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Prediction of State of Health of Lithium-Ion Battery Using
Health Index Informed Attention Model
Yupeng Wei

Department of Industrial and Systems Engineering, San Jose State University, San Jose, CA 95192, USA;
yupeng.wei@sjsu.edu

Abstract: State-of-health (SOH) is a measure of a battery’s capacity in comparison to its rated capacity.
Despite numerous data-driven algorithms being developed to estimate battery SOH, they are often
ineffective in handling time series data, as they are unable to utilize the most significant portion of a
time series while predicting SOH. Furthermore, current data-driven algorithms are often unable to
learn a health index, which is a measurement of the battery’s health condition, to capture capacity
degradation and regeneration. To address these issues, we first present an optimization model to
obtain a health index of a battery, which accurately captures the battery’s degradation trajectory and
improves SOH prediction accuracy. Additionally, we introduce an attention-based deep learning
algorithm, where an attention matrix, referring to the significance level of a time series, is developed
to enable the predictive model to use the most significant portion of a time series for SOH prediction.
Our numerical results demonstrate that the presented algorithm provides an effective health index
and can precisely predict the SOH of a battery.

Keywords: battery; prognostics; health index; attention model

1. Introduction

Lithium-ion batteries are extensively adopted as a power resource for unmanned
aerial vehicles, electric mobility, and electric vehicles as a result of their low maintenance
frequency, long life cycle, and high energy efficiency [1,2]. Research efforts in the field of
lithium-ion batteries have focused on various aspects, including improving charge speed
and energy density, reducing production costs, and extending battery life cycles [3,4].
In addition, there have been studies on the evolution of li-rich layered cathode materials [5],
with a particular focus on controlling the anionic redox of li-rich layered oxides to maximize
energy density [6]. Nevertheless, the safety and efficiency of batteries can reduce with the
increment of time and charge-discharge cycles, which is also known as battery aging [7,8].
For example, the traveling mileage of unmanned aerial vehicles and electric vehicles can
be dramatically reduced due to the battery aging issue. The battery aging issue in electric
mobility may result in severe fires and outbursts. As a result, it is necessary to monitor the
health condition of batteries so that a proper maintenance schedule can be made to reduce
the negative impact of battery aging.

State of health (SOH) represents the primary measurement that provides reliable infor-
mation to monitor and predict the health conditions of batteries [9]. SOH is defined as the
rate between the peak battery capacity and its rated capacity [10]. In the literature, numer-
ous algorithms have been developed to make SOH predictions, and these algorithms can
be categorized as model-based and data-driven algorithms. The model-based algorithms
are built upon electronic, chemical, and mathematical models [11]. The primary drawback
of the model-based algorithms is that the prediction performance can not be guaranteed as
these methods can not capture the complex relationships among the enormous electrical
and chemical components of batteries. To address the limitation of the model-based algo-
rithms, data-driven algorithms are increasingly used in SOH predictions and this work will
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aim attention at data-driven algorithms. Data-driven algorithms are built upon statistical
or machine-learning algorithms, such as Kalman filter [12], Gaussian Process [13], and deep
learning methods [14]. While promising, most of the existing data-driven algorithms are not
effective in dealing with time series as they are not able to utilize the most significant part of
a time series while predicting the SOH of a battery. To address this issue, an attention-based
deep learning predictive algorithm is developed in this work, where an attention matrix
referring to the significance level of a time series at distinctive time is generated so that the
deep learning predictive model can utilize the most relevant portion of a time series for
SOH predictions. Moreover, it has been demonstrated that constructing an effective health
index can increase the performance of a predictive model [15,16]. However, to our best
knowledge, very few studies have been conducted to define or construct a health index of
a battery. Although a few studies have been reported on the development of a health index
for complex systems and machinery equipment [17], such as aircraft engines and bearings,
these methods can only construct a monotonically decreasing health index which is not
capable of capturing capacity fade and capacity regeneration behaviors of a battery. To
fill this gap, we propose four properties to capture capacity degradation and regeneration
behaviors. We also develop a convex optimization model to obtain a health index of a
battery. The major contributions of this work can be described as below:

• A convex optimization model is introduced to obtain a health index of a battery, such
an index can accurately capture the degradation trajectory of a battery as well as
improves the SOH prediction performance.

• An attention-based deep learning predictive algorithm is presented, where an attention
matrix referring to the significance level of a time series is adopted in SOH predictions
so that the predictive algorithm can utilize the most significant portion of a time series
for SOH predictions.

The remaining sections of this work is arranged as follows. Section 2 reviews the data-
driven algorithms in SOH predictions. Section 3 presents the proposed convex optimization
model for learning a health index and an attention-based deep learning predictive algorithm
for SOH predictions of batteries. Section 4 demonstrates the efficiency of the proposed
algorithm. Section 5 draws a conclusion and provides a discussion of future work.

2. Data-Driven Algorithms for SOH Predictions

The data-driven algorithms used for predicting state of health (SOH) of batteries
include filter-related models and machine-learning models. The filter-related models
incorporate techniques such as the Kalman filter [18,19], particle filter [20,21], and others.
For instance, Chen et al. [22] developed an unscented Kalman filter to evaluate the SOH of
a battery. Their presented Kalman filter incorporated the internal resistance rate to trace the
subsequent SOH trajectory while making predictions. The results showed that the presented
Kalman filter could estimate the SOH with a low prediction error rate. Dong et al. [23]
utilized the particle filter for estimating the SOH of a battery. Their proposed filter was
integrated with a stochastic model to track abrupt changes in the process of battery capacity
fade. The results demonstrated that the particle filter was able to predict the SOH of
multiple battery cells with relatively high accuracy. The primary advantage of the filter-
based methods is their self-correlation capability. However, these methods have difficulty
in considering multiple battery cells while making SOH predictions [24].

To better utilize all historical information from all battery cells, machine learning
algorithms, especially deep learning algorithms are increasingly adopted. These algorithms
incorporate random forests [25], long short-term memory (LSTM) [26], temporal convo-
lutional network (TCN) [27], graph convolutional network (GCN) [28,29], and so on. For
example, Mawonou et al. [30] presented a novel random forests SOH estimation algorithm
to consider both the usage pattern of drivers and the environmental conditions of electric
vehicles. In order to boost the estimation performance, two aging indicators were also incor-
porated into SOH estimation. The numerical results have manifested that the present novel
random forests algorithm can reach a prediction error of 1.27%. Zhao et al. [31] combined
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the LSTM algorithm with the Gaussian process to evaluate the SOH of a battery, where
several health factors extracted from sensor data obtained from charge cycles were utilized.
The LSTM model was adopted to track the trajectory change of extracted health factors
and the trajectory change was fed into the Gaussian process model for SOH predictions.
A publicly available battery dataset was utilized to evaluate the efficacy of the presented
algorithm. Zhou et al. [32] used the TCN for battery SOH predictions, where the dilated
convolutional operation and causal operation were primarily used in the TCN model.
In addition to TCN, the empirical mode decomposition was adopted to reduce the nuisance
factors so that the SOH prediction performance can be more robust. Wei and Wu [33] pre-
sented a GCN algorithm to predict the SOH and the remaining useful charge and discharge
cycles of batteries, where a two-phase optimization model was presented to develop a
graph with optimized graph entropy and density. Numerical results have illustrated that
the presented GCN algorithm could predict the SOH accurately even without using sensor
data during the charging process.

In summary, numerous data-driven algorithms have been developed for predicting the
SOH of a battery. However, most of these algorithms cannot effectively learn a health index
that captures the degradation trajectory of a battery. Additionally, current data-driven
algorithms are not able to handle time series data as they do not use the most significant
portion of the time series when predicting the SOH of a battery. To address these issues,
we first developed a convex optimization model to obtain a health index of a battery.
This health index accurately captures the degradation trajectory of a battery and improves
the prediction performance of SOH. We also introduce an attention-based deep learning
predictive model, where an attention matrix is generated to show the significance level of
each time step in the time series. This allows the deep learning predictive model to utilize
the most relevant portion of the time series data when predicting SOH.

3. Health Index Informed Attention Model

The proposed algorithm comprises of three primary steps. Firstly, temporal features
are extracted from the sensor data collected during the charging and discharging cycles
of lithium-ion batteries. Secondly, a convex optimization model is constructed, and the
extracted temporal features are given to the presented optimization model to learn health
indices of batteries. Lastly, the extracted features and the learned health index are used to
train an attention-based deep learning model for predicting SOH. The following sections
provide detailed descriptions of these three steps.

3.1. Temporal Features Extraction

The most common battery health monitoring data includes current, voltage, and
temperature. Figure 1 shows the current and voltage measurements during a single charge
and discharge cycle. In a charge cycle, the battery is subjected to a consistent current (CC)
until the measured voltage reaches a specific value, and then under a consistent voltage
(CV) until the current drops to a specific value. In the discharge cycle, the battery is loaded
under a consistent current condition until the battery voltage drops to a certain range.
The recurrent charging and discharging process leads to a reduced capacity of lithium-ion
batteries, which can be observed through changes in sensor measurements. For instance, as
batteries age, they require more time to reach a specific voltage during the charge cycle,
compared to new batteries. In this work, temporal features are derived from current,
voltage, and temperature measurements to capture the depreciation behaviors in charge
and discharge cycles.

In the charge cycle, one temporal feature extracted from voltage measurement is
written as Equation (1),

min t(s) s.t. Vt(s) −Vmax ≥ 0 (1)

where t(s) refers to the time in the s-th sampling period; Vt(s) refers to the voltage mea-
surement at time t(s); and Vmax is the maximum voltage of a battery. This extracted feature
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refers to the time to the maximum voltage of batteries. The second feature extracted from
voltage measurement is written as Equation (2),

max t(s)− t(s′) s.t. Vt(s) −Vmax ≥ 0, Vt(s′) −Vmax ≥ 0 (2)

where t(s) and t(s′) represent the time in the s-th and s′-th sampling period; and Vt(s) and
Vt(s′) are the measured voltage at t(s) and t(s′). This feature refers to the time that a battery
stays in CV mode. The first feature extracted from the current measurement can be written
as Equation (3),

max t(s)− t(s′) s.t. At(s) = At(s′) = Aconstant (3)

where At(s) and At(s′) are the current measurement at t(s) and t(s′), and Aconstant represents
the current that the battery is under the CC condition. This extracted feature refers to the
time that a battery is carried out under the CC condition. The second feature extracted
from the current measurement is written as Equation (4),

min t(s)−max t(s′) s.t. At(s) ≤ Aconstant, At(s′) ≤ Amin (4)

where Amin is the minimum current of the battery. This feature represents the time to the
minimum current of batteries. The feature extracted from temperature measurement can
be written as Equation (5),

min t(s) s.t. Tt(s) = max{Tt(s), ∀s} (5)

where Tt(s) is the temperature at time t(s). This feature represents the time to the maximum
temperature in the charge cycle.

Figure 1. The current and voltage measurements in a single charge and discharge cycle.

In the discharge cycle, the feature extracted from voltage measurement can be repre-
sented in Equation (6),

min t(s) s.t. Vt(s) ≤ Vmin (6)

where Vmin represents the minimum voltage of a battery in the discharge cycle. This ex-
tracted feature refers to the time to the minimum voltage. The feature extracted current
measurement in the discharge cycle is written as Equation (7),

min t(s) s.t. At(s) ≥ Aload (7)

where Aload is the battery load while discharging. This feature represents the discharging
time. The last feature extracted from temperature measurement in the discharge cycle can
be written as Equation (8), and this feature refers to the time to the maximum temperature
in the discharge cycle.

min t(s) s.t. Tt(s) = max{Tt(s), ∀s} (8)

These extracted features are fed into the proposed convex optimization model to
obtain the health index of a battery.
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3.2. Health Index Generation of a Battery

In the literature, few studies have been conducted on learning monotonically decreas-
ing health indices for complex engineering systems, such as those described in the Ref. [34].
While these health indices have proven effective in solving prognostic problems, they are
unsuitable for modeling the degradation behavior of lithium-ion batteries. For instance, the
capacity of a battery does not decrease monotonically due to phenomena such as capacity
regeneration. To better characterize the degradation behavior of lithium-ion batteries, we
introduce four attributes for learning health indices. The first two attributes are based on
the physical properties of aging batteries, while the remaining attributes are commonly
used to capture the general degradation behaviors of complex systems [35].

• Attribute 1: The health indices of aging batteries should be piece-wise monotonically
decreasing with the increasing number of charge and discharge cycles.

• Attribute 2: The health indices of aging batteries should increase after a complete
charge-discharge cycle and a long period of storage.

• Attribute 3: The variance of the failure threshold for the health indices of aging
batteries should be minimal.

• Attribute 4: The health indices should be consistent with the true capacity degradation
trajectory of batteries.

The continuously repeated charge and discharge cycles lead to the reduced health
conditions of lithium-ion batteries; therefore, Attribute 1 aims at learning piece-wise mono-
tonically decreasing health indices in the piece-wise continued charging and discharging
process. A battery may regain some capacity because of the capacity regeneration phe-
nomenon; therefore, Attribute 2 aims at learning increasing health indices after a complete
charge-discharge cycle and a long period of storage. Moreover, Attribute 3 and Attribute
4 are introduced to learn consistent and reliable health indices with less variance. Based on
these four attributes, an optimization model is introduced as Equation (9),

min θ1

m

∑
i=1

ni

∑
j=1

l

∑
k=1

wk( fi,j,k − fi,j−1,k)pi,j + θ2

m

∑
i=1

ni

∑
j=1

l

∑
k=1

wk( fi,j−1,k − fi,j,k)ri,j+

θ3wTQTMQw + θ4(
m

∑
i=1

ni

∑
j=1

l

∑
k=1

(wk fi,j,k − yi,j)
2)1/2

s.t. ∑
a

θa = 1; i = 1, ..., m, j = 1, ..., ni, k = 1, ..., l

(9)

where m refers to the total number of battery units; ni refers to the total number of cycles
for the battery cell i; l is the total number of temporal features are extracted; wk is the
weighted coefficient for feature k to combine extracted features to learn health indices of
batteries; fi,j,k represents the kth feature derived from the battery cell i in cycle j; fi,j−1,k
represents the kth feature derived from the battery cell i in cycle j − 1; pi,j and ri,j are
binary variables represent the information of storage periods; pi,j = 1 and ri,j = 0, if
the cycle j is not after a storage period; pi,j = 0 and ri,j = 1, if the cycle j is after a
storage period; yi,j is the battery capacity for the battery cell i in cycle j; w ∈ Rl×1 is the
vector stores the weighted coefficients wk; Q ∈ Rm×l is the matrix recording the temporal
features extracted from failure observations with rows referring to each battery cell and
the columns referring to every extracted features k; θa, ∀a are hyperparameters that decide
the importance of four proposed attributes; M = (I−O/j)/(j− 1), O ∈ Rm×m is a matrix
with all elements are one, and I ∈ Rm×m is an identity matrix; the matrix M is introduced
to estimate the unbiased variance of the failure threshold of health indices, which is proved
as Equation (10). Similar proofs can be found in the Ref. [36,37].

((Qw)TQw−m((1TQw)/m)2)

= wTQT((I− 11T/m)/(m− 1))Qw/(m− 1) = wTQTMQw
(10)
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To simplify the proposed optimization model, this model can be rewritten as Equation (11),

min θ1pTDw− θ2rTDw + θ3wTQTMQw + θ4‖Fw− y‖2
2 s.t. ∑

a
θa = 1 (11)

where p ∈ R1×∑i ni−1 is a vector stores pi,j for all i, j and p = [p1,1, ..., p1,n1 , p2,1, ..., p2,n2 , ...,
pm,nm ]

T ; r ∈ R1×∑i ni−1 is a vector stores ri,j for all i, j and r = [r1,1, ..., r1,n1 , r2,1, ..., r2,n2 , ...,
rm,nm ]

T ; D ∈ R∑i ni−1×m is a matrix of collecting the differences of adjacent sampling time,
and D = [D1, ..., Di, ..., Dm]T ; F ∈ R∑i ni×m is a matrix recording the extracted features for
all battery units and cycles, and F = [F1, ..., Fi, ..., Fm]T . The matrix Di and the matrix Fi can
be written as Equation (12);

Di =


fi,2,1 − fi,1,1 · · · fi,2,l − fi,1,l
fi,3,1 − fi,2,1 · · · fi,3,l − fi,2,l

...
. . .

...
fi,ni ,1 − fi,ni−1,1 · · · fi,ni ,l − fi,ni−1,l

 Fi =


fi,1,1 fi,1,2 · · · fi,1,l
fi,2,1 fi,2,2 · · · fi,2,l

...
...

. . .
...

fi,ni ,1 fi,ni ,2 · · · fi,ni ,l

 (12)

Moreover, y ∈ R∑i ni×1 is a vector recording the battery capacity for all battery units
and cycles, where y = [y1, y2, ..., ym]T and yi = [yi,1, yi,2, ..., yi,l ]

T . Next, the gradient descent
method could be adopted to resolve the optimization model, the optimized weighted coef-
ficients wk, ∀k are used to combine the extracted features to obtain the health indices. The
health indices for unit i in the cycle j can be mathematically represented as hij = ∑k wk fijk.

Figure 2 exhibits the framework of the presented optimization model for generating
the health index of a lithium-ion battery. During the training process, four attributes are
first introduced to capture the capacity degradation and regeneration phenomenon of a
battery, and a convex optimization model is constructed based on these attributes. To train
the optimization model, the importance hyperparameters θa, ∀a, the storage period inputs
ri,j, pi,j, ∀i, j, temporal features fi,j,k, ∀i, j, k, and the battery capacity yi,j, ∀i, j are given to
the presented convex optimization model. The gradient descent method is adopted to
learn the weighted coefficients ωi,j, ∀i, j in the optimization model. During the process
of learning the health index, the learned weighted coefficients are used to combine the
extracted temporal features to learn the health index hi,j, ∀i, j. Next, both the learn health
index and the temporal features are fed into the proposed attention-based deep learning
model for SOH predictions of batteries.

Temporal
features fi,j,k

Piece-wise
decreasing

Increasing after
storage

Minimal
variance

Trajectory
consistency

Weighted
coefficients wi,j

Convex
optimization

Health Index Modeling

Gradient descent

Attributes

Storage period
ri,j and pi,j

Battery 
capacity yi,j 

Sensor
measurements 

Health Index Modeling Training

Temporal
features fi,j,k

Weighted
coefficients wi,j

Health index hi,j

Health Index
Modeling Testing

Optimized coefficients

Weighted sum

Importance
parameters    

Figure 2. The framework of the proposed optimization model for generating the health index of a
lithium-ion battery.

3.3. Attention-Based Deep Learning Model

While attention-based models have been used to deal with time series, most of these
studies focus on neural machine translation and text generation [38,39]. The general concept
of the attention model is to simulate the attention mechanism of humans used for tasks
such as reading and visualization. The attention model can be represented as the value
retrieval procedure of a data administration system. In such a system, each value vi has a
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key ki associated with it. For a query q, the attention value αi on item i can be written as
αi = exp(sci)/ ∑i sci, where sci refers to the alignment score between the query q and the
key ki for item i. The most often used alignment score function include dot-product [40],
scaled dot-product [41], and additive [38].

In this work, the attention model is integrated with a sequence-to-one LSTM neural
network to predict the SOH. Figure 3 shows the attention-based sequence-to-one LSTM
predictive model for SOH predictions. This predictive model consists of three primary com-
ponents, including an encoder network, an attention layer, and a decoder network. In the
encoder network, time series inputs xi,j are given to the LSTM to derive the corresponding
key ki,j and value vi,j. More specifically, xi,j is the vector that stores the extracted features
and the learned health indices for battery unit i in cycle j; vi,0 is the randomized initial
input of the encoder network; vi,j is the value generated from the LSTM network for cell i
in cycle j; ki,j refers to the key generated from the LSTM network for unit i in cycle j; both
the vi,j and ki,j are the hidden state of the LSTM in cycle j, and we set vi,j = ki,j to represent
that the value is identical with the key; qi,t refers to the query and qi,t = ki,t = vi,t. In
the attention layer, we use the local attention model with the monotonic alignment. The
attention value αi,j for cycle j can be calculated by Equation (13), where scii,a refers to the
alignment score between the query qi,t and the key ki,t Moreover, d represents the window
length of the local attention model.

αi,j = exp(sci,j)/
j+d

∑
a=j−d

sci,a (13)

...

xi,1 xi,j-1 xi,j xi,j+1 xi,t

ki,1

LS
TM

vi,1

ki,j-1

vi,j-1

ki,j

vi,j

ki,j+1

vi,j+1

ki,t

vi,t

qi,t

ai,1 ai,j-1 ai,j ai,j+1 ai,t

ci Dense Layer yi,t

LS
TM

LS
TM

LS
TM

LS
TM...

Encoder Network

Decoder Network

Attention
Layer

vi,0

Figure 3. The attention-based sequence-to-one LSTM predictive model. xi,j refers to the vector
of inputs for battery cell i in cycle j;vi,j is the key and ki,j is the value generated from the LSTM
network for cell i in cycle j; αi,j refers to the attention value for cell i in cycle j; and ci represents the
context vector.

The general alignment function is utilized in this work, and the corresponding score
sci,j can be calculated by using Equation (14). Wa ∈ Rz×z is the trainable weighted matrix
to calculate the alignment score, where z is the total number of nodes in LSTM.

sci,j = qT
i,jWaki,j (14)

In the decoder network, the context vector ci is calculated by using Equation (15).
Then, the context vector and the output of the LSTM network are given to a fully connected
layer to predict the SOH of the battery cell i in cycle t, that is, yi,t
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ci =
t

∑
j=1

αi,jvi,j (15)

In comparison with the traditional LSTM predictive model, the attention-based predic-
tive model has access to the entire time series while predicting by introducing the context
vector ci. Because the context vector represents the weighted sum of the hidden outputs
generated by the time series, respectively.

4. Case Study
4.1. Dataset Description

In this work, we used four battery cells (Battery No. 5, No. 6, No. 7, and No. 18)
to evaluate the efficiency of the proposed algorithm. The condition monitoring data of
these four battery cells were collected by the NASA Ames Prognostics Center of Excellence
(PCoE) [42], where the current, voltage, and temperature data were collected during the
charging and discharging process. In the charging process, the CC mode with a current of
1.5 A was discontinued when the voltage measurement was above 4.2 V and proceeded
under a CV condition unless the measured current was below 20 mA. In the discharging
process, the CC mode was adopted with a current of 2A unless the measured voltage was
below 2.7 V, 2.5 V, 2.2 V, and 2.5 V for Battery No. 5, Battery No. 6, Battery No. 7, and
Battery No. 18, respectively. The run-to-failure experiment was conducted on these four
battery cells, and the test was stopped when the capacity dropped to 70%. For all four
battery cells, the maximum capacity was 2 Ah, and the test was stopped when the capacity
dropped to 1.4 Ah.

Figure 4 shows the measured voltage, current, and temperature over time during
different charge and discharge cycles of battery cell No. 5. Based on this figure, we can
observe that the trajectories of the measured voltage, current, and temperature change with
the number of charge and discharge cycles. For example, Figure 5a shows that the time
to reach the maximum voltage in 40 cycles is longer than the time to reach the maximum
voltage in 120 cycles.
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Figure 4. The voltage, current, and temperature measurements change over time in different charge
and discharge cycles with respect to battery No. 5.
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Figure 5. The SOH, the capacity fade, and the learned health index for batteries No. 5, No. 6, No. 7,
and No. 18.

4.2. Health Index

To capture changes in battery trajectory over time, temporal features were extracted
to learn the health indices of the batteries. As mentioned earlier, this paper extracted five
temporal features during charge cycles and three features during discharge cycles, as they
have been shown to be efficient for predicting the SOH of a battery [43]. During the charge
cycles, we extracted the time to maximum voltage and temperature, time to minimum
current, and time charged under CC and CV modes. During discharge cycles, we extracted
the time to minimum voltage and maximum temperature, as well as time discharged under
a CC mode. The extracted temporal features were then input into the optimization model
presented to learn the health indices. To learn the health index of a battery, the values
of hyperparameters θa for all a must be determined to evaluate the importance of the
four proposed attributes. In this study, we considered each proposed attribute equally
important by setting θa = 0.25 for all a. Furthermore, all extracted temporal features were
standardized to reduce the loss of generality.

Figure 5 presents the SOH, the capacity fade, and the learned health index for batteries
No. 5, No. 6, No. 7, and No. 18. Based on Figure 5, we can conclude that the learned
health index shows an obvious depreciation trend, which is consistent with the degradation
trajectory of the SOH. Moreover, the learned health indices can also reflect the capacity
regeneration phenomenon after a long storage period. For example, the SOH of battery
No. 5 increases after 150 cycles due to its storage period between the 149th and 150th
charge and discharge cycles. Therefore, we can conclude that the learned health indices are
consistent with the degradation trajectory of the SOH and could potentially be used for
predicting the SOH.

4.3. SOH Estimation

The proposed attention-based deep learning algorithm was then used to predict the
SOH using the temporal features and learned health index. To simplify the algorithm and
reduce prediction errors, the network architecture and hyperparameters used in this case
study have been tabulated in Table 1. The batch size is 30, the number of hidden nodes
in the LSTM layer is 50, the window size of the local attention mechanism is 5, and the
learning rate is set to 1× 10−5. Moreover, the predictive alignment is used in this case study.
Figure 6 shows the ground truth of SOH and the predicted values for all four batteries,
with the predicted starting point at 20 charge and discharge cycles. From Figure 6, we
can see that the proposed algorithm can predict the SOH of lithium-ion batteries with
satisfactory precision, as the predicted values are close to the ground truth for all four
batteries. Moreover, we can also observe that the predicted SOH can capture the capacity
regeneration phenomenon after a storage period.

To fully evaluate the efficacy of the proposed algorithm, it was compared with other
algorithms listed in Table 2. In this table, HI-ALSTM refers to the proposed algorithm,
which is the health index-informed attention-based LSTM model. HI-LSTM refers to the
proposed algorithm without the attention mechanism, ALSTM is the attention-based LSTM
predictive algorithm without using the health index, and LSTM refers to the classical long
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short-term memory without using the proposed health index or the attention mechanism.
To ensure a fair comparison, the hyperparameters used in HI-LSTM, ALSTM, and LSTM
are the same as those in the proposed algorithm, except that HI-LSTM does not use the
attention mechanism, ALSMT does not use the learned health index, and LSTM does not
use either the attention mechanism or the learned health index.
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Figure 6. The ground truth of SOH and the predicted value for all four batteries with the prediction
starting point is 20 cycles.

Table 1. Hyperparameters and network architecture utilized in this case study for SOH predictions.

Sequence of Layers Description Output Dimensionality

1 Input layer 30× 165× 9
2 LSTM layer 30× 165× 50
3 Attention layer 30× 5× 50
4 Flatten layer 30× 250
5 Output layer 30× 1

Tables 3 and 4 show the mean absolute error (MAE) and mean absolute percentage
error (MAPE) of the proposed algorithm and algorithms listed in Table 2 for all four
batteries, respectively. Based on these two tables, it is evident that the learned health index
and the attention mechanism can improve the accuracy of SOH prediction. For example,
the average MAE of the proposed algorithm is 0.0103. However, the MAE of HI-LSTM
and ALSTM is 0.0405 and 0.0121, respectively, indicating that the presented algorithm
outperforms these models in terms of prediction accuracy.

Table 2. Symbols and descriptions of the presented algorithm and comparable algorithms.

Method Symbol Method Description

HI-ALSTM Health index informed attention-based LSTM model (Proposed methodology)
HI-LSTM Health index-informed LSTM model without using the attention mechanism
ALSTM Attention-based LSTM predictive model without using the health index
LSTM traditional LSTM predictive model
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Table 3. The MAE of the proposed algorithm and algorithms listed in Table 2 for all battery units.

Battery No. 5 Battery No. 6 Battery No. 7 Battery
No. 18 Average

HI-ALSTM 0.0149 0.0110 0.0068 0.0083 0.0103
HI-LSTM 0.0380 0.0551 0.0466 0.0222 0.0405
ALSTM 0.0066 0.0170 0.0133 0.0114 0.0121
LSTM 0.0362 0.0213 0.0372 0.0264 0.0303

Table 4. The MAPE of the proposed algorithm and algorithms listed in Table 2 for all battery units.

Battery No. 5 Battery No. 6 Battery No. 7 Battery
No. 18 Average

HI-ALSTM 196.30% 151.03% 84.17% 108.29% 134.95%
HI-LSTM 512.55% 793.49% 611.81% 292.07% 552.48%
ALSTM 85.89% 247.20% 165.64% 150.38% 162.28%
LSTM 487.97% 290.07% 485.74% 352.43% 404.05%

Table 5 shows the root mean squared error (RMSE) of the proposed algorithm, algo-
rithms tabulated in Table 2, and other algorithms reported in the literature [44,45] for all
four batteries, to thoroughly evaluate the efficacy of the presented algorithm. The meth-
ods described in the literature incorporate logistic regression (LR) and gradient boosting
decision tree (GBDT). Based on Table 5, it is evident that the learned health index and the
attention mechanism can increase the SOH prediction accuracy. For example, for Battery
No. 6, the prediction RMSE of the presented algorithm is 0.0153, whereas the methods
without using the learned health index or the attention mechanism range from 0.220 to
0.612. With respect to Battery No. 7, the prediction RMSE of the presented algorithm
is 0.0089, whereas the prediction RMSE of HI-LSTM and ALSTM is 0.0542 and 0.0145,
respectively. Moreover, the presented algorithm also outperforms other methods used in
the literature. For instance, the average prediction RMSE of the presented algorithm is
0.0136, whereas the average prediction RMSE of the other algorithms tabulated in Table 5
ranges from 0.0150 to 0.0457.

Table 5. The RMSE of the proposed algorithm, algorithms listed in Table 2, and other algorithms
reported in the literature for all battery units.

Battery No. 5 Battery No. 6 Battery No. 7 Battery
No. 18 Average

HI-ALSTM 0.0165 0.0153 0.0089 0.0139 0.0136
HI-LSTM 0.0399 0.0612 0.0542 0.0274 0.0457
ALSTM 0.0085 0.0220 0.0145 0.0151 0.0150
LSTM 0.0375 0.0249 0.0427 0.0288 0.0335
LR-GPR [44] 0.0168 0.0292 - 0.0169 0.0210
GBDT [45] 0.0192 0.0281 0.0157 - 0.0210

5. Conclusions and Future Work

In this work, a convex optimization model was presented to learn a health index of a
battery. Such a health index can accurately capture the degradation trajectory of a battery as
well as help improve SOH prediction accuracy. Moreover, we developed an attention-based
LSTM algorithm for predicting the SOH of a battery, where an attention matrix, referring
to the significance level of a time series, was adopted so that the predictive model can
utilize the most significant portion of a time series while predicting. A battery dataset,
including current, voltage, and temperature, collected from four batteries was utilized to
evaluate the performance of the presented algorithm. The numerical results have illustrated
that the learned health indices can precisely capture the capacity fade and regeneration
phenomenons of the four batteries. The results have also shown that utilizing the learned



Sensors 2023, 23, 2587 12 of 14

health index can improve the SOH prediction performance as the average RMSE with
utilizing the health index is 0.0157 in comparison with the average RMSE without utilizing
the health index is 0.0164 when over 20 cycles have been observed. We can also conclude
that using the attention mechanism can also achieve a better SOH estimation performance.
For example, with respect to No. 7, the RMSE of the presented algorithm is 0.0140, however,
the RMSE of HI-LSTM is 0.0447. In addition, the presented algorithm outperforms other
algorithms used in the literature.

The field of battery research is constantly evolving, and future efforts are expected
to focus on predicting the SOH of batteries across a wide range of different battery types.
Currently, much of the research in this area has been focused on lithium-ion batteries,
which are widely used in a variety of applications, including electric vehicles, smart-
phones, and laptops. However, there are many other types of batteries, including lead-acid,
nickel-cadmium, and zinc-carbon batteries, which also require accurate and reliable SOH
prediction methods. Research in this area is likely to involve developing new algorithms
and machine learning models that can accurately predict the remaining capacity and useful
lifetime of these batteries, as well as identifying the factors that contribute to degradation
and failure. In addition to improving SOH prediction in different battery types, future
research is also expected to facilitate the detection of small devices. As technology becomes
increasingly miniaturized, there is a growing need for small, reliable batteries that can
power these devices for extended periods of time. Research in this area is likely to focus on
developing new battery chemistries that can deliver high energy densities in small form
factors, as well as improving the accuracy and sensitivity of diagnostic tools for detecting
small battery defects and failures. Overall, the future of battery research is likely to be
focused on developing more accurate and reliable methods for predicting SOH across a
wide range of battery types, as well as improving the performance and reliability of small
batteries for use in miniature devices.
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