11,768 research outputs found

    Single-machine scheduling with stepwise tardiness costs and release times

    Get PDF
    We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    The integration of process planning and machine loading in small batch part manufacturing

    Get PDF
    PART is a highly automated planning system in which both process and production planning functions are integrated. This paper discusses a method to improve machine tool selection in process planning by integration with loading. A method is presented to select the best process plan from a number of possible alternatives taking into account the limited availability of resources. Various aspects of the quality of a process plan are evaluated and expressed in the so-called evaluation time. To prevent redundant work, partly worked out process plans are considered as alternatives. The consequences of the different alternatives have to be estimated which includes the estimation of machining times. The loading problem is modelled as the minimization of the total evaluation time for a given order set, subjected to capacity constraints

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Available-to-promise (ATP) systems: a classification and framework for analysis

    Get PDF
    Available-to-promise (ATP) systems deal with a number of managerial decisions related to order capture activities in a company, including order acceptance/rejection, due date setting, and resource scheduling. These different but interrelated decisions have often been studied in an isolated manner, and, to the best of our knowledge, no framework has been presented to integrate them into the broader perspective of order capture. This paper attempts to provide a general framework for ATP-related decisions. By doing so, we: (1) identify the different decision problems to be addressed; (2) present the different literature-based models supporting related decisions into a coherent framework; and (3) review the main contributions in the literature for each one of these. We first describe different approaches for order capture available in the literature, depending on two parameters related to the application context of ATP systems, namely the inclusion of explicit information about due dates in the decision model, and the level of integration among decisions. According to these parameters, up to six approaches for ATP-related decisions are identified. Secondly, we show the subsequent decision problems derived from the different approaches, and describe the main issues and key references involving each one of these decision problems. Finally, a number of conclusions and future research lines are discussed.Ministerio de Ciencia e Innovación DPI2007-6134

    Dynamic set-up rules for hybrid flow shop scheduling with parallel batching machines

    Get PDF
    An S-stage hybrid (or flexible) flow shop, with sequence-independent uniform set-up times, parallel batching machines with compatible parallel batch families (like in casting or heat treatments in furnaces, chemical or galvanic baths, painting in autoclave, etc.) has been analysed with the purpose of reducing the number of tardy jobs (and the makespan); in Graham’s notation: FPB(m_1, m_2, … , m_S)|p-batch, STsi,b|SUM(Ui). Jobs are sorted dynamically (at each new delivery); batches are closed within sliding (or rolling) time windows and processed in parallel by multiple identical machines. Computation experiments have shown the better performance on benchmarks of the two proposed heuristics based on new formulations of the critical ratio (CRsetup) considering the ratio of allowance set-up and processing time in the scheduling horizon, which improves the weighted modified operation due date rule
    corecore