297 research outputs found

    Fuzzy Entropy-Based State of Health Estimation of LiFePO4 Batteries Considering Temperature Variation

    Get PDF

    The Effect of Voltage Dataset Selection on the Accuracy of Entropy-Based Capacity Estimation Methods for Lithium-Ion Batteries

    Get PDF
    It is important to accurately estimate the capacity of the battery in order to extend the service life of the battery and ensure the reliable operation of the battery energy storage system. As entropy can quantify the regularity of a dataset, it can serve as a feature to estimate the capacity of batteries. In order to analyze the effect of voltage dataset selection on the accuracy of entropy-based estimation methods, six voltage datasets were collected, considering the current direction (i.e., charging or discharging) and the state of charge level. Furthermore, three kinds of entropies (approximate entropy, sample entropy, and multiscale entropy) were introduced, and the relationship between the entropies and the battery capacity was established by using first-order polynomial fitting. Finally, the interaction between the test conditions, entropy features, and estimation accuracy was analyzed. Moreover, the results can be used to select the correct voltage dataset and improve the estimation accuracy

    Fuzzy Entropy-based State of Health Estimation for Li-Ion Batteries

    Get PDF

    Driving behavior-guided battery health monitoring for electric vehicles using machine learning

    Full text link
    An accurate estimation of the state of health (SOH) of batteries is critical to ensuring the safe and reliable operation of electric vehicles (EVs). Feature-based machine learning methods have exhibited enormous potential for rapidly and precisely monitoring battery health status. However, simultaneously using various health indicators (HIs) may weaken estimation performance due to feature redundancy. Furthermore, ignoring real-world driving behaviors can lead to inaccurate estimation results as some features are rarely accessible in practical scenarios. To address these issues, we proposed a feature-based machine learning pipeline for reliable battery health monitoring, enabled by evaluating the acquisition probability of features under real-world driving conditions. We first summarized and analyzed various individual HIs with mechanism-related interpretations, which provide insightful guidance on how these features relate to battery degradation modes. Moreover, all features were carefully evaluated and screened based on estimation accuracy and correlation analysis on three public battery degradation datasets. Finally, the scenario-based feature fusion and acquisition probability-based practicality evaluation method construct a useful tool for feature extraction with consideration of driving behaviors. This work highlights the importance of balancing the performance and practicality of HIs during the development of feature-based battery health monitoring algorithms

    Lithium-ion battery prognostics through reinforcement learning based on entropy measures

    Get PDF
    Lithium-ion is a progressive battery technology that has vastly been used in different electrical systems. Failure in the battery can lead to failure in the entire system where the battery is embedded and cause irreversible damage. To avoid the probable damages, research is actively conducted, and data-driven methods are proposed based on prognostics and health management (PHM) systems. PHM can use multiple time-scale data and stored information from battery capacities over cycles to determine the battery state of health (SOH) and its remaining useful life (RUL). This results in battery safety, stability, reliability, and longer lifetime. In this paper, we propose different data-driven approaches to battery prognostics that rely on: Long Short-Term Memory (LSTM), Autoregressive Integrated Moving Average (ARIMA) and Reinforcement Learning (RL) based on the Permutation Entropy of battery voltage sequences at each cycle since they take into account the vital information from the past data and result in high accuracy

    Hybrid Neural Networks for Enhanced Predictions of Remaining Useful Life in Lithium-Ion Batteries

    Get PDF
    With the proliferation of electric vehicles (EVs) and the consequential increase in EV battery circulation, the need for accurate assessments of battery health and remaining useful life (RUL) is paramount, driven by environmentally friendly and sustainable goals. This study addresses this pressing concern by employing data-driven methods, specifically harnessing deep learning techniques to enhance RUL estimation for lithium-ion batteries (LIB). Leveraging the Toyota Research Institute Dataset, consisting of 124 lithium-ion batteries cycled to failure and encompassing key metrics such as capacity, temperature, resistance, and discharge time, our analysis substantially improves RUL prediction accuracy. Notably, the convolutional long short-term memory deep neural network (CLDNN) model and the transformer LSTM (temporal transformer) model have emerged as standout remaining useful life (RUL) predictors. The CLDNN model, in particular, achieved a remarkable mean absolute error (MAE) of 84.012 and a mean absolute percentage error (MAPE) of 25.676. Similarly, the temporal transformer model exhibited a notable performance, with an MAE of 85.134 and a MAPE of 28.7932. These impressive results were achieved by applying Bayesian hyperparameter optimization, further enhancing the accuracy of predictive methods. These models were bench-marked against existing approaches, demonstrating superior results with an improvement in MAPE ranging from 4.01% to 7.12%

    Combined classification and queuing system optimization approach for enhanced battery system maintainability, A

    Get PDF
    2022 Spring.Includes bibliographical references.Battery systems are used as critical power sources in a wide variety of advanced platforms (e.g., ships, submersibles, aircraft). These platforms undergo unique and extreme mission profiles that necessitate high reliability and maintainability. Battery system failures and non-optimal maintenance strategies have a significant impact on total fleet lifecycle costs and operational capability. Previous research has applied various approaches to improve battery system reliability and maintainability. Machine learning methodologies have applied data-driven and physics-based approaches to model battery decay and predict battery state-of-health, estimation of battery state-of-charge, and prediction of future performance. Queuing theory has been used to optimize battery charging resources ensure service and minimize cost. However, these approaches do not focus on pre-acceptance reliability improvements or platform operational requirements. This research introduces a two-faceted approach for enhancing the overall maintainability of platforms with battery systems as critical components. The first facet is the implementation of an advanced inspection and classification methodology for automating the acceptance/rejection decision for batteries prior to entering service. The purpose of this "pre-screening" step is to increase the reliability of batteries in service prior to deployment. The second facet of the proposed approach is the optimization of several critical maintenance plan design attributes for battery systems. Together, the approach seeks to simultaneously enhance both aspects of maintainability (inherent reliability and cost-effectiveness) for battery systems, with the goal of decreasing total lifecycle cost and increasing operational availability
    • …
    corecore