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Abstract: Lithium-ion is a progressive battery technology that has been used in vastly different elec-

trical systems. Failure of the battery can lead to failure in the entire system where the battery is 

embedded and cause irreversible damage. To avoid probable damages, research is actively con-

ducted, and data-driven methods are proposed, based on prognostics and health management 

(PHM) systems. PHM can use multiple time-scale data and stored information from battery capac-

ities over several cycles to determine the battery state of health (SOH) and its remaining useful life 

(RUL). This results in battery safety, stability, reliability, and longer lifetime. In this paper, we pro-

pose different data-driven approaches to battery prognostics that rely on: Long Short-Term Memory 

(LSTM), Autoregressive Integrated Moving Average (ARIMA), and Reinforcement Learning (RL) 

based on the permutation entropy of battery voltage sequences at each cycle, since they take into 

account vital information from past data and result in high accuracy. 

Keywords: lithium-ion battery; prognostics; long short-term memory; ARIMA; reinforcement  

learning 

 

1. Introduction 

1.1. Lithium-Ion Batteries 

Lithium-ion batteries, as the primary power source in electric vehicles, have attracted 

significant attention recently and have become a focus of research. It is assumed that lith-

ium-ion batteries have the inherent potential for building future power sources for envi-

ronmentally friendly vehicles [1]. 

Lithium-ion batteries are the best option for electrical vehicles due to their high-qual-

ity performance, capacity, small volume, light weight, low pollution, and rechargeability 

with no memory effect [2]. However, battery performance degrades when facing poor 

pavement conditions, temperature, and load changes. This leads to leakage, insulation 

damage, and partial short-circuits. Consequential situations can arise if these failures are 

not detected timeously [3,4]. As an example, several Boeing 787 aircraft caught fire be-

cause of lithium-ion battery failure in 2013, causing the airliners to be grounded [5]. 

Hence, it is necessary to detect performance degradations timeously and estimate future 

battery performance. This is where battery prognostics and health management (PHM) 

plays an important and vital role. PHM determines the battery state of health prediction 

(SOH) and battery remaining useful life prediction (RUL) of the product using possible 

failure information in the system, thus yielding improved system reliability and stability 

in the actual life-cycle of the battery. 

Battery PHM and a battery management system (BMS) are important to ensure the 

reliable and safe functionality of energy storage units [6]. Battery RUL prediction, battery 
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SOH prediction, and battery capacity fade prediction are among the topics which have 

drawn more attention from researchers in the recent decade [7]. However, these tasks are 

very difficult, as battery degradation has a complex nature and numerous factors must be 

taken into consideration [8,9]. 

1.2. Entropy Measures 

Entropy is a measurement metric for irregularities in time series data, and is used to 

quantify the stochastic process in data analyses [10]. It was first introduced in classical 

thermodynamics, and has applications in diverse fields such as chemistry and physics, 

biological systems, cosmology, economics, sociology, weather science, climate change re-

search, and information systems. Entropy has expanded to far-ranging fields and systems. 

Shannon, Permutation, Renyi, Tsallis, Approximate, and Sample entropy measures are 

some of the conceptions of entropy regularly in use [11]. 

From the afore-mentioned entropies, permutation entropy (PE) is a simple and ro-

bust approach to calculating the complexity of a non-linear system using the order rela-

tions between values of a time series and assigning a probability to the ordinal patterns. 

The permutation entropy measure technique works flexibly; it is computationally effi-

cient, and has a range of several thousand parameter values similar to Lyapunov expo-

nents. PE is discussed in more detail in Reference [12]. In this study, PE of the discharge 

battery voltage sequences is calculated and used as an input to the proposed models. 

1.3. ML and DL Techniques 

Recently, Machine Learning (ML) and Deep Learning (DL) algorithms have found 

very significant and useful applications in research and practice. These concepts have 

been used to develop various models for predicting different characteristics in diverse 

fields. In general, ML and DL algorithms aim to capture information from past data, learn 

from that data, and apply what they have learned to make informed decisions. Therefore, 

the associated systems are not required to be broadly programmed in all aspects. 

ML is used to synthesize the fundamental relationships between large amount of 

data to solve real-time problems such as big-data analytics and evolution of information 

[13]. DL, in turn, is able to process a large number of features and, hence, is preferred 

when computing huge datasets and unstructured data. DL facilitates analysis and extrac-

tion of important information from raw data by using computer systems. [14]. Different 

types of parameters with various quantities can be applied to the developed models as 

the input to obtain expected predictive variables as the output. 

Deep Learning techniques, including Long Short-Term Memory (LSTM) [15] and Re-

inforcement Learning (RL) [16], can fit numerical dependent variables and have great gen-

eralization ability, and therefore, are applicable to battery data. The LSTM algorithm, a 

Deep Learning algorithm with multiple gates, performs on the basis of updating and stor-

ing key information in the time series data [15], and is applicable to battery prognostics. 

The RL algorithm, on the other hand—as one of the latest Deep Learning methods and 

tools—has the capability of creating a simulation of the whole system and making intelli-

gent decisions (i.e., charge, replace, repair, etc.) after it is utilized to predict the battery 

RUL and SOH for the purpose of battery PHM and BMS [16]. 

1.4. Research Objective 

In this study, the objective is to progress the study of lithium-ion battery performance 

based on battery SOH and RUL prognostics. To do so, we propose an entropy-based Re-

inforcement Learning model, predict the next-cycle battery capacity, and compare the nu-

merical results from the proposed entropy-based RL models to those from two other data-

driven methods—namely, ARIMA and LSTM—which are both constructed based on the 

same input variable (i.e., permutation entropy of voltage sequences at each cycle). Permu-

tation entropy of the battery discharge voltage, as well as the previous battery capacities, 
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are given to these models as input variables. Finally, evaluation metrics such as MSE, 

MAE, and RMSE are applied to the proposed methods to compare the observed and pre-

dicted battery capacities. 

Based on Figure 1, the remainder of this work consists of the following sections. First, 

battery data is prepared and provided for the study. The data is then analyzed from dif-

ferent points of view. Based on the data analysis, various models are proposed for lithium-

ion battery performance using ML and DL techniques. We evaluate and compare the mod-

els in detail in the next sections. Finally, conclusions are presented in the last section. 

 

Figure 1. Prediction system for the lithium-ion batteries. 

2. Related Work 

In the current literature, entropy-based predictive models for battery prognostics, as 

well as other predictive models, have been researched and tested. Table 1 illustrates a brief 

overview of some of the most relevant and recently published papers that use data-driven 

methods for lithium-ion battery prognostics. 

Table 1. An overview of different approaches to lithium-ion battery prognostics. 

Ref. Data Methods Results 

[17] 

NASA Ames Prognostics 

Center of Excellence (PCoE) 

database 

Deep neural networks 

(DNN) 

The proposed model successfully predicts the SOH and 

RUL of the lithium-ion battery but is less effective when 

real-time processing comes into play. 

[18] 

Center for Advanced Life 

Cycle Engineering (CALCE) 

at the University of Mary-

land 

Deep neural networks 

(DNN) 

The ANN predicts the battery State of Charge values 

with accuracy using only voltage, current, and 

charge/discharge time as inputs and achieves an MSE of 

3.11 × 10−6. 

[19] NASA Ames 
Long short-term 

memory (LSTM) 

The proposed model has a better performance for the 

time series problem of li-ion battery prognostics and a 

stronger learning ability of the degradation process when 

compared to other ANN algorithms. 

[20] 
NASA lithium-ion battery 

dataset 

Long short-term 

memory (LSTM) 

The method produces exceptional performances for RUL 

prediction under different loading and operating condi-

tions. 

[21] 

Data repository of the NASA 

Ames Prognostics Center of 

Excellence (PCoE) 

Autoregressive inte-

grated moving average 

(ARIMA) 

The RMSE of the model for the RUL prognostics varies in 

the range of 0.0026 to 0.1065. 

[22] 

Lithium-ion battery packs 

from forklifts in commercial 

operations 

Autoregressive inte-

grated moving average 

(ARIMA) 

The ARIMA method can be used for SOH prognostics, 

but the loss function indicates further enhancement is 

needed for the environmental conditions. 
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[23] 
NASA prognostic model li-

brary 

Reinforcement Learn-

ing (RL) 

RL model enables accurate calibration of the battery 

prognostics but has only been tested on simulated data 

and sim-to-real transfer needs to be made to test the pro-

posed algorithm on real data. 

[24] SPMeT 
Reinforcement Learn-

ing (RL) 

The proposed method can extend the battery life effec-

tively and ensure end-user convenience. However, ex-

perimental validation needs to be implemented for the 

optimal charging strategy. 

[25] Simulated datasets Ensemble Learning 

A data-driven method known as Ensemble Learning is 

presented for predicting degradation in a time-varying 

environment. 

[26] 

Experimental data from mul-

tiple lithium-ion battery cells 

at three different tempera-

tures 

Sparse Bayesian 

The authors present a Sparse Bayesian model based on 

sample entropy of voltages for estimating SOH and RUL. 

It is shown that the Sparse Bayesian model outperforms 

the Polynomial model with the same input and target 

data. 

[27] 
Collected data through an 

experimental study 

Unscented Particle Fil-

ter and Support Vector 

Regression 

A hybrid model based on a combination of a data-driven 

method and a model-based approach is presented, which 

results in higher accuracy compared to each model indi-

vidually. 

The literature review reveals a research gap, which can be summarized as follows. 

Most of the research undertaken so far has relied on traditional Machine Learning and 

Deep Learning methods. However, the RL method is recognized as an area with room for 

exploration. Based on these findings, this paper is devoted to filling this gap in the re-

search. LSTM and ARIMA methods are also studied as state-of-the-art models, which can 

be developed based on the entropy measures and compared with the RL method. 

The main contribution of our study is the proposal of a Reinforcement Learning 

model based on the permutation entropy of the voltage sequences for predicting the next-

cycle battery capacity. To the best of our knowledge, an RL model for lithium-ion battery 

prognostics, using entropy measures as the input, has not been previously tested in the 

literature. Additionally, we compare the numerical results from our proposed entropy-

based RL model with the results from the state-of-the-art models (i.e., ARIMA and LSMT), 

which are built based on entropy measures for a fair and reliable comparison. 

3. Data and Battery Specifications 

The datasets used in this study were retrieved from the Center for Advanced Life 

Cycle Engineering (CALCE) at the University of Maryland [28]. The studied batteries are 

graphite/LiCoO2 pouch cells with a capacity rating of 1500 mAh, weight of 30.3 gm, and 

dimensions of 3.4 × 84.8 × 50.1 mm, labeled as PL19, PL11, and PL09. Table 2 shows the 

number of cycles in each dataset. 

Table 2. Battery Cycles. 

Batteries # of Cycles 

PL19 526 

PL11 702 

PL09 528 

Figure 2 illustrates the battery capacities over the number of cycles and indicates the 

decrease in capacities as the number of cycles increases. It can also be observed that in 

PL09 and PL19 capacities are discrete, while in PL11, they differ continuously. 
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Figure 2. Capacity vs. Cycle for PL11, PL19, and PL09 

Since the battery capacity and entropy were not observed in all cycles, we have esti-

mated each unrecorded capacity value and its related entropy using the average of its 

previous and next known capacity and entropy value. By doing so, we have increased the 

number of data, and hence, the proposed models can be trained and tested more accu-

rately. 

Figures 3–5 indicate the resultant capacities and entropies after filling the missing 

data. 

 

Figure 3. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL19. 

 

Figure 4. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL11. 

 

Figure 5. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL09. 
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4. Methodology 

The mathematical notations used throughout this paper are summarized in Table 3. 

Table 3. Glossary. 

Indices  

n Number of time series data 

T Number of times the permutation is found in time series data 

Variables  

�� Input variable (permutation entropy of battery voltage) at step � 

�� Observed battery capacity at step � 

��� Output variable (predicted battery capacity) at step � 

ℎ� Previous state at step � 

�� Current state at step � 

�̃� Intermediate cell state at step � 

�� Input gate at step � 

�� Forget gate at step � 

�� Output gate at step � 

� Order of auto-regression 

� Order of difference 

� Order of moving average 

�� State at step � 

�� Action at step � 

�� Reward at step � 

� Sum of the rewards 

� Learning rate 

� Discount factor 

���.��

  Q Table for states and actions at step � 

Parameters  

PE Permutation entropy 

D Order of permutation entropy 

� Time delay in data series 

V Time series data matrix 

�� Columns in V 

� Permutation pattern 

� Relative probability of each permutation 

��, ��, ��, ��, ��, ��, ��, �� Weights in LSTM cells 

��, ��, ��, �� bias vectors in LSTM cells 

�, ∅ ARIMA coefficients 

�� Normal white noise with zero mean 

In the following subsections, permutation entropy calculation and the proposed 

models will be discussed. 
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4.1. Permutation Entropy 

To compute a � order permutation entropy for a one-dimensional set of time series 

data with � data points, the following steps are taken [29]. First, the data is partitioned 

into a matrix with � rows and � − (� − 1)� columns, where � is the delay time. 

� =  �

�(1)  

�(2)  
⋮   

�(�)  

�(1 + �)  

�(2 + �)  
⋮   

�(� + �)  

…
…
 …

   �(1 + (� − 1)�)

   �(2 + (� − 1)�)
   ⋮

   �(� + (� − 1)�)

� (1)

After rebuilding the data, � is defined as the permutation pattern for � columns: 

� = {��. ��. … . ����} = {0.1. … . � − 1} (2)

The relative probability of each permutation in � is calculated as below: 

�(�) =
�

� − � + 1
  (3)

where � is the number of times the permutation is found in the time series. Finally, the 

relative probabilities are used to compute the permutation entropy: 

�� = − � �(�)

�!

���

���� �(�) (4)

An algorithm for the permutation entropy computation is presented below. 

Algorithm 1: Permutation Entropy 

Step1 Reshape the data series into a matrix as in Equation (1) 

Step2 Find the permutation patterns � 

Step3 Calculate the probability of each permutation in � 

Step4 Compute �� as in Equation (4) 

Permutation entropy of the coarse-grained battery voltage is extracted, as in Figure 

6. Despite the noise affecting the entropies, in PL11, the differences in the entropies are 

relatively small compared to the earlier cycles, while the deviations increase as the num-

ber of cycles increases. In PL19, the range of entropy is approximately constant over a 

different number of cycles; however, in PL09, they are completely random. 

 

Figure 6. Entropy vs. Cycles for PL11, PL19, and PL09. 

After data analysis, we split the data into train and test subsets. The proposed models 

utilize approximately 90% of the data for training purposes and take the rest for evalua-

tion, as in Figure 7. The mechanism through which the training/test ration is selected is 

explained in the following sections. 
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Figure 7. Train–Test split schematic. 

4.2. Predictive Models 

The predictive models are presented in this section as follows. 

4.2.1. LSTM 

Long Short-Term Memory, known simply as LSTM, is a framework for a recurrent 

neural network (RNN) which avoids the problem of long-term dependency. Unlike stand-

ard feedforward neural networks, LSTM has feedback connections, and hence, it can up-

date and store necessary information. It has been widely utilized in time series forecasting 

in different fields of science in recent years [30]. 

A unit LSTM cell consists of an input gate ��, forget gate ��, and an output gate ��. 

Each gate receives the current input ��, the previous state ℎ���, and the state ���� of the 

cell’s internal memory. ��, ℎ���, and ���� are passed through non-linear functions, which 

yield the updated ��  and ℎ�  [31]. Considering ��,  ��, ��, �� and ��, ��, ��, ��  as the 

correspondig weights matrices and ��, ��, ��, �� as the bias vectors, each LSTM cell oper-

ates based on the following Equations. 

��  =  �(���� + ℎ����� + ��) (5)

�̃� =  ���ℎ(���� + ℎ����� + ��) (6)

�� =  ������ + ℎ����� + ���  (7)

�� =  �� ∗ ���� + �� ∗ �̃�  (8)

�� =  �(���� + ℎ����� + ��)  (9)

ℎ� =  ���ℎ(��) ∗ ��  (10)

In this study, all three gates take permutation entropy of the battery voltage at cycle 

� and the battery capacity at cycle � − 1 as their input variables, �� and ����, and output 

the estimated battery capacity, ��, for the given inputs as shown in Figure 8. Furthermore, 

an algorithm is presented for the proposed LSTM model. 

 

Figure 8. Schematic of a unit LSTM cell. 
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Algorithm 2: LSTM 

Input: � = {���. ���. … . ���}: Permutation Entropy of Battery Voltage and ����; 

Output: �� = {���������. ���������. … . ���������}: Battery Capacity; 

for � in range(epoch) do 

Step1 Calculate �� 

Step2 Determine �̃� 

Step3 Calculate �� 

Step4 Update �� 

Step5 Calculate �� 

Step6 Update ℎ� 

Step7 Determine the output �� = �����������(�) 

Step8 Compute the loss function as Equations (20)–(22) 

end 

4.2.2. ARIMA 

The Autoregressive Integrated Moving Average (ARIMA) method is proposed as a 

technique for statistical analysis in time series data. An ARIMA model is a combination of 

the autoregressive (AR) and moving average (MA) models. The ARIMA model can be 

explained according to three notations— � , � , and � —which define the type of the 

ARIMA model: 

- �: order of auto-regression 

- �: order of difference 

- �: order of moving average 

For AR(�), we have: 

��� = ∅����� + ∅����� + ⋯ + ∅����� + �� (11)

MA(�) can be described as follows: 

��� = �� − ������ − ������ − ⋯ − ������ (12)

ARMA(�. �) is a combination of AR(�) and MA(�), and is described as below: 

��� = ∅����� + ⋯ + ∅����� + �� − ������ − ⋯ − ������ (13)

where �� and ���, respectively, are the observed and estimated values; ∅ and �, respec-

tively, are coefficients; and �� is a normal white noise process with zero mean. 

ARIMA is an advanced version of ARMA, which also works well for non-stationary 

time series data. To convert the non-stationary to stationary data, a data transformation is 

needed using a �-order difference equation [32]. Consequently, ARIMA (�. �. �) can be 

described as Equation (14). 

��� = ∅����� + ⋯ + ∅����� + �� − ������ … − ������ (14)

where �� = ∇���  and ∇ is the gradient operator. When � = 0, Equation (14) is the same 

as Equation (13) and, thus, ARIMA acts the same as ARMA. � and � are initialized using 

the autocorrelation function (ACF) and partial autocorrelation function (PAFC). 

AFC measures the average correlation between data points in a time series and pre-

vious values of the series measured for different lag lengths. PACF is the same as ACF, 

except that each correlation controls for any correlation between observations of a shorter 

lag length [32]. 

Figure 9 demonstrates the ARIMA framework from the input data stage through the 

prediction stage. 
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Figure 9. ARIMA framework. 

In this study, an ARIMA model is proposed to predict future battery capacities. Since 

we are working with a non-stationary time series, we have made a data transformation 

with � = 1. � and �, respectively, are set to 5 and 0, and thus, predictions were made 

with ARIMA(5.1.0). The rationale behind choosing the order of the ARIMA model is as 

follows. We compare the results from a range of non-negative integers, � = [1,10] (ex-

tracted from the existing literature), and select the optimal number of time lags for the 

autoregressive model, which results in minimal errors compared to other orders in that 

range. The results from the optimal model are displayed and reported here. 

There is a battery voltage sequence at each cycle (i.e., a time series of voltages at each 

cycle). We first compute the permutation entropy of each voltage sequence according to 

the corresponding algorithm; then, we use the time series of the permutation entropy 

measures (i.e., one entropy measure at each cycle) as an input in the ARIMA model, com-

pare them with the deviations in the battery capacities, and predict the next-cycle battery 

capacity as an output of the model. 

An algorithm for the ARIMA model is presented as follows. 

Algorithm 3: ARIMA 

Input: � = {���. ���. … . ���}: Permutation Entropy of Battery Voltage Sequences at each 

Cycle; 

Output: �� = {���������. ���������. … . ���������}: Battery Capacity; 

- Make time series data stationary with appropriate �; 

- Initialize � and � using ACP and PACF; 

- Fit ARIMA(�. �. �) to data; 

- Predict the next-cycle capacity as Equation (14); 

- Calculate the loss function using Equations (20)–(22). 

4.2.3. Reinforcement Learning 

Reinforcement Learning (RL) is a type of multi-layered neural network, and has be-

come a focus of research in modern artificial intelligence. The concept is based on reward-

ing or punishing an agent’s performance in a specific environment. A state is a description 

of the environment made to provide the  necessary information for the agent to decide at 

each time  step. For each and every state �, the agent has a number of selecting actions � 

to make decisions from. A policy is required, based on a cost function, to map each state 

to the optimal action with the consideration of maximizing its reward function during the 

episode [33]. 

Reinforcement Learning has real-life applications in various fields such as driving 

cars, landing rockets, trading and finance, diagnosing patients, and so on. This Deep 

Learning technique differs from supervised learning, as it does not require correct sets of 

actions and labeled input/output pairs [34]. Instead, the goal is to find a balance between 

exploration and exploitation. Figure 10 illustrates the schematic of a general Reinforce-

ment Learning structure and its Equations are described as follows. 
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Figure 10. Reinforcement Learning Schematic. 

�� ~ �(��|��) (15)

���� ~ ������(����|��. ��) (16)

���� = �������(��. ��. ����) (17)

� =  � ������

�

���

 (18)

���.��
��� = ��.��

��� + � ��� + ���������.� 
���� ����������������

������

− ���.��

����
����������

� (19)

In this study, we have considered the permutation entropy of the battery voltage as 

the states and the capacities as the actions, which should be taken at each state based on 

the given entropy. An algorithm for the RL model is presented in the following. 

Algorithm 4: Reinforcement Learning 

States: � = {���. ���. … . ���}: Permutation Entropy of Battery Voltage; 

Actions: � = {���������. ���������. … . ���������}: Battery Capacity; 

Define the optimal policy; 

Initialize the parameters � and �; 

for � in range (epoch) do 

Calculate �� using the optimal policy 

Determine ���� as a function of the state and the previous state and action 

Compute ���� and � 

Update ���.��
  using Equation (19) 

Evaluate the estimation using the following loss function as in Equations (20)–(22) 

end 

The hyperparameters of the proposed models define how they are structured. Opti-

mal hyperparameters are approximated so that the loss is reduced. In other words, we 

explore various model architectures and search for the optimal values in the hyperparam-

eter space to minimize the resulting performance metrics; for instance, Mean Squared Er-

ror. For this purpose, in the three models, grid search is used for tuning the hyperparam-

eters and achieving reliable comparisons between the numerical results from the models. 

A model is built for each possible combination of all of the hyperparameter values; next, 

the models are evaluated based on the performance metrics, and then the architecture 

which produces the best results is selected. The results and findings are reported in the 

following section. 
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5. Results and Findings 

The numerical results and findings are presented in this section as follows. 

5.1. Performance Measures 

To evaluate the performance of the proposed models, we present the observed and 

predicted battery capacities for ARIMA and LSTM models and the reward and loss func-

tions obtained from the RL model. Furthermore, we compare the observed and predicted 

battery capacities gained from each of these models using three performance metrics [35] 

as shown below: 

Mean Squared Error (MSE): 

��� =
1

�
�(�� − ���)�

�

���

 (20)

Mean Absolute Error (MAE): 

��� =
1

�
� |�� − ���|

�

���

 (21)

Root Mean Squared Error (RMSE): 

���� = √��� = �
1

�
�(�� − ���)�

�

���

 (22)

where ��  and ���, respectively, are the observed and predicted capacity at cycle �, and � 

is the number of test data. 

5.2. Numerical Results 

The observed and predicted battery capacities results from ARIMA and LSTM mod-

els are shown in Figures 11–13. Based on the graphs obtained, it can be seen that in all 

three datasets the ARIMA model predictions are following the trends in the test data, and 

so, yields better results as compared to the LSTM model for predicting the time series of 

battery capacities. 

 

Figure 11. Train, test, and predicted data results from ARIMA and LSTM models for PL19. 
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Figure 12. Train, test, and predicted data results from ARIMA and LSTM models for PL11. 

 

Figure 13. Train, test, and predicted data results from ARIMA and LSTM models for PL09. 

The early battery-life prediction, which includes a prediction of the battery cycles at 

earlier cycles, is performed, and the results are displayed in Figures 14–16. It is observed 

that the deviation between the predicted capacities and the actual capacities are not sig-

nificant, indicating that the proposed ARIMA and LSTM models are capable of predicting 

battery capacities at earlier cycles. 

 

Figure 14. Train, test, and predicted data results from ARIMA and LSTM models for PL19. 

 

Figure 15. Train, test, and predicted data results from ARIMA and LSTM models for PL11. 
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Figure 16. Train, test, and predicted data results from ARIMA and LSTM models for PL09. 

In the RL model, as demonstrated in Figure 17, the reward values have an impressive 

increase and immediately become stable with some noise. The loss values increase at first; 

however, after approximately 250 epochs, they decline to 0, which verifies the procedure 

of Reinforcement Learning. 

 

Figure 17. Reward and Loss Function (RL model). 

To find the best data split ratio, our proposed RL approach is initially trained using 

shuffled datasets with five different training ratios (70%, 75%, 80%, 85%, and 90%). After-

wards, Mean Squared Error (MSE) is utilized as a loss function to evaluate the obtained 

results. Based on Table 4, the best accuracy is gained by using 90% of each dataset for 

training purposes and using the rest for the testing process (Figure 18). Finally, this ratio 

is applied to training the other two models (LSTM and ARIMA). To save space, the results 

from the LSTM and ARIMA models are not reported here. The results from the other two 

models are consistent with those from RL (i.e., the best training ratio of 10%). 

Table 4. MSE Value for Different Training Ratios for the RL model. 

Battery 
Training Ratio 

70% 75% 80% 85% 90% 

PL19 0.0422 0.0618 0.0179 0.0008 0.0002 

PL11 0.0718 0.0465 0.0153 0.0156 0.0084 

PL09 0.0209 0.0007 0.0006 0.0003 0.0003 
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Figure 18. Finding the best Train–Test Split. 

5.3. Comparisons 

Tables 5–7 represent a snapshot comparison of the aforesaid models for the PL19, 

PL11, and PL09 datasets, respectively. As the results show, in all datasets, ARIMA slightly 

surpasses the LSTM and RL models since it results in the smallest MSE, MAE, and RMSE 

values. However, the differences are not significant, and for PL19 and PL11, ARIMA and 

RL yield approximately the same values of performance measures. It is concluded that 

LSTM and RL also result in minor errors. 

Table 5. MSE, MAE, and RMSE values for the predictive models (PL19). 

Evaluation Metric LSTM ARIMA RL 

MSE 0.00003 0.00001 0.0002 

MAE 0.00417 0.00001 0.00005 

RMSE 0.00580 0.00003 0.00009 

Table 6. MSE, MAE, and RMSE values for the predictive models (PL11). 

Evaluation Metric LSTM ARIMA RL 

MSE 0.00011 0.00001 0.0084 

MAE 0.00012 0.00026 0.00054 

RMSE 0.01095 0.00066 0.00090 

Table 7. MSE, MAE, and RMSE values for the predictive models (PL09). 

Evaluation Metric LSTM ARIMA RL 

MSE 0.00001 0.00001 0.0003 

MAE 0.00171 0.00001 0.03997 

RMSE 0.00200 0.00002 0.05751 

From Tables 5–7, it is observed that the ARIMA model yields smaller errors com-

pared to the LSTM model. ARIMA, which is a mean-reverting process, has the ability to 

predict battery capacities with smaller deviations. However, the LSTM model—which is 

a recurrent network—attempts to avoid the long-term dependency by storing only neces-

sary information, and thus, it is unable to probabilistically exclude the input (i.e., previous 

permutation entropy of battery voltage sequences) and the recurrent connections to the 

units of the network from the activation and weight updates while the model is being 

trained. Consequently, the deviations between the actual battery capacities and the pre-

dicted capacities resulting from the LSTM model are greater than those resulting from the 

ARIMA model. The results displayed on Figures 11–13 are consistent with the Tables. 
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6. Conclusions 

In lithium-ion battery applications, failures in the system can be minimized by per-

forming prognostics and health management. Data-driven methods are one way of doing 

so, and identify the optimal replacement intervals or the optimal time for changing the 

battery in an appropriate manner. This paper presents three different models (LSTM, 

ARIMA, and RL), which all are built based on the permutation entropies of the battery 

voltage sequences, for next-cycle battery capacity prediction using the status of the previ-

ous states. In various data conditions, different models may be required; having a collec-

tion of models, even for the same purpose, can be useful. In addition to accurate prediction 

of battery capacities based on the ARIMA model, it is shown that the LSTM and the pro-

posed entropy-based RL models have similar performance and both result in small errors. 
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