953 research outputs found

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    Remaining Useful Life Prediction of Lithium-ion Batteries using Spatio-temporal Multimodal Attention Networks

    Full text link
    Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage. The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation, as well as reducing maintenance costs. However, determining the life cycle of batteries in real-world scenarios is challenging, and existing methods have limitations in predicting the number of cycles iteratively. In addition, existing works often oversimplify the datasets, neglecting important features of the batteries such as temperature, internal resistance, and material type. To address these limitations, this paper proposes a two-stage remaining useful life prediction scheme for Lithium-ion batteries using a spatio-temporal multimodal attention network (ST-MAN). The proposed model is designed to iteratively predict the number of cycles required for the battery to reach the end of its useful life, based on available data. The proposed ST-MAN is to capture the complex spatio-temporal dependencies in the battery data, including the features that are often neglected in existing works. Experimental results demonstrate that the proposed ST-MAN model outperforms existing CNN and LSTM-based methods, achieving state-of-the-art performance in predicting the remaining useful life of Li-ion batteries. The proposed method has the potential to improve the reliability and efficiency of battery operations and is applicable in various industries, including automotive and renewable energy

    Prediction of State of Health of Lithium-Ion Battery Using Health Index Informed Attention Model

    Get PDF
    State-of-health (SOH) is a measure of a battery’s capacity in comparison to its rated capacity. Despite numerous data-driven algorithms being developed to estimate battery SOH, they are often ineffective in handling time series data, as they are unable to utilize the most significant portion of a time series while predicting SOH. Furthermore, current data-driven algorithms are often unable to learn a health index, which is a measurement of the battery’s health condition, to capture capacity degradation and regeneration. To address these issues, we first present an optimization model to obtain a health index of a battery, which accurately captures the battery’s degradation trajectory and improves SOH prediction accuracy. Additionally, we introduce an attention-based deep learning algorithm, where an attention matrix, referring to the significance level of a time series, is developed to enable the predictive model to use the most significant portion of a time series for SOH prediction. Our numerical results demonstrate that the presented algorithm provides an effective health index and can precisely predict the SOH of a battery

    Physics-Informed Neural Networks for Prognostics and Health Management of Lithium-Ion Batteries

    Full text link
    For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there are no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.Comment: 14 pages, 10 figure

    CASTNet: Community-Attentive Spatio-Temporal Networks for Opioid Overdose Forecasting

    Full text link
    Opioid overdose is a growing public health crisis in the United States. This crisis, recognized as "opioid epidemic," has widespread societal consequences including the degradation of health, and the increase in crime rates and family problems. To improve the overdose surveillance and to identify the areas in need of prevention effort, in this work, we focus on forecasting opioid overdose using real-time crime dynamics. Previous work identified various types of links between opioid use and criminal activities, such as financial motives and common causes. Motivated by these observations, we propose a novel spatio-temporal predictive model for opioid overdose forecasting by leveraging the spatio-temporal patterns of crime incidents. Our proposed model incorporates multi-head attentional networks to learn different representation subspaces of features. Such deep learning architecture, called "community-attentive" networks, allows the prediction of a given location to be optimized by a mixture of groups (i.e., communities) of regions. In addition, our proposed model allows for interpreting what features, from what communities, have more contributions to predicting local incidents as well as how these communities are captured through forecasting. Our results on two real-world overdose datasets indicate that our model achieves superior forecasting performance and provides meaningful interpretations in terms of spatio-temporal relationships between the dynamics of crime and that of opioid overdose.Comment: Accepted as conference paper at ECML-PKDD 201
    • …
    corecore