporates a

DAG builder.
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1.3 Organization of this Dissertation

1. Chapter1: The current chapter; provides an introduction to the re-

search problem this dissertation has addressed. Research contribu-

tions are summarized as well.

2. Chapter2: Provides background information to fully appreciate the

research contributions of this dissertation. BSN, the multi-processor

scheduling problem, battery behavior, battery modeling and DC-DC

converters are introduced. The distinction between energy-awareness

and battery-awareness is established.

3. Chapter3: A literature review of the battery-aware multiprocessor

scheduling problem is provided in this chapter.

4. Chapter4: The physical architecture as well as the application model

of the BSN under study are formalized in this chapter. Various tim-

ing parameters related to the scheduling problem are introduced and

defined as well.

5. Chapter5: Passive Voltage Scaling; a DC-DC converter free design

methodology is introduced here. The suitability of this methodology

to the BSN under study is explored. Hardware assumptions such

as the operating frequency as well as the voltage of the BSN sensor

nodes are specified as well.

6. Chapter6: The research problem addressed by this dissertation is

formalized. The literature survey of chapter 3 is revisited to compare

and contrast the problem being addressed with problems that have

been answered in the literature. It is then shown that the problem

5



addressed by this dissertation is hitherto not satisfactorily addressed

in existing literature.

7. Chapter7: This chapter introduces and explains the algorithmic con-

tribution of this dissertation. The working of the proposed algorithm;

LMDB, as well as its internals are throughly explicated.

8. Chapter8: The computational complexity of the proposed algorithm

is derived here.

9. Chapter9: Performance evaluation of LBMD via simulation studies

are presented, analyzed and inferred.

10. Chapter10: The application tool GST is introduced and some of its

salient features are elaborated.

11. Chapter11: Provides possible future research directions and con-

cludes this dissertation.
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Chapter 2

Preliminaries

This section provides broad but necessary background information to fully

appreciate the rest of this dissertation. We will start by looking into BSN

in greater detail. Next we will look into the energy and QoS-aware multi

processor scheduling problem and highlight the nuances of the problem

from a BSN perspective. Next we will focus our attention on the bat-

tery, explore its unique and non-ideal characteristics and understand their

implication. We will establish the difference between ”energy-aware” and

”battery-aware” paradigms. Finally we will look into the DC-DC converter

and its impact on battery performance.

2.1 What is a Body Sensor Network?

The term Body Sensor Networks was first coined by Prof. Guang-Zhong

Yang of Imperial College in 2002 [6] to distinguish a class of personal wire-

less networks for physiological monitoring from the more generic Wireless
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Sensor Networks (WSN). The key distinguishing factor being the word per-

sonal. Whereas a WSN is primarily meant for environmental monitoring

wherein a human is a variable within the environment, in BSN the human

body is the environment to be monitored.

BSN consists of one or more sensor nodes, known as processing ele-

ments (PE), that are capable of wireless communication with one another.

Each PE has the capability to acquire, process and disperse environmental

stimuli, the stimuli typically being a biological process such as heart beat,

blood pressure, posture etc. The PEs typically consist of a specialized low

power microcontroller, a Radio Frequency (RF) module, a sensing element

and an energy pack. The stimuli is acquired via the bio-compatible sensing

element(s) which then is processed by the microcontroller and finally dis-

persed, if necessary, via the RF module. The BSN also contains a central

node, typically a PDA, equipped with a general purpose microprocessor

that acts as a gateway to facilitate information exchange between the BSN

and any other external device or network, or within the various nodes of

the BSN itself. Figure 2.1 shows an example of a BSN monitoring the phys-

iological state of an athlete. In a typical application scenario, the various

PEs collect, process and transmit local data to the PDA which then up-

loads this data to the internet for remote viewing by a doctor. In extreme

cases the BSN itself could intelligently decide on an appropriate course of

action to be taken (such as drug-delivery) without the intervention of the

doctor.

Most applications of BSN require the BSN be operated around the

clock, on a 24-7 basis. This imposes several design constraints and poses

8



Figure 2.1: BSN employed to monitor health of an athlete

unique challenges. One of it is the choice of the energy pack. Being mobile

and unobtrusive the energy pack of choice is predominantly the electro-

chemical battery. Due to the very application nature, considerable effort

needs to be expended in replacing or recharging the batteries of the sensor

nodes and in the case of implantable sensors this process could even be

impossible. Thus, attention needs to be devoted to make the BSN not just

energy efficient in terms of energy consumption but also to utilize every

amount of energy available at the various nodes.

2.2 The Multiprocessor Scheduling Problem

A multiprocessor system can be described as centers of computation in-

terconnected by an information exchange medium. A BSN is an example

of such a system wherein the PEs form centers of computation and wire-

less communication forms the information exchange medium. Application

software can be represented by means of a DAG. A directed graph with

no directed cycles is termed as a Directed Acyclic Graph(DAG) and is an

9



abstraction that is used to capture flow and dependency relationships in

software. Figure 2.2 shows example of a DAG.

1

2 3

4

Figure 2.2: A Directed Acyclic Graph

A real-world BSN application would be the fall pre-detect software [1]

whose DAG is shown in Figure 2.3. The nodes of the graph represent atomic

computations that need to be executed in entirety. Edges between nodes

capture precedence relationships which determine a partial ordering on the

execution of nodes. Nodes that do not have any dependency relationship

can be executed in parallel, provided, resources as required for parallel

execution are made available.

Given a DAG and a multiprocessor system, the multiprocessor schedul-

ing problem can be described as determining the exact allocation and order

of execution of nodes on the individual processors such that a predeter-

mined performance metric is optimized. Figure 2.4 shows a feasible sched-

ule for the DAG in Figure 2.2 for a multiprocessor system consisting of two

homogeneous computational centers. The performance metric mentioned

previously could be the makespan of the final schedule, energy consumed by

the computing centers, real time performance, QoS provisioning(deadlines)

etc. or a combination of one or more individual metrics.
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Figure 2.3: Fall-Detect application DAG[1]

Processor1

1 2

Processor2

time

time

3 4

Figure 2.4: A schedule for the DAG in Figure 2.2

Additional constraints might be imposed on the scheduler as a re-

sults of system topology. For example, BSN is a loosely coupled system

wherein communication costs, in time as well as energy, between PEs is

non-negligible and cannot be ignored as in Figure 2.4. The wireless commu-

nication protocol could also impose additional constraints such as minimum

hop-length. The PEs of BSN are inherently heterogeneous and could fur-
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ther constrain the scheduler by imposing architectural constraints whereby

certain tasks are executable on certain PEs only.

Chapter 6 provides a more formal treatment of the scheduling problem

that this dissertation is dealing with.

2.2.1 Intractability of the scheduling problem

The multiprocessor DAG scheduling problem has been shown to be NP-

complete in its most general form and also in several restricted versions[7].

Polynomial-time solutions can be found only for heavily simplified cases of

the problem [8]. However, such heavy simplifications render the problem

non-representative of the actual physical problem that is being attempted

to be solved. When polynomial time solutions are not available the general

alternative would be to employ heuristics to arrive at a reasonable solution.

Heuristics, being ’rules of thumb’ in nature, might not be able to produce

a globally optimal solution and tend to provide solutions that are locally

optimal. The proposed algorithm in this dissertation adopts certain battery

based heuristics to guide the scheduling process. The details of which will

be provided in further sections.

2.3 The Electro-Chemical Battery

A battery consists of two electrodes called anode and cathode and an elec-

trolyte that separates them. Figure 2.5 illustrates the internals of a battery.
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The electrical current obtained from a battery is a product of electrochem-

ical reactions occurring at the electrode-electrolyte interface. A battery is

characterized by an open-circuit potential VOC , i.e. the initial potential of

a fully charged battery under no-load conditions. As the battery supplies

charge to an external load, its output voltage VBAT drops and below a

certain voltage known as the cutoff voltage VCUT , the battery disconnects

from the load and is termed to have been depleted.

It should be noted that the energy supplied by a battery can be ab-

stracted as the amount of charge the battery supplies. Consequently the

terms energy optimization and charge optimization mean the same, i.e to

maximize the amount of charge that can be extracted out of a battery.

Anode CathodeElectrolyte

VBAT

Figure 2.5: Simplified internals of an electro-chemical battery

2.3.1 Non-ideal characteristics of a battery

Two important characteristics contribute to the non-ideal performance of

a battery as an energy source. These are:

1. Rate-Capacity effect

13



2. Recovery effect

Battery capacity can be described as the amount of charge that can

be drawn out of a battery and supplied to an external load so as to get

some work done. To put simply, rate-capacity states that the amount of

charge that can be extracted out of a battery, to be supplied to a load,

depends on the extraction rate. At higher rates this amount is lower and

vice versa. Thus, if the total amount of charge inside a battery is CT , the

amount of charge that is available for useful work would be CU = λCT ,

where 0 < λ < 1. This implies a certain portion of CT , given by CT (1−λ),

is locked inside the battery and is unavailable for extraction. This behav-

ior can be explained with the help of Figure 2.6. When fully charged, the

electrode surfaces of the battery are in contact with maximum number of

of active element(Figure 2.6(a)). When the battery is connected to a load,

a current flows through the external circuit; active elements are consumed

at the electrode surface which then are replaced from the electrolyte. This

rate of replacement is usually lower then the rate of consumption and the

replacement process cannot keep up with the consumption process. Due

to this a concentration gradient builds up across the electrolyte (Figure

2.6(b)). As higher load current, resulting in higher rate of consumption,

creates a higher concentration gradient and thus a lower concentration of

active elements at the electrode surface. When this concentration falls be-

low a certain threshold, which corresponds to the voltage cutoff voltage

VCUT , the electrochemical reaction can no longer be sustained at the elec-

trode surface (Figure 2.6(c)) and the battery is said to have been exhausted.

At this point, the charge that was unavailable at the electrode surface due

to the gradient remains unusable and is responsible for the perceived reduc-

14



tion in battery capacity. This reduction in capacity can be interpreted as a

certain portion of the battery’s total charge that progressively gets trapped

or locked inside a battery and which cannot be extracted and supplied to

any external load.

Electrode

(a) (b) (c) (d)

A
ct

iv
e

E
le

m
en

ts

Figure 2.6: Charge gradient responsible for the rate-capacity effect. (a)
Battery in pristine condition with no charge gradient (b) Charge gradient
builds during powering of a load (c) Battery in exhausted state and unable
to power any load (d) Charge gradient neutralized due to recovery effect

Figure 2.7 shows a snapshot of a battery in the midst of powering a

load. The amount of charge that the load actually consumes is given by

I · T where I is the current consumption of the load and T is the time

duration of consumption. L represents the charge that has been locked

due to the rate-capacity effect and A represents the net charge that is

available for further extraction from the battery.

The charge that gets progressively locked as a result of the rate ca-

pacity effect is not physically lost but simply unavailable due to the lag

between consumption and replacement rates. It is possible to recover this

charge before the battery becomes exhausted. Decreasing the discharge

rate effectively reduces the lag as well as the concentration gradient. If the

batterys load goes to zero, the concentration gradient flattens out after a

sufficiently long time, reaching equilibrium again (Figure 2.6(d)). The con-

centration of active elements near the electrode surface following this rest
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Figure 2.7: Charge distribution inside a battery while powering a load

period makes some previously unavailable charge available for extraction.

This phenomenon is what is known as recovery-effect. Figure 2.8 illustrates

this phenomenon. Certain portion of the locked charge(L) inside the bat-

tery gets released during the idle period after task T1 and gets added to

the pool of available charge(A), thus becoming available for the subsequent

task T2. Also, left idle for long enough, all the locked charge inside the bat-

tery get released and become available for usage by any external load. The

charge consumed(C) by T1 and T2 is of course lost from the battery forever.

A

C

L

A
A

A
A

A

L

L
L

C
C C C

I(mA)

Time(mins)

T1 T2

Figure 2.8: Movement of charge inside a battery
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Apart from the above mentioned effects, the sequencing of tasks, as in

the case of a multi-task application, is also found to affect the useful charge

that can be derived from the battery. We call this as discharge-profiling

effect. It has been shown in [9] that for a set of tasks of different current

consumption, sequencing them in a strictly decreasing current profile re-

sults in maximum lifetime of the battery. For example consider Figure 2.9.

Profile (d) which has three tasks in a strictly decreasing order of current

consumption will result in minimum amount of charge getting locked inside

the battery, thereby leading to greater amount of charge being available to

any future task that might get scheduled at the end of the existing profile.

Whereas profile (a) which has a strictly increasing current profile would lead

to maximum charge lock-up and minimum available charge for any future

task that might get scheduled at the end of the existing profile. Profiles (b)

and (c) would fall in-between. The above mentioned example assumes that

the tasks are independent and can be executed in any order. In a practical

application, such as our BSN application, that enforces dependency among

tasks, obtaining a strictly decreasing current profile might be impossible.

T1 T2
T3

(a)

T1
T2

T3

(d)

T1
T2

T3

(c)

T1
T2

T3

(b)

time(mins)

I(
m
A
)

Figure 2.9: Different sequence of tasks on a PE
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Rate-capacity, recovery and discharge-profiling are exploited in our al-

gorithm to profile the discharge current in a manner conducive for extending

battery lifetime.

2.3.2 Battery modeling

Various battery models are available in literature, each with its own mer-

its and intended audience. Examples would be [10][11][12][13]. We have

adopted the high-level analytical battery model of [9] owing to its high ac-

curacy, ease of use and capability to provide deep analytical insight. The

adopted model is aimed towards system designers, as opposed to battery

designers, and provides an elegant, simple and accurate means to estimate

battery properties and dynamic-state such as the available charge, locked-

up charge and battery life-time. The model has been extensively tested by

the developers and found to be accurate to within ±3% of actual charge and

lifetime measurements of lithium-ion batteries. Lithium-Ion is the battery

chemistry of choice for powering the constituent PEs of our BSN.

The adopted battery model is given as:

αI =
u−1∑
k=0

IkF (L, tk, tk + ∆k, β) + IuF (L, tu, L, β) (2.1)

where F (x, y, z, β) is given as:

z − y + 2

[
∞∑
m=1

e−β
2m2(x−z) − e−β2m2(x−y)

β2m2

]
(2.2)
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The model requires two parameter αI and β to model a particular

battery. These two parameters can be obtained by means of a series of

constant-load tests done on a sample battery of the type to be modeled.

Once these two parameters are obtained the battery type is completely

characterized and analysis of further samples can be done by using the

model. αI gives the total charge inside the battery when in pristine state

and β is a measure of the non-ideality of the battery is. In our scheduling

algorithm it is assumed that these constant-load tests have been done and

all parameters necessary to model the battery are available at the beginning

of the scheduling process.

The proposed scheduling algorithm utilizes the battery model intro-

duced above to keep track of the states of the batteries in the BSN and to

arrive at scheduling decisions. Various battery related parameters are used

by the algorithm. Table 2.1 lists these parameters and defines them.

It should be noted that the adopted battery model does not give any

explicit treatment to VBAT , the output voltage of the battery and abstracts

it in the form of αA. VBAT tends to drop as the battery enters deeper states

of discharge and αA at which VBAT is equal to the lowest voltage at which a

PE can operate is taken as the cut-off voltage VCUT and the corresponding

αA is represented as αCUT . αCUT as well as αA corresponding to various

VBAT can be easily found prior to the scheduling process when the modeling

parameters αI and β are found.
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Table 2.1: Definition of Battery Parameters
Symbol Definition

αI Initial charge inside a battery. This is the amount of charge a pristine
battery would have. Measured in mA-mins a.

αT Total charge inside a battery at any given point in time. This charge
would be equal to the sum of αA and αL.

αA Charge inside a battery that is Available for use by an external load.
This parameter can take negative values in the battery model. Such a
case would imply that the battery has been over exerted. However a
negative αA does not mean the battery is dead as a significant amount
of charge could be locked up inside the battery, waiting to be released.

αL Total charge that’s Locked inside a battery that is not available for use
by an external load. This charge is slowly released within the battery
and adds to αA with progress of time.

β Characterizes the charge lock-up and recovery effects of a battery. A
lower value of β indicates a higher deviation from an ideal energy source,
resulting in a very high rate of charge lock-up and a large αL, and vice
versa. A lower value of β also indicates a low rate of recovery of αL.
β2 is measured in sec−1. A typical value of β for a lithium ion type
battery, as measured in [11], would be 0.574.

SF Speculation factor, computed as β/(β + 1).

αSA A speculative quantity that is indicative of the amount of charge that
might be available in the battery in the immediate future. This Specu-
latively Available charge is given by αA + SF · αL

αC The amount of charge that is Consumed by an event when it runs to
completion on a PE. For example, the αC of nj on Pi is computed as
I

nj

Pi
· Tnj

Pi
and gives the lower bound on the charge used by nj to run till

completion on Pi. αC is used to execute the event and is non-recoverable
and therefore lost from the battery forever.

αU The amount of charge Used by an event when it runs to completion on a
PE. This quantity is given as a sum of the charge consumed and locked
by the event. As mentioned earlier the charge consumed by the event is
lost from the battery forever whereas the charge locked would eventually
be released and added to the pool of αA. αU for a particular event can
be obtained using the battery model that was introduced earlier.

HF Health factor, having the range 0 < HF < 1.0, is used as a threshold
to assess the health of a battery. The health of a battery is defined as
αSA/αT and gives the ratio of the charge that is available to an external
load in the immediate future to the total amount of charge inside the
battery.

aAll charge quantities are measured in mA-mins

2.4 Battery Awareness Vs Energy Aware-

ness

Battery-awareness needs to be incorporated into any energy optimization

scheme that involves batteries as sources of power. The effectiveness of
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any such scheme that excludes non-ideal behavior of the battery comes

under question. We will now establish this important observation with an

example.

Consider a multiprocessor system with two heterogeneous centers of

computation. Let the two centers be powered by identical batteries with

αI = 20mA-mins and β = 0.374. Consider an application DAG consisting

of four heterogeneous nodes as shown in Figure 2.10(a). Assume inter task

communication costs to be negligible for the sake of brevity. The current

and execution time requirements of the DAG are given in Table 2.2. It is

clear that tasks T1 and T2 consume less amount of charge (given as a prod-

uct of current consumption and execution duration) on C1 as compared

to C2. An energy-aware, in other words, battery-unaware scheduler might

produce an energy-optimal schedule as shown in Figure 2.10(b). However,

closer scrutiny of the schedule using the battery model given by Equations

(2.1) and (2.2) reveals some startling results. The battery of PE1 is found

to get exhausted at time 18.5mins which results in tasks T2 and T3 being

incomplete. The battery of PE1 had an initial total charge of 20mA-mins

which ideally is sufficient to run T1, T2 and T3; whose total charge require-

ment is only 15mA-mins, to completion. However, due to charge lock-up

phenomenon 10.73mA-mins of charge becomes unavailable to any external

load and PE1 fails to complete its scheduled tasks.

Table 2.2: Execution requirements for the DAG in Figure 2.10
Task Current drawn

on P1(mA)
Current drawn
on P2(mA)

Execution time on
P1(mins)

Execution time on
P2(mins)

T1 0.5 0.6 10 10

T2 0.5 0.6 10 10

T3 0.1 0.1 10 10

T4 0.1 0.1 10 10
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Figure 2.10: A DAG and its optimal schedule produced by an energy-aware
scheduler
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Figure 2.11: A schedule for the DAG in Figure 2.10(a) produced by a
battery-aware scheduler

On the other hand, a battery-aware scheduler might produce a schedule

shown in Figure 2.11. Task T2 is scheduled for execution on C2 though

consuming higher charge than on C1. A small rest period of duration 1min

is inserted at time 10mins to allow for charge recovery at C2. Scrutiny

of the battery-aware schedule using the battery model reveals no surprises;

tasks T1, T2, T3 and T4 are run till completion on the multiprocessor system

with no PE suffering from exhaustion.
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The above given simple, though being very simple, succinctly illus-

trates the unique challenges posed due to non-ideal battery behavior and

shows why an energy-aware scheme does not necessarily mean a battery-

aware scheme. Battery-awareness needs to be explicitly imparted to any

energy-optimization scheme when the choice of underlying energy source is

a battery.

2.5 The DC-DC Converter

A DC-DC converter is a switching circuit that interfaces the battery to the

hardware to be powered. It usually consists of energy-storage elements such

as capacitors to transfer power from the source to the destination. Most

of the commercially available converters are suited for medium or heavy

loads [14]. Ultra low power chips that are typically used in sensor networks

operate on currents less than 10mA thereby operating the DC-DC converter

in a very inefficient range. Losses incurred within this range can be as

high as 40%[15]. Generally the efficiency of a DC-DC converter is found to

decrease at low load currents and depends on the output voltage demanded

as well. Powering a low power sensor node via a DC-DC converter would

thus result in significant energy losses within the converter which cannot

be ignored.

Another crucial factor to be considered is the impact the converter

would have on battery performance. The output power Pout and the input

power Pin of a converter are related as Pout = ηPin, where η is the converter

efficiency. Pin can be expressed as VBAT · IBAT , where VBAT and IBAT are
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the battery output voltage and current respectively. At a given battery

voltage, the current drawn by a converter from the battery depends on the

output power demanded by the external load. At a constant demanded

output power the DC-DC converter has to draw an ever increasing current

from the battery in order to supply the demanded power. This is due

to the fact that as the battery discharges, i.e. as current is drawn from

it, its output voltage decreases and the converter now as to draw more

current in order to meet the demanded output power. The result of this

would be an ever increasing rate of battery discharge. As mentioned earlier,

a battery is a non-ideal energy source which suffers from charge lock up

phenomenon whereby a significant amount of charge gets locked within the

battery thus becoming unavailable for any external load. The amount of

locked up charge depends (among other factors) on the amount of current

being drawn from the battery. It is thus evident that once the discharge

current has reached sufficiently high levels the remaining life time that can

be extracted out of the battery is minimal.

This drastic reduction in life time could have been avoided if one is

able to regulate the amount of current drawn from the battery. With a

DC-DC coveter interfacing the hardware and battery, this regulation be-

comes difficult to achieve. Even if this could be achieved, the losses within

the converter would still reduce the effectiveness of any energy/battery

optimization scheme. Thus, attention needs to be devoted to mitigate

the detrimental effects of the DC-DC converter. Moreover the affordabil-

ity of having an output adjustable dc-dc converter in terms of space and

cost needs to be questioned when dealing with low-cost, high-volume, size-

restricted hardware such as the sensor nodes of the BSN.
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Chapter 3

Literature Review

Various scheduling algorithms have been proposed in literature to tackle the

battery-aware multiprocessor scheduling problem. A summary of such work

is provided in Table 3.1. We denote the hardware platform for an algorithm

using the following notation. The energy source (battery) is referred to as

source and the energy consumer (micro-processor/controller) is referred to

as sink. Consequently, we have the following four combinations:

1. SSSS (Single Source Single Sink)

2. SSMS (Single Source Multiple Sink)

3. MSSS (Multiple Source Single Sink)

4. MSMS (Multiple Source Multiple Sink)

We will now proceed to categorize and survey the relevant algorithms.
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3.1 Dynamic Voltage Scaling Approach

Dynamic Voltage Scaling (DVS) based algorithms have been the predom-

inant approach to address the battery optimization problem. DVS, when

supported by the underlying hardware platform, is a powerful and flexible

tool that is employed to scale the operating voltage as well as operating

frequency of a processor. This reduces current consumption of the proces-

sor and consequently results in energy savings. The reader is referred to

the Appendix C for a more formal treatment of DVS.

Chowdhury et al. propose static multi-PE scheduling algorithms in

[16]. To the best of our survey their work is the first in literature to

address the multi-PE battery-aware scheduling problem. The proposed

algorithm is suitable for real-time applications consisting of independent as

well as dependent tasks that are either periodic or a periodic. The proposed

algorithm operates in two steps. In Step1, a battery and deadline aware list

scheduler is used to produce an initial feasible schedule. The initial schedule

strives to achieve a decreasing load current profile, and ensures that all tasks

run to completion. In Step2, voltage scaling is extensively used to scale the

tasks towards their deadlines. The scaling process starts from the last task

and proceeds towards the start of the schedule to endures a decreasing

current profile. The performance of the algorithm was evaluated by means

of synthetic load profiles, generated by observing the current consumption

of a pocket computer.

Cai et al.[17] propose improvements to [16]. The researchers observed

that slack reclamation procedure in [16] operated on each PE individually
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and thus might not lead to a globally optimal schedule. The authors im-

prove the slack reclamation procedure by dividing the given schedule into

multiple steps. A step being defined as one or more tasks, each residing on

a different PE and sharing a common period of execution along the time-

line. An iterative algorithm is then used that incrementally allocates slack

to the individual steps such that the global discharge current is minimized.

Jameel et al. proposed one of the earliest dynamic battery-aware sched-

ulers in [18]. Their work is based on the principle of slack forwarding. Slack

forwarding can be described as follows: slack generated by the early com-

pletion of a task can be allocated to its successor if the release time of the

successor is earlier than or equal to the time point at which the slack orig-

inated. The proposed algorithm operates in two steps. Step1 is an offline

process whereby an initial valid schedule is obtained based on the worst case

execution time (WCET) of all tasks in the task-set for one hyper-period.

Step2 is an online process whereby any slack generated during run time is

forwarded to the next task. Upon completion of a task, the finishing time

of the next task, which is based on Step 1, in the run queue is computed.

If the finish time is lesser than the release time of the subsequent task, the

voltage level of the task is adjusted such that slack is allocated to it. If

otherwise the task runs at its assigned voltage level, thereby forwarding

the slack to the subsequent task in the queue.

An iterative algorithm suitable for FPGAs is proposed in [19] by Khan

et al. The researchers term a particular DVS voltage/frequency setting of

a processor or a particular hardware configuration of a FPGA as a design

point. A heuristic list scheduler produces an initial valid schedule on the
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various PEs. The thus scheduled tasks are then assigned design points

iteratively until a battery cost function as given by equation 2.1 is mini-

mized. To reduce the complexity of the design space search, the authors

also propose the use of a window function that iteratively expands the

design space to be searched. The proposed algorithm is evaluated on a

real-world robotic arm controller application on a DVS platform and the

authors report improvements in battery lifetime as high as 65%.

3.2 Other Approaches

Peng Rong et al. [20] have integrated a general-model of a power man-

aged electronic device with that of its power source, and present a unified

model based on continuous-time markovian decision process. To the best

of our knowledge this work is the first of its kind. A Battery-Aware Power

Management policy (BAPM) is then developed based on the unified model.

The BAPM technique aims to maximize the battery life span while meet-

ing all timing requirements. As a result of using the unified model, the

BAPM technique to able to arrive at decisions not just based on incoming

task features but also based on the state of batteries powering the system.

The BAPM dynamically selects the operating mode of the system (oper-

ating frequency) as well as the battery that is to power the system (for

multi battery systems). The battery-aware dynamic power management

problem is formulated as an optimization problem which is then solved by

linear programming technique. Simulation results of up to 20% improve-

ment in battery life is reported.
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Luo et al. propose battery-aware static schedule transformations for

DVS enabled and non-DVS processors [21]. Based on results from [22] and

[23], the researchers employ Peukert’s law [23] to arrive at schedule trans-

formation schemes that results in reduced peak power and reduced variance

in discharge current distribution. Two schemes, Local-transformation and

Global-shifting are proposed. An initial feasible schedule is formed satisfy-

ing deadline and precedence constraints by any multiprocessor scheduling

algorithm. Global-shifting is performed on this initial schedule followed by

local-transformation to induce battery-awareness into the schedule. The

transformations modify the start times of the task in the schedule such

that the cost function given as:

pact =
1

hyperperiod

∫ hyperperiod

0

p(t)

cp(t)

where pact is the actual average power drawn out of the battery, p(t) is

power consumption at time t and cp(t) is the battery utilization factor,

is minimized. For DVS systems, global shifting and local transformation

are performed to allocate optimal slack time to the tasks, which is then

followed by voltage scaling. Simulation results report improvements in

battery lifespan up to 29% for the non-DVS case and up to 76% for DVS

case over battery-unaware schedules.
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Table 3.1: Summary of the Surveyed Work
System Level
Design

Targeted
Hard-
ware

Battery Technique Type Application
Model

J. Ahmed and C.
Chakrabarti [18]

SSSS,
SSMS,
DVS-PE

Discharge current profiling
via slack reclamation

Dynamic N.A for single PE
case. Independent
task set for multi
PE case

J. Luo and N. K.
Jha [21]

SSMS,
DVS-PE,
Non-
DVS
PE

Discharge current profiling Static N.A

P. Chowdhury and
C. Chakrabarti [16]

SSSS,
SSMS,
DVS-PE

Discharge current profiling
via slack reclamation

Static Independent peri-
odic and aperiodic
task set for single
PE case. Periodic
and aperiodic DAG
for multi PE case

Y. Cai et al. [17] SSMS,
DVS-PE

Discharge current profiling
via slack reclamation

Static Task Graph

J. Khan and R. Ve-
muri [19]

SSMS,
DVS-PE,
FPGA

N.A Static Task Graph

P. Rong and M. Pe-
dram [20]

SSSS,
MSSS,
DVS-PE

N.A Offline N.A
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Chapter 4

System Modeling

In this section we formalize the physical and application model of the BSN

under study.1

4.1 Physical Topology Model of the BSN

The physical topology of our BSN is represented as an un-directed graph

GT = (P,L). The nodes of GT , denoted by set P , consist of the individual

processing elements (PE) and the central gateway. Such a node is denoted

as Pi. The total number of nodes in GT is denoted as NT . The edges in GT ,

denoted by the set L, constitute the communication links among the nodes

of the network. Such a link is denoted as Lij and represents a bidirectional

communication link between nodes Pi and Pj. The communication links

though bi-directional are not of full-duplex capability. A node’s RF module

can either be transmitting or receiving but not both simultaneously.

1This is the BSN that is in use by the embedded hybrid systems phase II project
funded by A*STAR, Singapore and this dissertation component attempts to design and
evaluate performance of static algorithms
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Figure 4.1: An abstract representation of the BSN

The physical architecture under study is a star topology. Figure 4.1

represents an abstraction of the physical topology of our BSN. The cen-

tral node in the star network is the gateway. Other nodes in the network

communicate with one another through this central gateway. Thus, a com-

munication hop length of two is required for data transfer between any

two PEs in the network. Each PE has a dedicated communication module

and is capable of communicating (transmitting or receiving) to and from

the central gateway while simultaneously executing some application task.

Communication and task execution are non-preemptive. Also, the gateway

is able to communicate with one and only one PE at any given point of

time. Simultaneous communication with multiple PEs is not supported

by the communication protocol. The gateway is assumed to have infinite

energy at its disposal and is excluded from the scheduling process. Our

battery-aware algorithm is restricted to scheduling the BSN application on

to the PEs only. The gateway is excluded from the scheduling process and

is abstracted as a communication link that is used to facilitate data transfer

between the PEs of the BSN.
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4.2 Application Model for the BSN

The application to be scheduled is represented as a DAG G = (V,D).

An example is shown in Figure 4.2. The nodes of G, denoted by the set

V , form a collection of discrete tasks that taken together constitute the

application at hand. The discreteness of a task imposes the restriction that

it cannot be broken down into smaller tasks and it should be completed in

its entirety on a single processing node. We denote such a task as ni and

the total number of tasks in G is represented as N . The terms node and

task are used interchangeably with respect to G from here onwards. The

set of directed edges that constitute D represent dependency relationship

among the tasks in V . An edge eij ∈ D, is said to be directed from task

ni to nj and represents the precedence constraint of nj. This means, nj

cannot start until ni is completed. Also, scheduling ni and nj on different

PEs necessitates the need for data transfer from the PE on which ni is

scheduled to the PE on which nj is scheduled. This data transfer is non-

negligible in time and energy requirements. A task can have more than

one predecessor and for each such predecessor scheduled on a different PE,

data transfer needs to be scheduled.

n1 n2

n3 n4 n5

n6 n7

n8 n9

e13

e36

e68

e14

e47

e79

e57

e25e24

Figure 4.2: An example of a BSN application DAG G
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Characterizing nj is a tuple of length NT . Each element of the tuple in

turn is a set of elements that denote the worst case current consumption

(WCCC) and worst case execution time (WCET) requirements of nj on a

particular PE. Architectural constraints whereby a particular task is non-

executable on a particular PE are captured in form of entries denoting

infinity in the tuple. Task nj is also associated with a deadline, denoted as

Dnj. The deadline of a task gives the maximum time (with respect to the

start time of G) before which the execution of the task must complete.

An edge eij is also associated with a tuple of length NT . Each element of

the tuple in turn is a set of elements that denote the current and execution

time requirements of eij on a particular PE. For example, the entries I
eij

Pi

and T
eij

Pi
respectively denote the current and communication time require-

ment for data transfer, either transmission or reception, pertaining to the

edge eij on Pi. It should be noted that communication costs is borne by

the transmitting and receiving PEs only, and the gateway which routes this

data is excluded as per the assumption made with regards to the gateway

earlier. From this point onwards the term event2 is used to denote a task

or a communication.

4.3 Timing Definitions

The scheduling process requires definition of certain timing parameters as

listed below:

2An event could be dormant or active depending on whether a task is lying idle or
currently under execution by a PE. We refer to these states simply as an an event.
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STmin (ni, Pj) = max (FT (Pj) , DAT (ni, Pj)) (4.1)

FT (ni, Pj) = ST (ni, Pj) + T ni
Pj

(4.2)

Here, STmin(ni, Pj) gives the earliest possible start time of ni on Pj.

FT (Pj) gives the finish time of the last task scheduled on Pj or the finish

time of the last idle period, if any, on Pj. Idle period insertion during the

scheduling process will be elaborated in later sections. It may be noted that

FT (Pj) does not depend on the communications scheduled on the Pj but

rather depends only on tasks or idle periods scheduled on Pj. DAT (ni, Pj)

is defined as the Data Available Time. It gives the earliest time at which the

data required by ni becomes available at Pj, when one or more predecessors

of ni have been scheduled on PE(s) other than Pj. If all predecessors of

ni are scheduled on Pj or if ni does not have any precedence constraint,

DAT (ni, Pj) is set as zero. FT (ni, Pj) gives the time at which ni would

complete execution on Pj.

An example schedule for the DAG in Figure 4.2 is shown in Figure 4.3.

The DAT for n4 depends on the availability of free slots in the communi-

cation links. Note the hop length of two that is required before data from

PE2 can reach PE1. Also note that communications cannot overlap with

one another since the physical topology imposes the restriction that only

one PE can be engaged in communication with the central gateway at any

given time.

The current consumption of a PE at any time can be taken as the sum-

mation of the current consumed by its processor executing a task, and the
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Figure 4.3: An example schedule for the DAG in Figure 4.2

current consumed by its RF module communicating with the gateway. The

current consumption is assumed to be negligible when no task or commu-

nication activity is scheduled on the PE.
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Chapter 5

Passive Voltage Scaling

In a typical portable embedded system, a DC-DC converter interfaces the

battery to the hardware to be powered. The output voltage of a battery is

not constant and depends on the residual charge inside the battery. A con-

verter circumvents this variation and supplies the hardware with a steady

operating voltage; stepping-up or stepping-down the input battery voltage

as necessary. Most hardware circuits require strict operating voltage levels

and cannot be operated without a DC-DC converter. Moreover, an embed-

ded device could consist of heterogeneous components demanding different

operating voltages. Under these conditions a DC-DC converter becomes

an absolute necessity.

Significant energy losses occur inside the DC-DC converter during the

conversion process. The negative impact of the converter on the battery

especially in a low power device such as a sensor node was already estab-

lished in Chapter 2. The sensor nodes of the BSN are no different. The

microcontroller in the sensor nodes of our BSN is the TIMSP430 which
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has a peak current consumption of only 0.6mA while the RF module has

18.8mA. Under these low current situations losses inside the converter can

be as high as 40% [15]. Thus, an effective means has to be adapted to

mitigate the negative impact of the DC-DC converter.

5.1 Converter-free Hardware Design

The TI microcontroller of the BSN sensor node is a versatile device capable

of operating under a wide range of input voltages and frequencies [24]. The

acceptable voltage range spans 1.8v to 3.6v and the corresponding operat-

ing frequency spans 4.15 MHz to 8 MHz. The microcontroller though hav-

ing excellent voltage-frequency scaling does not support dynamic voltage

scaling. Thus, the traditional methodology of scaling the operating volt-

age and frequency to achieve energy-performance trade-off is not feasible.

Having discounted the traditional DVS technique, possibility of employing

other techniques that utilize this excellent voltage-frequency scaling open

up. One such techniques is called Passive Voltage Scaling (PVS).

PVS is a technique that eliminates losses in power transmission devices

by interfacing the energy source (battery) directly to the hardware to be

powered. Energy-performance trade-off is achieved by operating the hard-

ware at a frequency that is proportional to the output battery voltage. The

battery voltage is constantly monitored via a monitor circuit and the op-

erating frequency is scaled as the monitored voltage drops. PVS has been

explored and studied in literature with regards to sensor networks [2] and

has been found to prolong sensor node lifetime. Lifetime improvements
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as high as 64% have been reported. Various other works in literature also

lend support to the converter free design of wireless sensor nodes as in PVS

[14][25].

In conventional power-supply setups that use a DC-DC converter, the

processor current Ib is inversely proportional to the battery voltage Vb.

In the configuration where the DC-DC converter is eliminated and the

processor is operated at a constant frequency fc, Ib is directly proportional

to Vb. In PVS setup, the frequency is not held constant and is scaled

according to the input voltage Vb. In such a case Ib is directly proportional

to the square of Vb. It has been shown that among all the configurations

PVS extracts maximum lifetime out of the battery [2].

A potential draw back to PVS is that the battery monitor requires ad-

ditional hardware circuitry to be built into the sensor node leading to an

increase in cost, size and complexity of the sensor node. Also the perfor-

mance(in terms of maximum operating clock frequency) of the sensor node

degrades as the battery voltage drops.

5.2 The Adopted Hardware Setup

We take cues from [2] and adopt a setup similar to PVS. The DC-DC

converter is eliminated and the sensor node hardware is interfaced directly

to the battery. The output voltage offered by the battery is assumed to

span the range 1.8v to 3.6v and the TI microcontroller is operated at a

constant frequency of 4.15 Mhz, which corresponds to its lowest operable

frequency, through out this voltage range. The RF chip of the sensor node

39



is also capable of operating under a wide range of input voltages [26] and

is assumed to be operable within the range offered by the battery powering

the sensor node.

Figure 5.1(a) shows the operating frequency assigned to the TIMSP430

as a function of the battery voltage VBAT . Figure 5.1(b) shows the operating

current values that will be used during the scheduling process. The current

consumed by an event when VBAT is in the range 1.8v to 2.7v is taken as

being equal to the current consumed at 2.7v. The current consumed by an

event when VBAT is in the range 2.7v to 3.6v is taken as being equal to the

current consumed at 3.6v. Since the current consumed by an event drops

as the battery output voltage reduces, we are essentially assigning an event

its worst case current consumption with respect to VBAT .

f(MHz)

4.15

Supply V oltage VBAT
1.8v 3.6v 1.8v 2.7v 3.6v

I(mA)

Î

I

(a) (b)

Figure 5.1: Assigned frequency and current consumption levels of the un-
derlying hardware

To summarize, we adopt a PVS based setup for our sensor node as a

viable alternative to the traditional converter driven power supply for the

following reasons:

1. Converter losses, which could be as high as 40% for ultra low power

devices, is completely eliminated.
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2. Negative impact of the converter on battery discharge current is elim-

inated and consequently the discharge current can be predicted more

accurately.

3. Battery models require accurate discharge current inputs to model

a battery. Adopting PVS would thus enable us to utilize battery

models with greater confidence.

4. The TI and RF chips of the sensor node are found to be versatile

enough to operate under a wide range of input voltages.

5. DVS techniques are redundant.
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Chapter 6

The Research Problem

Formalized

We now formally present the research problem this dissertation has ad-

dressed.

6.1 Problem Statement

Given a multiprocessor system GT = (P,L) and an application DAG G =

(V,D), determine for each task ni ∈ V the parameters ST (ni, Pj) and

FT (ni, Pj) where Pj ∈ P , such that S is maximized and the following

conditions are satisfied:

• For task ni ∈ V ; FT (ni, Pj) ≤ Dni (Deadline Constraint)

• For edge eij ∈ E; FT (ni, Pj) ≤ ST (ni, Pj) (Precedence Constraint)
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• For Pj ∈ P , αA ≥ 0 (Endurance Constraint)

The number of instances of G that are scheduled on GT is represented as

S. The deadline constraint serves QoS requirements of G. The Endurance

constraint states that the battery of Pj must be ‘alive’ during the entire

duration of the partial schedule on Pj. In other words, the battery of

Pj must be able to supply enough charge to run all scheduled tasks and

communications to completion.

S, the performance metric of choice is the number of instances of the

application DAG G that can be run to completion on the BSN. That is, G

is a periodic application with period being equal to max(Dni) for ni ∈ V .

G is repeatedly scheduled on GT until the BSN runs out of energy or suffers

a deadline failure. At first glance it might seem that S is a rather obscure

performance metric for an algorithm that is trying to maximize charge

utilization from a battery. The reason for adopting S as the performance

metric of choice are as follows:

1. We are interested in system lifetime. That is, the lifetime of the BSN

as a whole rather than just the lifetime of its individual nodes. A

BSN could suffer single or multiple node failures (nodes running out

of battery) but might still be able to function if the remaining nodes

take over the responsibilities of the inactive nodes. The scheduling

algorithm must be able to discern nodes with exhausted batteries,

discount them from the scheduling process and schedule the applica-

tion on the remaining nodes.
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2. The traditional performance metric for energy-aware schedulers has

been the total energy consumed by an application. However, ow-

ing to the inherent difference between energy-awareness and battery-

awareness, as pointed out in Chapter 2 , this metric cannot be used.

3. The traditional performance metric for battery-aware schedulers has

been the total charge utilized by a single instance of the application

DAG G. This again is not suitable for our scheduling algorithm

since multiple instances of G are scheduled and each instance of the

schedule might be different form another, utilizing different amount

of charge.

4. The BSN nodes are to be operated under a PVS-like setup where

the DC-DC converter is eliminated and the processing elements are

operated at the lowest possible frequency. This means that an appli-

cation under this setup would run for a greater amount of time till

completion compared to the traditional setup that utilizes a DC-DC

converter and operates the processing elements at a higher frequency.

Thus, a question arises on whether it is beneficial to run the applica-

tion at higher frequency so that it completes as soon as possible or

at lower frequencies such that its completion time is delayed.

S encompasses all the above given concerns and thus is the choice of

performance metric.
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6.2 Literature Survey Revisited

We now take a critical view of the literature survey presented earlier and

show that the problem addressed by this dissertation; as given above, has

not been dealt in its entirety in existing literature.

Firstly, the various battery-aware multiprocessor scheduling strategies

in literature(Table 3.1), with the exception of [20], are designed for hard-

ware architectures that share a common energy source. That is, even

though the processing elements of the underlying hardware are distributed

they draw energy from a common and single battery pack. Embedded

systems, as it was pointed earlier, are becoming more and more pervasive

where processing elements are not only distributed but also disjoint from

one another. This means that each processing element is powered by its

own dedicated battery pack. As with the processing elements itself, the

batteries powering these also come in myriad types. Distributed and het-

erogeneous energy supplies impart unique challenges to the multiprocessor

scheduling problem such as:

• Processing nodes with different energy capacity

• Processing nodes with different rate-capacity and recovery behavior

• The difference between ’energy-awareness’ and ’battery-awareness’

being exacerbated

which existing literature fails to address. As for [20], multiple energy

sources are considered but only under a uniprocessor environment.
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Secondly, existing strategies are predominantly designed for DVS en-

abled processing elements. These strategies employ discharge current re-

duction and profiling via voltage and frequency scaling. DVS though being

a powerful energy saving tool is not available on all hardware platforms. As

it was pointed earlier, the BSN of interest to this dissertation does not sup-

port DVS. Under such a case, non-DVS based optimization schemes need

to be explored. Once gain there is a dearth of literature that accomplish

this. [21] does propose a methodology for non-DVS processing elements.

However, the methodology does not consider scheduling but rather given

an existing schedule it proposes techniques to make the schedule battery

friendly.

Finally, the performance metric used in existing literature is the total

charge utilized by a single scheduled instance of the application DAG G.

Owing to point 1 in the enumeration listed in section 6.1 this might not be

an apt choice.
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Chapter 7

The Proposed Algorithm

We now present the algorithmic contribution of this dissertation. We have

developed an algorithm, which we call as List-Based Minimum Damage

Battery Aware Scheduling Algorithm, to schedule an application DAG with

deadline constraints and non-negligible inter-task communication costs, on

to the heterogeneous processing elements that comprise a BSN. Various

battery related parameters which were listed in Table 2.1 are utilized in

the algorithm.

7.1 List-Based Minimum Damage Battery

Aware Scheduling Algorithm (LBMD)

LBMD comprises the following three steps as listed below:

1. Data preprocessing (DP)
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2. Damage assessment (DA)

3. Rescue operation (RO)

7.1.1 Data preprocessing (DP)

This step accepts as input the application DAG G and outputs the Normal-

ized Charge Consumption (NCC) of the nodes and edges in G. The NCC

value of a node or edge is computed for each PE on which it is executable.

The current consumption as well as the time to completion of a task or

communication might be different on different PEs, thereby leading to dis-

tinct NCC values with respect to each of the PEs. WCCC and WCET are

used in computation of NCC.

The NCC of an event E with respect to a PE Pi is denoted as NCCE
Pi

and computed as αC/max(αC). Here, αC is the charge consumption of E

on Pi and max(αC) is the maximum charge consumption among all events

executable on Pi. Any task that cannot be executed on Pi as a result of

architectural constraints is discounted from the computation of NCC. Let

the computed NCC values form set A. It should be noted that though DP

computes NCC for all the edges in G, the edges that will eventually be

part of the final schedule, i.e., the eventual communications between PEs

in the final schedule is unknown at this point and will be known only after

the completion of the second step.

DP also computes the Average Normalized Charge Consumption (ANCC)

for all the nodes in G. The ANCC of node ni is represented as ANCCni
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and is computed by averaging the NCC of the nodes comprising the sub-

graph induced by ni. Note that only the NCC of the nodes in the subgraph

contribute to ANCCni
and the NCC of the edges are ignored. ANCCni

can be represented as:

ANCCni
=

∑
Pj∈VT

∑
nz∈N

NCCnz ,Pj

|NCCnz ,Pj
|

(7.1)

Here, N represents the subgraph induced by nz. Invalid NCC due to

architectural constraints is discounted in the above computation. Here,

|NCCnz , Pj| gives the number of valid NCC included in the summations.

Let the ANCC values of all nodes form set B.

At this point the terms battery-failure and event-failure need to be intro-

duced. Consider Pj on which event E, with minimum charge requirement

αU , has been scheduled. Pj or E is said to have suffered battery-failure if

the total charge available from the battery of Pj; αT , is not sufficient to

run E to completion. This would in turn imply that αT < αU . In this case,

E is non-recoverable and the failure is permanent. Given that αT ≥ αU ,

Pj or E is said to have suffered event-failure if the available charge inside

the battery of Pj; αA, becomes negative before the completion of E. This

implies that the battery has been overexerted and is not able to supply

enough charge to run E to completion. The point to note here is that,

event-failure can be recovered by inserting some idle time period before the

start time of E, i.e., by postponing the start time of E. This idle period

would allow some αL inside the battery to be released, due to recovery

phenomenon, and be available to E. Thus, event-failures can be recovered

by exploiting recovery effects whereas battery-failures are non recoverable.
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7.1.2 Damage assessment (DA)

This step takes as input G, A, B, the battery speculation factor SF , the

health factor HF and outputs a valid schedule S, satisfying deadline and

precedence constraints as dictated by G. DA only attempts to satisfy the

final constraint requirement, i.e., the endurance constraint, and does not

guarantee that this constraint would be satisfied. Any violation of the

endurance constraint, if detected, is attempted to be rectified in the final

step RO. The battery model introduced previously is put to extensive use

in DA to keep track of the state of the batteries powering the PEs of the

BSN. At any point during the scheduling process, DA can call upon the

model to find any of the state of a battery such as αA and αL. From this

point onwards αA would be used to represent the available charge in the

battery with respect to the cut-off charge αCUT . As mentioned earlier,

at αCUT the output voltage of the battery would reach VCUT and the PE

would no longer be operational. The αA produced by the battery model

is subtracted with the cut-off charge αCUT and the result is taken as αA.

Thus, unless specified otherwise, any reference to αA from here onwards

has already taken αCUT into consideration. DA follows the traditional list

scheduling procedure and is depicted as a flow chart in Fig. 7.1. The

flow chart does not indicate the exit points or termination points in the

scheduling process for the sake of clarity. However, they are indicated in

the description of the DA, which we now present.

A ready list(RL) is maintained consisting of the nodes in G that are

deemed as being ready. A node ni is said to be ready if all its predeces-

sors have already been scheduled for execution or if ni does not have any
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schedulable task-PE pair and

sort

Repeat for |N|

Figure 7.1: Flowchart of DA

predecessors at all. The list scheduler takes exactly N steps to schedule

G. At each scheduling step an RL is formed. Consider a scheduling step

where rl is non-empty, i.e., rl = nl, nm, . . . nz. Each non-exhausted Pj ∈ VT

is iterated over ni ∈ RL and at each iteration architectural and deadline

constraints are checked. A PE is termed as non-exhausted if its battery has

enough charge to execute at least one of the nodes in G. The first feasibil-

ity check removes non-feasible assignments due to architectural constraints

51



as imposed by the BSN. The second feasibility check discounts any assign-

ment that would lead to a violation of a node’s deadline. The satisfaction

of the deadline constraint is checked by means of equations (4.1) and (4.2);

WCET are used in evaluation of these equations. If a node fails any one of

the above two checks for all non-exhausted PEs, or if no non-exhausted PE

can be found, the scheduling process stops and returns indicating failure.

A positive scalar value termed Damage(DAM) is then assigned to each

of the feasible assignments. DAM is an indication of unsuitability of

scheduling a node on a particular PE. The DAM assigned to a particu-

lar task-PE assignment depends on the partial schedule constructed so far

on the PE. The task-PE assignment with the least DAM is then scheduled.

Communication to fulfill precedence relationship, if any, is scheduled on

the communication links. Note that the partial schedule of more than one

PE gets modified if communication is scheduled.

The next step in DA is the battery-failure check which we denote as

C1.C1 checks whether the latest assignment causes any battery-failure in

any of the PEs. C1 is performed on all the PEs whose existing partial

schedules have been modified due to the latest assignment. If any such PE

is found to fail C1, the just made assignment is discarded and the next

lowest DAM task-PE assignment is scheduled. C1 is performed again. DA

returns failure if no task can be scheduled without violating C1.

C1 is performed as follows. Consider Pi whose partial schedule has been

modified due to the latest assignment. Let the modified partial schedule

be PSi. For event E ∈ PSi such that E does not overlap with any other

scheduled event on the timescale of Pi, in other words, Pi has not been
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scheduled any other event between ST (E) and FT (E), C1 is checked as

αT ≥ αU . Here, αT is the total charge of Pi computed at ST (E) and αU

is the charge used by the event E. Obviously the given condition needs to

be satisfied if E is to run till completion on Pi. ST (E) and FT (E), which

denote the start and finish time respectively of E, would be known from

PSi.

For events in PSi that do overlap with other scheduled events, all the

overlapping events are grouped to form a block B and C1 is performed as:

Let αA[ST (B)] = αT [ST (B)]
for each event E ∈ B

if (αA[FT (E)] < 0) return failure
endfor

return pass

The first line of the above given pseudo code assigns the total amount of

charge (available + locked) in the battery as the available charge. That is, an

optimistic view is adopted by assuming that the block B has at its disposal

the total amount of charge that can ever be derived from the battery. The

for loop then checks whether each of the constituent events of B can be run

till completion. If any of the constituent events of block B is unable to run

till completion, C1 returns with a failure. The start time of B, denoted as

ST (B), is given as min(ST (E)) and finish time of B, denoted as FT (B), is

given as max(FT (E)), where E ∈ B. Fig. 7.2, an example of a partial schedule,

illustrates C1 which is given in Table 7.1. Note that C1 need not be performed

for the entire duration of the modified partial schedule but rather from the point

of modification to the end of the partial schedule. The point of modification can

either be the start time of an event on the partial schedule or the start time of

a block on the partial schedule. Once a node has been scheduled passing C1 it

is removed from G.
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Figure 7.2: An example of a partial schedule

Table 7.1: Battery-Failure check for the partial schedule of
Figure 7.2. (Numerical values in brackets denote time)

Event/Block Battery-Failure
Check

T1 αT (0) ≥ αU (T1)?

B1 Let αA(2) = αT (2);
then,
αA(3, 3.5, 4, 6) ≥ 0?

C3 αT (6.5) ≥ αU (C3)

B2 Let αA(8) = αT (8);
then,
αA(10) ≥ 0?

The next step in DA is termed C2 and discounts PEs that have exhausted

their batteries from subsequent scheduling steps. Pj is termed as exhausted if its

αT , is less then the minimum αU among all unscheduled tasks in G. Thus, C2 is

checked as αT < αU ; for all unscheduled ni ∈ G. The αT of all PEs is computed

at the end of their respective modified partial schedules and one is termed as

exhausted if the computed value is not sufficient to run any of the unscheduled

tasks in G.

C3 checks the health of PEs whose partial schedule have been modified due

to the latest assignment. Pj is termed as healthy if it satisfies the condition

(αSA/αT ) ≥ HF . The condition finds the ratio between the speculatively avail-

able charge from the battery to the total charge in the battery, at the end of

the partial schedule of the Pj . Note that this partial schedule includes tasks and

communications that have been scheduled at the current scheduling step of DA.
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αSA is an indication of the charge that might be available to an external load,

in the immediate future.

The rationale behind this check is that at the end of a scheduling step a

battery could end in a deep state of discharge where a significant amount of

charge could be locked-up and the amount of available charge is minimum or

even negative. Further scheduling of events when the battery is under such poor

health is not desirable. If Pj is found to fail the health check, a small rest period

∆ is inserted at the end of the partial schedule of Pj , postponing its finish time

FT. The purpose of this idle rest period is to allow some of the locked charge

to be released, as an effect of the recovery phenomenon and become available

to any event that might be scheduled in subsequent scheduling steps. It should

be noted that any event that might subsequently be assigned to Pj is scheduled

such that it does not overlap with any rest period ∆ that might be present

in the partial schedule of the Pj . The total rest period to be inserted can be

incrementally obtained using the battery model [27]. It is now evident from the

manner in which health is calculated that any rest period ∆ will be finite. If Pj

satisfies the health check, no change is made to its partial schedule. HF and

SF provide some insights into rest period period insertion. Refer to Appendix

B for further details.

The above described scheduling procedure is repeated until all the nodes in G

get scheduled or a failure is encountered. We state and prove certain important

properties that are used in the design of our algorithm in Appendix A.

As mentioned earlier, we assign a positive scalar value termed Damage(DAM)

to each of the feasible assignments. We now show how DAM is obtained and the

rationale behind it.

DAM Function: The DAM for a task ni with respect to Pj is denoted as

DAMni
Pj

. It can be regarded as the damage a particular task ni would do to the
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batteries of the PEs in the BSN, if assigned to the Pj . Its an indication of the

amount of charge the batteries powering the PEs of the BSN would expend in

order to fulfill the execution of ni on Pj , along with any communication that

might arise to fulfill such an assignment. DAMni
Pj

is composed of three functions

that are listed and elaborated below.

F1 :

(
NCCni

Pj

)
· PFni

Pj

αSA (Pj)
(7.2)

Here, partial factor PFPjni is given by IPjni/I
ps
Pj

where IpsPj
is the average

current consumption of the partial schedule on Pj . It is obtained by simply sum-

ming the current consumption of all events scheduled so far on Pj and dividing

by the number of such events, to obtain the average. When a task and a com-

munication overlap, their respective current consumptions are added together to

give the total current consumption during the period of overlap.

F2 :
NCC

eji

Pi
· PF eji

Pi

αSA (Pi)
+
NCC

eji

Pj
· PF eji

Pj

αSA (Pj)
(7.3)

Here, nj is a predecessor task of ni that has already been scheduled on Pi.

Thus, dependency data needs to be transmitted by Pi and this dependency data

needs to be received by Pj . There will be zero or more instances of F2 depending

on the number of dependencies of ni and on the PEs they are scheduled on.

F3 :
ANCCni
Ave (αSA)

(7.4)

Here, Ave(αSA) denotes the average value of αSA computed over all non-

exhausted PEs.
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In the above given three functions the quantity αSA is computed at the end of

the partial schedules of the respective PEs. It should be noted that even though

αSA used in the above functions are at the end of a PEs partial schedule, the

exact time location where a task or communications gets scheduled might not be

at the end of the partial schedule. For example, the task to be scheduled might

rely on the arrival of dependency data from other PEs, which in turn might

postpone its start time, communications could get scheduled before or after the

end of the current partial schedule. Thus, αSA gives an indication of the charge

available at a PE at the end of its partial schedule and not at exact time-points

where tasks or communications actually get scheduled.

DAMni
Pj

is finally given as:

(F1 + F2)× F4

F3
(7.5)

Rationale behind DAM of a task

As mentioned earlier, DAMni
Pj

gives the unsuitability of scheduling ni on Pj . The

three functions given above capture this unsuitability from a ’charge-needed to

charge-available’ ratio point of view.

From the definition of αSA it is clear that it speculates on the available charge

from the battery of Pj , adopting an optimistic view based on the fact that the

locked charge inside the battery αL, would be released and added to the available

charge αA. The degree of optimism is given by the speculation factor SF , which

indicates how close the batterys behavior is to an ideal energy source and how

fast one can expect the locked charge inside the battery to be released. In the

DAM function, αSA is used as a normalizing factor. This is intuitive since a
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battery with a higher αSA would be in a position to take a task requiring more

charge than a battery with a lower αSA. Also, using αSA as a normalizing factor

captures the heterogeneity in the available charge at different PEs of the BSN

during the scheduling process and ensures uniform wear-off of all the constituent

PEs of the BSN.

The NCCni
Pj

is closely related to the upper bound on the charge consumption

of ni. This is because NCCni
Pj

is computed using the worst case current and

execution time of ni on Pj . The partial factor P.Fni
Pj

is used to scale this quantity.

The importance of the partial factor becomes evident once we consider discharge

current profiling. This importance of decreasing discharge current profile was

already highlighted in the Battery Behavior section. The partial factor captures

this profiling requirement as it is obtained as a ratio of the current consumption

of ni to the average current consumption of events already scheduled on Pj .

Thus, ni becomes more unsuitable to be scheduled on Pj if it consumes a high

amount of current compared to the events in the partial schedule already on Pj

and vice versa.

ANCCni gives an indication of the charge requirement of the sub graph

induced by ni. It is desirable to schedule a task whose children are heavy con-

sumers of charge as early as possible. This would enable scheduling of the heavy

children early. This helps to obtain a decreasing current profile on all the PEs.

Also, scheduling these heavy consumers earlier on would put less stress on the

batteries towards the end of the schedule and would facilitate easy rescuing of

any task that fails the endurance constraint. Thus, F3 appears in the denomina-

tor and serves to lower the DAM of task ni. F3 is similar to F3 and it captures

the charge requirements for scheduling a single two hop communication instance.

The multiplicative term in the DAM function introduces deadline awareness

and serves to lower the DAM of a task whose deadline is very tight. The tightness
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of a tasks deadline can be due to two factors. One would be the total deadline

laxity, given as the sum of the positive time differences between the finish time

of the task, on schedulable PEs, and its deadline. The other factor would be the

number of PEs on which the task is schedulable, as governed by architectural

constraints. Thus the multiplicative term in the DAM function takes the above

two factors into consideration and gives the average deadline laxity that a task

as at its disposal. The average deadline laxity of ni is given as:

F4 :

∑
Pj∈D

(Dni − FT (ni, Pj))

N
(7.6)

Here, D represents the set of PEs on which ni has passed the deadline check

and N the total number of PEs on which ni is schedulable. Note that N is given

by the architectural constraints of the BSN and is fixed for a task throughout

the scheduling process.

7.1.3 Rescue operation(RO)

DA guarantees a schedule satisfying deadline and precedence constraints but not

the endurance constraint. DA guarantees against battery-failures though event-

failures can still occur in the schedule. A task suffering from event-failure is

termed as starving task ; starving communication is defined in the same manner.

A PE can have a starving task as well as a starving communication occurring at

the same time if the respective task and communication overlap along the time

scale and the αSA of the battery turns negative before either of them complete.

In other words, the block formed by the overlapping task and communication

has suffered an event-failure and is termed as starving block.
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The purpose of RO would be to identify such starvations and employ recovery

phenomenon of the battery to salvage them. RO introduces recovery periods in

the schedule in an attempt towards rescuing them. A recovery period is nothing

but an idle period inserted just before the start time of the starving event or

block. In other words, starving event or block, along with their dependents, is

pushed towards their deadline. The resulting idle period would allow a certain

portion of αL; the charge locked-up inside the battery, to be released and added

to the available charge αA. Thus, an event or block scheduled after a recovery

period would have more charge at its disposal than if it were to be scheduled

without the recovery period. The side effect of RO is elongation of the schedule

length. Also note that any rest periods ∆ that might have been inserted in the

schedule by DA are taken as ’holes’ into which events or blocks can be pushed.

During RO the blocks produced by DA are pushed as a whole. The start times

of all the events composing a block are postponed by the same amount. This

implies that the relative schedule of events within a block never changes. This

ensures that no new battery or event failure is introduced in the schedule during

the RO process. As an example consider Fig. 7.2. Assume αA of the battery

turns negative at time 3.5s resulting in starving events T3 and C2. During RO,

starving block B1; comprising of T2, T3, C1 and C3, would be pushed as a

whole, rather than just events T3 and C2. Blocks/events on other PEs are also

pushed to maintain precedence constraints.

RO terminates successfully once all starvations have been rescued. RO termi-

nates with failure if a starvation cannot be rescued. This implies that the partic-

ular starving block or event cannot be rescued even after inserting the maximum

possible recovery period subject to precedence and deadline constraints.
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Chapter 8

Complexity Analysis of DA

We will first look into the complexity of a single iteration of DA, i.e. the com-

plexity of scheduling one task, before giving the total complexity of DA.

Consider an instance of DA where RL 6= {} and R = |RL|. Let partial

schedule of Pj be denoted as PSj and |PSj |; the number of events scheduled in

PSj , be Nj . Let maximum in-degree in G be I. Let the number of PEs in the

BSN be NT . Each call to the battery model is O(1).

Architectural constraint check for nj ∈ RL on a non-exhausted Pj is accom-

plished by a simple indexing operation into a table and is of O(1). Deadline

constraint is checked using equations (4.1) and (4.2). Determination of DAT

depends on the number of parent tasks of nj . Under worst case condition, I

number of parents could be scheduled on distinct PEs other than Pj . This gives

complexity for deadline check as O(I). Thus, the two feasibility checks taken

together have a complexity O(RNT I+RNT ). The next step computes DAM for

each feasible assignment. Consider DAM computation for nj on Pj . Assuming

the number of schedulable PEs to be NT , F4 and F3 have complexity O(NT ).
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F2 is computed for each instance of data transfer and depends on the number

of parents of nj that are scheduled on distinct PEs other that Pj and its worst

case complexity is given as O(I). F1 is O(1). Thus, DAM computation has a

total complexity of O(RNT (NT + I)). The next step is a sorting process that

sorts RNT elements and can be accomplished by means of a sorting algorithm

of O(RNT log(RNT )) complexity.

Consider Pj with modified partial schedule. C1 has worst case complexity

when Nj events form a single block. The battery model is then called for (1 +

2 + . . . + Nj) times, which is equal to (N2
j + Nj)/2. Now, Nj is the number

of scheduled events in PSj and can always be represented as Nj = xjN + yjE

where N and E are the total number of tasks and edges in G respectively and

xj > 0 and yj ≥ 0 are some scalars. The battery model is similarly called

for all PEs whose partial schedule have been modified. Thus, C1 has a final

worst case complexity of O(N2 + E2 + NE). The C1 loop can be executed for

a maximum of RNT times. That is, (RNT − 1) assignments fail C1 leading to

a new assignment and the final assignment passing C1. Thus, the C1 loop has

complexity of O(RNT (N2 + E2 +NE).

C2 needs to perform at most (I + 1) comparisons to determine exhausted

PEs. The comparison is done against the minimum αU among all unscheduled

tasks. Assuming that a sorted list of αU of all tasks is available apriori and

maintained throughout the scheduling process, it would take at most N steps to

determine the least αU among unscheduled tasks. Thus, complexity of C2 can

be given as O(N + I).

C3 is performed on Pj by calling the battery model Nj number of times. If

Pj fails C3, its FT is updated with a rest period ∆ which can be obtained by Nj

calls to the battery model. Proceeding as in the case of C1, C3 has a complexity

of O(N + E).
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Combining the complexities obtained above and noting that R is bounded by

N we obtain the complexity for a single iteration of DA as O(NNT (I+NT +N2+

E2 + NE + log(NNT ))). DA being a list scheduler takes exactly N iterations

to schedule a DAG consisting of N nodes. Thus,the total complexity of DA is

O(N2NT (I +NT +N2 + E2 +NE + log(NNT ))) ≈ O(N4NT ).
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Chapter 9

Simulation Results

We conducted rigorous simulation runs to study the performance of our proposed

algorithm. Simulation runs were carried out on a Pentium c©−D, 2.8GHz, 1.5GB

RAM machine running under Fedora c© Linux natively. The programming lan-

guage of choice was C. The application DAGs for simulation input were randomly

generated using the graph generator tool TGFF[28]. The total number of nodes

in each DAG was set to 100, with each node having a maximum in-degree and

out-degree of 2 and 5 respectively. The DAGs could have multiple source nodes.

A total of 100 such random DAGs were generated. The BSN under study is

assumed to be composed of a maximum of 12 PEs. Heterogeneity in the BSN

is captured by assigning each PE a type. A maximum of 3 different PE types

are made available in our simulation environment and each PE in the BSN is

randomly assigned a type. Tasks and communications produced by TGFF are

also assigned different types. A total of 10 task and communication type is used.

The WCCC of a task type on a particular PE type was generated as a uni-

form distribution between 0mA and 3.774mA, with the mean at 1.887mA. The
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WCET of a task type on a particular PE type was generated as a uniform dis-

tribution between 0ms and 3.2ms, with the mean at 1.6ms. The WCCC of a

communication on a particular PE type was generated as a uniform distribution

between 9.25mA and 27.75mA, with the mean at 18.5mA. The WCET of a com-

munication type on a particular PE type was generated as a uniform distribution

between 20ms and 180ms, with the mean at 100ms. Note that the WCCC for

a communication does not depend on the communication type but only on the

PE type. Random architectural constraints are also introduced at this stage.

Task deadlines were automatically generated by TGFF assuming average

WCET of 200ms for communications and 1.6ms for tasks. 200ms would cater for

a communication hop length of 2. The deadlines produced by TGFF are further

divided by parameter UF ; 0 < UF ≤ 1.0, which represents the utilization factor

of the sensor network.

A total of 5 different battery types are made available with each type dif-

fering in αI and β. The αI of the battery types are generated as uniformly

distributed values between 27mA-mins and 33mA-mins, the average value be-

ing at 30mA-mins. The αI has been purposefully kept low to avoid extremely

lengthy simulation durations. Consequently, 33mA-mins would correspond to a

VBAT of 3.6v and 30mA-mins to 2.7v. β values are generated uniformly between

0.273 and 0.637, with the mean at 0.5. A battery type is randomly assigned to

each of the PEs in the BSN.

The performance metric that we are interested in is the lifetime(S) of the

BSN. In other words, the number of instances of a given application DAG that

can be successfully run to completion on the BSN before it suffers either a dead-

line failure or a starvation failure. A deadline failure is said to have occurred

if the scheduler is unable to allocate a ready task to any PE without violating
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its deadline. A starvation failure is said to have occurred if any scheduled task

suffers a starvation that cannot be rescued. The WCCC of events in the ap-

plication DAG are updated at the end of each successfully scheduled instance.

The αA of the PEs is assumed to be equal to their respective αT and the cor-

responding VBAT is found. WCCC are then updated as explained in Section

5.2. The time period of the input DAG is assumed to be equal to its deadline.

∆ is set as 50.8ms, which corresponds to the average of WCET of tasks and

communications.

9.1 Lifetime vs. Number of PEs

We set UF as 0.1, HF as 0.2 and determined the lifetime with respect to different

number of PEs. The result is shown in Fig. 9.1. All lifetime values are an

average over 100 DAGs. Its obvious that with more PEs at its disposal the

algorithm has more freedom during the scheduling process and thereby able to

make better scheduling decisions. Also, any PE nearing depletion can easily be

replaced by other PEs. Of course, it is expected that as the number of PEs

increase the lifetime of the BSN increases. The average lifetime for a 12 PE

BSN is 119.21 as compared to 73.49 for a 6PE BSN, which corresponds to an

increase in lifetime of 62%. For all subsequent simulation runs the number of

PEs is set as 6. The lifetime performance is also compared to two other most

commonly used scheduling policies, namely, the popular EDF scheduler and

Random scheduler. Our proposed algorithm XYZ being the first of its kind in

addressing the scheduling problem with independent heterogeneous batteries, our

choice of benchmarking is left with only against the above-mentioned algorithms.

It is clear from Fig. 9.1 that our algorithm completely outperforms the two

benchmarks across all PE inputs. Lifetime improvements in the range 1641%-

3506% is observed over Random and 64%-464% over EDF.
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Figure 9.1: Lifetime Vs Number of PEs in BSN

9.2 Lifetime Vs Health Factor

The health factor HF dictates the amount of relaxation the batteries of the BSN

enjoy. This consequently affects deadline as well as recovery performance of the

algorithm. We now study the impact of HF with the help of two DAGs, namely,

dagA and dagB. dagA and dagB were randomly picked form the set of 100 DAGs.

We vary HF from 0.1 to 1.0, in increments of 0.1, and obtain lifetime results for

values of UF equal to 0.1, 0.5 and 1.0. The results are shown in Fig. 9.2a and

Fig. 9.2b.

The trend of the lifetime is found to be generally increasing as HF increases.

However the increase in lifetime is predominant for 1.0 ≥ HF ≥ 0.5 and tends

to approach zero for 0.1 ≤ HF < 0.5. This indicates that lifetime improvements

can be significant at higher values of HF and at lower values of HF the lifetime

of the BSN tends towards a constant value. For example, consider dagA in Fig.

9.2a with UF = 0.5. At HF = 0.7 a lifetime of 6 was obtained and at HF = 0.5

a lifetime of 30 was obtained. This corresponds to an increase in lifetime of 400%.

However, lifetime of only 32 was obtained for HF = 0.1 which corresponds to

an increase of only 6.67% over the 0.5 case. This rather curious behavior can

be attributed to the non-linear relaxation effect of the battery, which is shown
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Figure 9.2: Lifetime Vs HF

in Fig. 9.3. The figure shows αL of a battery with β = 0.273. It is clear from

the figure that a large portion of αL is released and added to the pool of αA

immediately after the external load is cutoff, which would result in a significant

improvement in the health of the battery within a short time period after the

load is cut off. This is the precise reason for the earlier observed behavior of

the algorithm. Health improvement corresponding to lower values of HF can

be obtained with almost identical rest periods. However health improvement

corresponding to higher values of HF needs an increasing amount of rest period.

Consequently, the lifetime is highly dependent on HF for 1.0 ≥ HF ≥ 0.5.

Note that lifetime at HF = 1.0 is 0 for both dagA and dagB. Rest peri-

ods corresponding to this high value of HF would be very long in duration,

consequently leading to deadline failures during the scheduling process.
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Figure 9.3: Lock-up and Recovery of Charge Inside a Battery

9.3 Lifetime Vs Utility Factor

We now study the effect of the utility factor on lifetime using dagA and dagB.

We vary UF from 0.1 to 1.0, in increments of 0.1, and obtain lifetime results for

values ofHF equal to 0.1, 0.5 and 1.0. The results are shown in Fig. 9.4a and Fig.

9.4b. It is observed that as deadlines are further relaxed the lifetime increases.

Its obvious that as deadlines are relaxed further the algorithm would have more

freedom during the scheduling process and is thereby able to provide better

schedules. Also, starving events can now be easily rescued since recovery period

insertion will not have much adverse effect on deadline performance. Thus, it is

not surprising that lifetime increases with relaxed deadlines. Once again lifetime

at HF = 1.0 is 0.
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Figure 9.4: Lifetime Vs UF

9.4 Failure Mode

Deadline and starvation failure are the two main modes of failure our algorithm

is susceptible to. Fig. 9.5 tabulates the failure mode that was obtained during

simulation runs of Fig. 9.2 and Fig. 9.4Fig. Deadline failure is the predominant

mode for higher values of HF and UF while starvation failure is the predominant

mode for lower values of HF and UF .

Higher values of HF imply longer ∆ rest periods in the schedule. Conse-

quently, latter tasks might miss deadlines leading to deadline failures. Lower

values of HF imply that the algorithm is free to allocate events to PEs that

might not be in good health. Consequently the chances of an unrecoverable

starvation increase. Higher values of UF imply tighter deadlines which lead to
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Figure 9.5: Failure Modes Across UF and HF

deadline failures. Note that when UF = 1.0 task deadlines are equal to their

respective longest path from the source node(s). Lower values of UF relax dead-

lines thereby reducing deadline failures.

9.5 Uniform Battery Wear-off

Uniform wear-off of the batteries in the BSN is one of the objectives of our

algorithm. αT , representing the total charge inside a battery, is computed at

time intervals equaling the time-period of a DAG and is used as a measure of

the amount of wear-off a battery has undergone.
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Figure 9.6: αT showing uniform wear-off

Naturally αT tends to decrease as the scheduling process progresses. Fig.

9.6a and Fig. 9.6b show the plot of αT of all 6 PEs for dagA and dagB re-

spectively. Its evident from the plots that the algorithm does try to achieve

a uniform loading of all the batteries in the BSN. However, a perfect uniform

wear-off might not be possible since the batteries are heterogeneous.

We will end this section by showing the recovery effect that our algorithm

utilizes. Fig. 9.7 shows a snapshot of αA of three PEs for time-period instances 1

to 10 during scheduling of dagA. The plot clearly shows recovery effect in action

wherein the batteries get discharged in a ’pulsed’ manner.
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Figure 9.7: αA showing recovery effect
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Chapter 10

User Interface Development

for LMBD

LMBD was simulated under DOS environment where all user interactions were

via file input/output and console input/output. A need was thus felt to im-

part greater interactivity between the user and the simulation environment as

well as greater intuition to the simulation process. A graphical front-end was

then decided to be developed via which a user would be able to interact with

the simulation environment. The graphical user interface (GUI) was envisioned

to be feature rich; flexible enough to incorporate multiple schedulers, able to

display schedule information to the user in a graphical manner, able to display

application DAGs in a graphical manner, incorporate various tools for creation

of application DAGs, accept all simulation parameters from within the graphical

interface and also able to provide timely guidance to a novice user.
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10.1 GST: Graphical Simulator Tool

A graphical tool called (unimaginatively) Graphical Simulator Tool (GST) was

developed to address the shortcoming of the console based simulation environ-

ment. GST is a graphical front-end for simulation of multiple energy and QoS

aware multi-processor scheduling algorithms. The tool serves as a single plat-

form from which the user can launch, view and evaluate the results of the various

scheduling algorithms. System input such as the number of processors in the

hardware architecture as well algorithmic inputs can be entered via the tools

graphical interface. Schedules produced by the algorithms can be viewed graph-

ically from within the tool itself, thus enabling easier comparison of the various

algorithms.

The tool is flexible enough to allow integration of algorithms that might be

developed in the future. Various graphical widgets (for display purposes) are

provided in form of function calls and can be used by the algorithm developer.

Two types of DAG builders have been incorporated into the tool. A TGFF

based builder and a wizard based builder. The former version accepts a DAG

configuration file and utilizes the random graph generator TGFF to generate

random application DAGs. The latter version allows building of a DAG from

scratch, with the user specifying the exact structure and other characteristics

of the application DAG. The resultant DAG of both versions can be viewed

graphically and saved from within the tool itself.

The tool can be run natively under Linux or in Windows under Cygwin [29].

Figures 10.1-10.5 show some screen shots of GST in action.
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Figure 10.2: Option to run multiple algorithms
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Chapter 11

Conclusion

The predominant energy source for mobile and wearable embedded systems, such

as Body Sensor Networks(BSN), is the electro-chemical battery. Energy opti-

mization techniques for such battery powered embedded systems need to devote

special attention to the battery since a battery deviates significantly from an

ideal energy source and exhibits several non-linear behaviors. Owing to this

particular constraint, traditional energy saving techniques which predominantly

assume the energy source to be ideal, are not suitable for battery powered sys-

tems.

In this dissertation we have developed a battery-aware scheduling algorithm

known as List-Based Minimum Damage(LMBD) to schedule an application DAG,

with deadline and non-negligible communication overheads, on to the processing

elements of a BSN. The algorithm incorporates a list scheduler, with a heuristic

Damage function serving as a decision maker. Non-ideal battery properties such

as rate-capacity effect and current-profiling effect are exploited to maximize the

amount of charge that can be extracted out of a battery. The recovery phe-

nomenon of the battery is thoroughly exploited, particularly to rescue events
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that might otherwise suffer a battery-failure. The proposed algorithm is unique

in the context that it considers the processing elements of the BSN be individ-

ually powered by dedicated heterogeneous battery types; a first in literature.

This dissertation has also explored the feasibility of adopting unique power

supply interfaces to eliminate losses in the power transmission systems. In par-

ticular, a previously proposed technique called Passive Voltage Scaling (PVS)

is found to be a suitable choice to eliminate losses in DC-DC converters of the

BSN. In PVS the DC-DC converter is eliminated by interfacing the processing

element directly to the battery and operating the processing element at a lower

operational frequency.

In addition, this dissertation has also contributed to the development of a

graphical application called Graphical Simulator Tool (GST) which serves as a

graphical front-end for algorithm simulation environments. Various scheduling

algorithms can be incorporated into GST by an user. The user can input algo-

rithmic parameters, launch a simulation and view the results in graphical format

from within GST. GST also incorporates various DAG building tools.

11.1 Summary of Research Contributions

To summarize, the following are the contributions of this dissertation:

1. A battery-aware multiprocessor scheduling algorithm called List-Based

Minimum Damage(LMBD) has been developed to schedule an applica-

tion DAG on to the distributed sensor nodes of a Body Sensor Network.

The algorithm is the first in literature to consider distributed and hetero-

geneous battery sources for the underlying multiprocessor network.
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2. Techniques to eliminate DC-DC converter losses have been explored and a

power supply setup called Passive Voltage Scaling is found to be suitable

for the sensor nodes under study. LMBD operates under this setup.

3. A graphical application called Graphical Simulator Tool has been devel-

oped via which an user can select, launch, view and compare results of

scheduling algorithms in an intuitive graphical manner.

11.2 Future Work

The work in this dissertation has plenty of scope for further development. We

now briefly introduce possible future research directions.

• LBMD is a static algorithm that generates schedules offline. An immediate

and interesting extension of this work would be to design a dynamic version

of LBMD.

• The time complexity of LMBD is of order 4. Though being polynomial,

this can be regarded as quite high. Effort can be expended in future work

to mitigate the high complexity of LMBD.

• Performance of LMBD was evaluated via simulation runs using syntheti-

cally generated application DAGs. An interesting extension to this work

would be to validate the performance of the algorithm on real-world BSN

applications.

• In this work, microcontrollers and the RF modules are considered to be the

predominant energy sinks in a sensor network. Though this assumption

has been shown to be true, it would nevertheless be interesting to study

the impact of other system components such as memory, A-D converters,

transducers etc. on battery performance.
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Appendix A

Lemmas

Lemma1: C1 prevents battery-failures. In other words, for a PE, the condition

αA + αL ≥ 0 is true at all times during the scheduling process.

Proof: Consider Pj with a partial schedule. For the partial schedule to have

been successfully scheduled it must have passed C1. Let E be an event with

execution time ∆E and start time t. Let the charge used by E be αU and finish

time of E be t́ = t+ ∆E . C1 for E is given as:

αA + αL ≥ αU

⇒ αA + αL ≥ αC +X (A-1)

Here (αA + αL) gives the net charge available from the battery of Pj at t. αC

is the charge consumed by event E and X is the charge E will lock inside the

battery. At t́, the net charge in the battery would be:

αA + αL − αC (A-2)

From (A-1) and (A-2) it can be seen that αA + αL ≥ 0 at time t́.
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Let B be a block with execution time ∆B, start time t and finish time

t́ = t + ∆B. C1 for block B assigns αT to αA at time t. This implies that the

start time of B is postponed by a finite amount of idle period. Let this idle

period be of duration ∆I . Now, C1 ensures that αA ≥ 0 in the time interval

(t+ ∆I) to (t′ + ∆I).

⇒ αA + αL ≥ 0 from (t+ ∆I) to (t′ + ∆I) (A-3)

That is, assuming insertion of some finite idle period at time t, the net charge in

the battery is greater than or equal to zero at all times in B. But, as a property

of the battery, the net charge does not depend on any idle periods. This implies

that (A-3) is satisfied when start time of B is not postponed by any idle period.

Thus (A-3) is true in the time interval t to t′ in the partial schedule.

From the above given arguments it is clear that αA + αL ≥ 0 at all times

during the scheduling process.

Lemma2: For a PE, the condition αSA > 0 is true at all times during the

scheduling process.

Proof: Let there exist a partial schedule on Pj till time t́. For the partial

schedule to be valid, Pj should have passed C3 at time t́. Which implies at time

t́:

αSA/αT ≥ HF (A-4)

Now, αSA = αA + SF · αL (A-5)

and αT = αA + αL (A-6)

Since, HF is a positive quantity, it follows from (A-4), (A-6) and Lemma1 that
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αSA > 0 at t́. In the very first iteration of DA αSA = αA. Thus αSA > 0 at all

times during the scheduling process.

Lemma3: Any rest period ∆ to be inserted at the end of a valid partial

schedule is always finite.

Proof: The health check at the end of a valid partial schedule is given as

αSA/αT ≥ HF . Expanding gives:

αA + SF · αL
αA + αL

≥ HF (A-7)

The locked charge αL in a battery gets released due to recovery effects and adds

to the available charge αA, thus:

lim
time→∞

αL = 0 (A-8)

From (A-8) it can be seen that (A-7) will be true for some finite value of ∆ since

0 < HF < 1.0.
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Appendix B

Impact of HF and SF on ∆

Rewriting and simplifying (A-7) yields:

αA ≥
αL (HF − SF )

1−HF
(B-1)

The denominator of (B-1) and αL are positive. When,

1. HF > SF

• If αA ≤ 0, then a rest period is definitely required at the end of the

partial schedule.

• If αA > 0, then a rest period may or may not be required. Condition

(B-1) needs to be explicitly checked to determine whether a rest

period is required.

2. HF < SF

• If αA ≥ 0, then a rest period is definitely not required at the end of

the partial schedule.

91



• If αA < 0, then a rest period may or may not be required. Condition

(B-1) needs to be explicitly checked to determine whether a rest

period is required.

3. HF = SF

• If αA ≥ 0, then a rest period is definitely not required at the end of

the partial schedule.

• If αA < 0, then a rest period is definitely required at the end of the

partial schedule.

Under the scenario that a rest period ∆ is required, (B-1) can be used to arrive

at the value of αA at the end of ∆. This αA can then be used in the battery

model to determine the value of ∆.
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Appendix C

Dynamic Voltage Scaling (DVS)

Digital CMOS circuits are susceptible to two kinds of energy loss, namely, static

and dynamic. Static power losses are negligible, usually in the order of << 1mW

and are ignored while computing the energy efficiency of a CMOS circuit [30].

Dynamic power loss can be represented by means of a simple equation as given

below:

Pd = C · f · V 2
dd (C-1)

where Pd represents the dynamic power, C the total capacitance of the circuit,

f the operating frequency and Vdd the supply voltage. It is obvious from equa-

tion (C-1) that reducing Vdd would result in quadratic savings in Pd. However,

a reduction in the supply voltage of the CMOS circuit is accompanied by an

increase in circuit delay. The circuit delay of a CMOS circuit is given as:

Td =
Vdd

(Vg − Vt)2
(C-2)
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where Td represents the circuit delay, Vdd the supply voltage, Vg the input gate

voltage and Vt the threshold voltage. The CMOS circuit now needs to be oper-

ated at a lower frequency to compensate for the increased delay. Consequently

the execution time for a given task increases.

It can be seen from equations (C-1) and (C-2) that there is a trade-off between

dynamic power savings and increased execution time. DVS enabled processors

are able to dynamically variable their supply voltage and operating frequency

during runtime under software control. Algorithmic techniques that rely on

DVS vary the operating voltage and consequently the operating frequency of a

processor in an intelligent manner to trade execution time for savings in energy

consumption. For further insights into DVS the reader is referred to [31].
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