3,246 research outputs found

    Beyond Poisson-Boltzmann: Numerical sampling of charge density fluctuations

    Full text link
    We present a method aimed at sampling charge density fluctuations in Coulomb systems. The derivation follows from a functional integral representation of the partition function in terms of charge density fluctuations. Starting from the mean-field solution given by the Poisson-Boltzmann equation, an original approach is proposed to numerically sample fluctuations around it, through the propagation of a Langevin like stochastic partial differential equation (SPDE). The diffusion tensor of the SPDE can be chosen so as to avoid the numerical complexity linked to long-range Coulomb interactions, effectively rendering the theory completely local. A finite-volume implementation of the SPDE is described, and the approach is illustrated with preliminary results on the study of a system made of two like-charge ions immersed in a bath of counter-ions

    The Role of the Dielectric Barrier in Narrow Biological Channels: a Novel Composite Approach to Modeling Single-channel Currents

    Get PDF
    A composite continuum theory for calculating ion current through a protein channel of known structure is proposed, which incorporates information about the channel dynamics. The approach is utilized to predict current through the Gramicidin A ion channel, a narrow pore in which the applicability of conventional continuum theories is questionable. The proposed approach utilizes a modified version of Poisson-Nernst-Planck (PNP) theory, termed Potential-of-Mean-Force-Poisson-Nernst-Planck theory (PMFPNP), to compute ion currents. As in standard PNP, ion permeation is modeled as a continuum drift-diffusion process in a self-consistent electrostatic potential. In PMFPNP, however, information about the dynamic relaxation of the protein and the surrounding medium is incorporated into the model of ion permeation by including the free energy of inserting a single ion into the channel, i.e., the potential of mean force along the permeation pathway. In this way the dynamic flexibility of the channel environment is approximately accounted for. The PMF profile of the ion along the Gramicidin A channel is obtained by combining an equilibrium molecular dynamics (MD) simulation that samples dynamic protein configurations when an ion resides at a particular location in the channel with a continuum electrostatics calculation of the free energy. The diffusion coefficient of a potassium ion within the channel is also calculated using the MD trajectory. Therefore, except for a reasonable choice of dielectric constants, no direct fitting parameters enter into this model. The results of our study reveal that the channel response to the permeating ion produces significant electrostatic stabilization of the ion inside the channel. The dielectric self-energy of the ion remains essentially unchanged in the course of the MD simulation, indicating that no substantial changes in the protein geometry occur as the ion passes through it. Also, the model accounts for the experimentally observed saturation of ion current with increase of the electrolyte concentration, in contrast to the predictions of standard PNP theory

    Equilibrium properties of charged microgels: a Poisson-Boltzmann-Flory approach

    Get PDF
    The equilibrium properties of ionic microgels are investigated using a combination of the Poisson-Boltzmann and Flory theories. Swelling behavior, density profiles, and effective charges are all calculated in a self-consistent way. Special attention is given to the effects of salinity on these quantities. It is found that the equilibrium microgel size is strongly influenced by the amount of added salt. Increasing the salt concentration leads to a considerable reduction of the microgel volume, which therefore releases its internal material -- solvent molecules and dissociated ions -- into the solution. Finally, the question of charge renormalization of ionic microgels in the context of the cell model is briefly addressed
    • …
    corecore