2,215 research outputs found

    Reliability of Extreme Learning Machines

    Get PDF
    Neumann K. Reliability of Extreme Learning Machines. Bielefeld: Bielefeld University Library; 2014.The reliable application of machine learning methods becomes increasingly important in challenging engineering domains. In particular, the application of extreme learning machines (ELM) seems promising because of their apparent simplicity and the capability of very efficient processing of large and high-dimensional data sets. However, the ELM paradigm is based on the concept of single hidden-layer neural networks with randomly initialized and fixed input weights and is thus inherently unreliable. This black-box character usually repels engineers from application in potentially safety critical tasks. The problem becomes even more severe since, in principle, only sparse and noisy data sets can be provided in such domains. The goal of this thesis is therefore to equip the ELM approach with the abilities to perform in a reliable manner. This goal is approached in three aspects by enhancing the robustness of ELMs to initializations, make ELMs able to handle slow changes in the environment (i.e. input drifts), and allow the incorporation of continuous constraints derived from prior knowledge. It is shown in several diverse scenarios that the novel ELM approach proposed in this thesis ensures a safe and reliable application while simultaneously sustaining the full modeling power of data-driven methods

    NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Get PDF
    © 2016 Cheung, Schultz and Luk.NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation

    PyRCN: A Toolbox for Exploration and Application of Reservoir Computing Networks

    Full text link
    Reservoir Computing Networks belong to a group of machine learning techniques that project the input space non-linearly into a high-dimensional feature space, where the underlying task can be solved linearly. Popular variants of RCNs, e.g.\ Extreme Learning Machines (ELMs), Echo State Networks (ESNs) and Liquid State Machines (LSMs) are capable of solving complex tasks equivalently to widely used deep neural networks, but with a substantially simpler training paradigm based on linear regression. In this paper, we introduce the Python toolbox PyRCN (Python Reservoir Computing Networks) for optimizing, training and analyzing Reservoir Computing Networks (RCNs) on arbitrarily large datasets. The tool is based on widely-used scientific packages, such as numpy and scipy and complies with the scikit-learn interface specification. It provides a platform for educational and exploratory analyses of RCNs, as well as a framework to apply RCNs on complex tasks including sequence processing. With only a small number of basic components, the framework allows the implementation of a vast number of different RCN architectures. We provide extensive code examples on how to set up RCNs for a time series prediction and for a sequence classification task.Comment: Preprint submitted to Engineering Applications of Artificial Intelligenc

    Advances in Extreme Learning Machines

    Get PDF
    Nowadays, due to advances in technology, data is generated at an incredible pace, resulting in large data sets of ever-increasing size and dimensionality. Therefore, it is important to have efficient computational methods and machine learning algorithms that can handle such large data sets, such that they may be analyzed in reasonable time. One particular approach that has gained popularity in recent years is the Extreme Learning Machine (ELM), which is the name given to neural networks that employ randomization in their hidden layer, and that can be trained efficiently. This dissertation introduces several machine learning methods based on Extreme Learning Machines (ELMs) aimed at dealing with the challenges that modern data sets pose. The contributions follow three main directions.    Firstly, ensemble approaches based on ELM are developed, which adapt to context and can scale to large data. Due to their stochastic nature, different ELMs tend to make different mistakes when modeling data. This independence of their errors makes them good candidates for combining them in an ensemble model, which averages out these errors and results in a more accurate model. Adaptivity to a changing environment is introduced by adapting the linear combination of the models based on accuracy of the individual models over time. Scalability is achieved by exploiting the modularity of the ensemble model, and evaluating the models in parallel on multiple processor cores and graphics processor units. Secondly, the dissertation develops variable selection approaches based on ELM and Delta Test, that result in more accurate and efficient models. Scalability of variable selection using Delta Test is again achieved by accelerating it on GPU. Furthermore, a new variable selection method based on ELM is introduced, and shown to be a competitive alternative to other variable selection methods. Besides explicit variable selection methods, also a new weight scheme based on binary/ternary weights is developed for ELM. This weight scheme is shown to perform implicit variable selection, and results in increased robustness and accuracy at no increase in computational cost. Finally, the dissertation develops training algorithms for ELM that allow for a flexible trade-off between accuracy and computational time. The Compressive ELM is introduced, which allows for training the ELM in a reduced feature space. By selecting the dimension of the feature space, the practitioner can trade off accuracy for speed as required.    Overall, the resulting collection of proposed methods provides an efficient, accurate and flexible framework for solving large-scale supervised learning problems. The proposed methods are not limited to the particular types of ELMs and contexts in which they have been tested, and can easily be incorporated in new contexts and models
    corecore