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The equilibrium properties of ionic microgels are investigated using a combination of the Poisson-
Boltzmann and Flory theories. Swelling behavior, density profiles, and effective charges are all cal-
culated in a self-consistent way. Special attention is given to the effects of salinity on these quantities.
In accordance with the traditional ideal Donnan equilibrium theory, it is found that the equilibrium
microgel size is strongly influenced by the amount of added salt. Increasing the salt concentration
leads to a considerable reduction of the microgel volume, which therefore releases its internal ma-
terial – solvent molecules and dissociated ions – into the solution. Finally, the question of charge
renormalization of ionic microgels in the context of the cell model is briefly addressed. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4903746]

I. INTRODUCTION

Cross-linked microgel particles are quite remarkable due
to their large sensibility on the external conditions.1–3 The
interactions among these particles are known to be strongly
influenced by experimentally controlled quantities such as the
temperature, the solvent quality, the particle concentration,
the ionic strength, or the degree of cross-linking, among many
others.3–5 Depending on the particular way these particles
are synthesized, different effective interactions among them
can be induced.6, 7 Another way to drive desirable effective
interactions among these particles is by submitting them to
controlled external fields.8 The possibility of steering the dy-
namical and equilibrium properties of such particles through
changes in the surrounding environment makes them promis-
ing in a number of chemical, biological, as well as medical
applications.6, 9, 10 In contrast to most of the traditional hard
colloidal systems, the soft nature of the short range interac-
tions of microgels opens the possibility to generate systems
with extremely high packing fractions.11 Another important
characteristic that distinguishes microgels from hard colloidal
particles is their permeability. Depending on the external
conditions, solvent molecules can flow into or leave the
microgels, resulting in a swelling (or de-swelling) of the
cross-linked network. The fact that microgels can exchange
particles with their environment makes them well suitable for
their application in the design of drug-delivery mechanisms,
where molecules can be encapsulated – and further released
– in specific targets through this swelling process.4, 6, 9, 10

When in contact with an aqueous solvent, a fraction of
monomers inside the microgels become dissociated, releas-
ing their counterions into the bulk solution. The resulting
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system is then composed of microgels with their charged
cross-linked polymer chains, solvent molecules, and counte-
rions, along with possible ions of dissociated salt.2, 3, 12 The
presence of charged components strongly increases the sys-
tem complexity. Apart from the long range nature of the
Coulomb interactions, contributions from the charge balance
due to the addition of salt – the so-called Donnan equilib-
rium effects – must be carefully considered.13, 14 In addition,
the presence of salt is known to have a non-trivial influ-
ence in the underlying thermodynamics of charged systems.15

Due to the strong electrostatic interactions between counte-
rions and the charged backbones, the majority of the for-
mer will remain trapped inside the microgels, while solvent
molecules can flow freely through the microgel-solution inter-
face. The equilibrium properties are then mostly dictated by
the chemical equilibrium between these components across
the interface,1, 16 along with the elastic contributions from the
cross-linked network.

A theoretical description which takes into account the
chemical and physical contributions in charged microgel sys-
tems in a detailed level is way too complex. In this con-
text, simple approximate models which help to highlight the
key physical mechanisms of the underlying phenomena prove
to be extremely useful. When dealing with charged objects
in the presence of monovalent ions in an aqueous environ-
ment, the mean field Poisson-Boltzmann (PB) theory pro-
vides a manageable description, yet with an excellent degree
of accuracy.12, 17, 18 Contrary to most of the liquid-state in-
tegral equation theories, the PB equation allows for a trans-
parent physical interpretation of complex phenomena involv-
ing charged components – whenever the mean-field picture
holds. It has been successfully applied to describe a va-
riety of complex systems where macromolecules are sur-
rounded by monovalent ions.12, 18 In the case of charged
macroions which are permeable to the surrounded counte-
rions, the PB formalism has been recently applied to study
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the ionic profiles, the effective charges, as well as the charge
renormalization of such systems.19–21 When the penetrable
particles are surrounded by divalent ions the mean field
PB theory breaks down, and more sophisticated approaches
have to be used to account for the strong electrostatic
correlations.22

In what concerns the swelling behavior of microgels,
a number of experimental and theoretical works have been
carried out over the years to elucidate the physical mecha-
nisms behind this phenomenon, for both cases of charged23–26

and neutral10, 16, 27–32 microgels. For a recent review on this
fascinating topic, we refer the reader to Ref. 33. In the case
of ionic microgels, the effects of increasing the ionic strength
and the polymer charge fraction over the swelling properties
have been extensively investigated by means of computer
simulations,34–37 experiments,38–45 and theory.23, 33, 46–50 It is
now well established that the increase in the salt concentra-
tion leads to the particle de-swelling, while the dissociation of
polymer chains produces an increase in the microgel volume.
These qualitative effects can be captured by the traditional
Donnan theory for the ionic contributions to the microgel
osmotic pressure.23, 25, 26, 42, 51, 52 In this leading-order approx-
imation, a chemical equilibrium between an electroneutral
microgel and an infinite salt reservoir is assumed, and the
osmotic pressure follows from the ideal gas ionic contri-
butions only.23 Together with the Flory elastic and mixing
contributions, this approach provides a simple and transparent
way to qualitatively account for the swelling properties of
ionic microgels. Several modifications have been proposed
to investigate the swelling equilibrium beyond this simple
approach.47–49, 53–56 An improvement over this classical ideal
Donnan picture consists in introducing ionic correlations in a
Debye-Hückel (DH) level of approximation.48, 49 As pointed
out by English et al.,55 even this linear DH approximation
is not sufficient to correctly reproduce the experimentally
observed ionic contributions to the particle swelling at high
polymer charges and salt concentrations, in such a way that
higher order terms have to be taken into account in the virial
expansion. Furthermore, it is expected that strong nonlinear
effects will take place close to the microgel surface, where
the electrostatic potential undergoes an abrupt decay.19, 23

Obviously, these effects cannot be captured by the linear
DH theory. It is therefore not yet clear how these effects
may influence the Donnan equilibrium across the interface.
The aim of the present work is to provide a self-consistent
theory that combines the aforementioned accuracy of the
PB equation for strongly charged ionic microgels with
the classical thermodynamic Flory theory for the microgel
volume transitions. The main focus will be to determine how
the ionic contributions influence the swelling behavior in the
framework of the PB theory, as the ionic strength and the
bare microgels charge are changed.

The remaining of this paper is organized as follows. In
Sec. II, the system under consideration is described in some
detail. The construction of the variational mean-field theory
is made in Sec. III, along with a description of its numerical
implementation. The results for several equilibrium properties
are presented in Sec. IV, followed by discussion and conclu-
sions in Sec. V.

a

R

FIG. 1. Schematic representation of the system. A microgel of radius a con-
taining N cross-linked chains, carrying m monomers each (bigger spheres), is
placed at the center of a spherical WS cell. The radius R of the cell is fixed
by the overall microgel concentration ρ inside the solution, R = ( 3

4πρ
)1/3. A

fraction f of the monomers is dissociated (blue big spheres), releasing their
counterions. Both counterions (small red spheres) and coions (small blue
spheres) are free to move all over the WS cell volume. The solvent is rep-
resented by the background in which particles move.

II. THE SYSTEM

We consider a system of cross-linked microgel particles
immersed in an aqueous environment at fixed room temper-
ature. The microgels are made of N flexible chains, each of
which carries a number m of spherical monomers of radius
rm. Due to the high solvent dielectric permittivity, a fraction
f of these monomers dissociates producing Z = fNm anionic
monomers and Z = fNm cationic counterions. Besides micro-
gels, strong 1:1 electrolyte (salt) at concentration cs is also
present in the solution. Dissociation of salt leads to additional
coions (anions) and counterions (cations) each at concentra-
tion cs. For simplicity, we will assume that both ions and sol-
vent molecules are spherical objects of radius ri.

Instead of considering the full microgel solution explic-
itly, we adopt a Wigner-Seitz (WS) cell model, in which a sin-
gle microgel of radius a is placed at the center of a spherical
cell of radius R (see Fig. 1). The cell is taken to be electrically
neutral, and its radius R is determined by the concentration of
the microgels inside the solution, 4πR3/3 = 1/ρ, where ρ is
the overall microgel concentration. Both microions and sol-
vent molecules are free to move throughout the cell volume,
while the fixed polymer backbones are confined in the interior
of the microgel.

III. THE MODEL

We begin by constructing the total Helmholtz free en-
ergy inside the cell as a function of the microgel radius a,
for a given salt concentration cs inside the WS cell, frac-
tion of dissociation f, and density ρ. This Helmholtz free en-
ergy can be split into ionic, solvent, and elastic contributions,
βF = βFion + βFsol + βFel . We now turn to the calculation
of each one of these terms separately.

A. Ionic free energy

The ionic free energy can be written as a functional of the
ionic particle distribution inside the cell, ρ±(r). The inhomo-
geneity is provided by the interaction between the ions and the
charged monomers lying inside the microgel. We adopt here a
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mean field description in which the electrostatic correlations
and the exclusion volume effects are ignored. Furthermore,
we will suppose that the polyelectrolyte network of the micro-
gel provides a uniform charged background in which cations
and anions move. The charge density �m(r) of the background
is

�m(r) = − 3Zq

4πa3
�(a − r), (1)

where q is the charge of a proton and �(x) is the Heaviside
step function. Within the mean-field approximation, the ionic
free energy can be written as

βFion[ρ±(r)] =
∑
i=±

∫
ρi(r)

[
ln

(
λ3

Bρi(r)
) − 1

]
dr

+ β

2

∫
[�+(r) − �−(r) − �m(r)]ψ(r)dr

−3 ln

(
λ

λB

)∑
i=±

Ni, (2)

where �±(r) ≡ qρ±(r) are the ionic charge distributions, λ is
the thermal de Broglie wavelength, λB = βq2/ε is the Bjer-
rum length, ε is the solvent dielectric constant, and ψ(r) is
the mean electrostatic potential inside the WS cell. The first
term on the right-hand side of this expression is the ideal-gas
contribution of the mobile ions, while the second term rep-
resents the electrostatic energy. The third term is a constant
that results from the fact that the Bjerrum length λB (instead
of the de Broglie wavelength λ) is explicitly used as the rele-
vant length scale in the ideal gas contribution. At this level of
approximation, the ions are free to go into the microgel, re-
sulting in a large counterion penetration. This equation has to
be solved under the constraint of fixed number of coions and
counterions N± inside the cell∫

ρ±(r)dr = N±, (3)

where N− = csV and N+ = csV + Z. In equilibrium, the
density profiles should be the ones that minimize the func-
tional Fion[ρ±(r)] subject to the conditions (3). Applying the
minimization condition, one easily finds ρ±(r) = c±e∓βqψ(r),
where c± ≡ exp (βμ±)/λ3, and μ± are the Lagrange multi-
players necessary to satisfy Eq. (3). Together with the Poisson
equation, this relation leads to the Poisson-Boltzmann equa-
tion for the mean electrostatic potential

∇2φ(r) = −4πλB

(
c+e−φ(r) − c−eφ(r) − 3Z

4πa3
�(a − r)

)
,

(4)

where φ(r) ≡ βqψ(r). This equation is numerically solved
under the condition of charge neutrality inside the cell, φ′(R)
= φ′(r → 0) = 0. Once the numerical solution is obtained, the
corresponding ionic contribution to the free energy follows
directly from the substitution of the ionic profiles ρ±(r) in
Eq. (2).

It is important to keep in mind that the solvent has been
so far considered only implicitly, through its permeability ε.
Another relevant point to be stressed relies on the fact that

the ionic distributions resulting from this variational proce-
dure are not the optimal density profiles for the set of param-
eters considered. This is because the ionic profiles obtained
from Eq. (4) have an implicit dependence on the microgel
radius, ρ±(r) = ρ±(r; a). Since the ionic contributions will
influence the swelling process, the microgel radius a is not
known a priori, and has to be calculated in a self-consistent
way. The equilibrium density distributions will be the ones for
which the condition of minimization of the total free energy
with respect to the particle size a is satisfied, as described in
Secs. III B–III E.

B. Solvent free energy

The solvent is modeled as a uniform background in which
the ions move. Like the ionic species, the solvent molecules
can go all the way to the interior of the microgel particle,
resulting in its swelling. Neglecting solvent-ion and solvent-
solvent interactions, the solvent contribution to the free en-
ergy can be written as a sum of entropic and solvent-polymer
contributions, βFsol = βFid + βFsol−pol . The ideal gas con-
tribution is

βFid = Nin
s

(
ln

(
φin

s

) − 1
) + Nout

s

(
ln

(
φout

s

) − 1
)

+ 3Ns ln

[
λ

ri

]
, (5)

where φin
s and φout

s represent the solvent volume fraction in-
side and outside the microgel, respectively, Nin

s and Nout
s be-

ing the corresponding particle numbers. The last term of the
right-hand size, involving the thermal de Broglie wavelength
λ, represents here an irrelevant constant. For a fixed micro-
gel radius a, these quantities can be easily expressed in terms
of the number of ions condensed inside the microgel particle,
Ncond. To this end, we assume that the “empty” space – which
is neither occupied by ions nor by the polymer backbones – is
the total volume of the solvent background

φin
s = a3 − Nmr3

m − Ncondr
3
i

a3
, (6)

φout
s = R3 − a3 − (N+ + N− − Ncond )r3

i

R3 − a3
. (7)

Assuming the solvent molecules as spherical particles hav-
ing the same size as the ionic species ri, the number of such
molecules inside and outside the microgels can be simply
written as

Nin
s =

(
a

ri

)3

φin
s , (8)

Nout
s =

(
R3 − a3

r3
i

)
φout

s . (9)

In order to construct the solvent entropic free energy, it only
remains to calculate the number of ions which lie inside the
microgel, Ncond. This quantity is self-consistently obtained
once the density profiles ρ±(r) for the given microgel size a
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have been calculated through the PB equation (4),

Ncond = 4π

∫ a

0
r2[ρ+(r) + ρ−(r)]dr. (10)

Apart from the entropic contributions, the solvent free energy
also contains the contribution from the interaction between
the solvent and the hydrophobic polymer backbones inside
the microgel. According to the mean-field Flory theory, this
quantity is given by

βFsol−poly = Nmχφin
s , (11)

where χ is the Flory solvent-polymer parameter.1 Clearly, for
a hydrophobic polymer backbone χ > 0 this contribution has
the effect of repelling the solvent molecules from the interior
of the microgel.

Despite its implicit functional dependence on the ionic
profiles via Eq. (10), it is important to note that the solvent
free energy has not been considered in the functional mini-
mization procedure that leads to Eq. (4), where only the ionic
contributions (coulombic interactions) were subject to min-
imization with respect to the density profiles ρ±(r). This is
because size effects are here fully ignored at the functional
level of approximation. In the present description, there is
no real solvent-ion interactions, and the only ionic effect in
the solvent contributions is through the ionic exclusion size,
which effectively reduces the overall volume available for the
solvent molecules to move in, leading to a renormalization
of its volume fractions. At the mean-field level of descrip-
tion that leads to the PB equation, ionic exclusion effects are
completely neglected, and it is therefore fully consistent to
also neglect ion-solvent size effects at the same (functional)
level of approximation. This procedure is justified a posteri-
ori by explicitly checking that in the limit of point-like ions
(ri → 0) – where the functional dependence in Eq. (10) van-
ishes and the present formalism becomes exact – the results
are qualitatively unchanged. On the other hand, a complete
solvent description would require the construction (and mu-
tual minimization) of a coupled solvent-ion density functional
with inhomogeneous solvent distribution, as well as density-
dependent solvent-polymer interactions,57–59 which is beyond
the scope of this work.

C. Elastic free energy

Upon deformation, the microgels experience an elastic
response as a result of the change in the conformation of their
polymer chains. Assuming a microgel is isotropic, the elastic
contribution to the free energy can be written as1, 60

βFel = 3N

2
(α2 − ln α − 1), (12)

where α is the microgel expansion factor, which is propor-
tional to the ratio between its actual volume V and the volume
in the unstressed state V0,

α =
(

V

V0

)1/3

= a(
Nmr3

m + Zr3
i

)1/3 . (13)

In the second equality of this expression, we have used the
fact that the unstressed, equilibrium volume corresponds to
the dry state where monomers and counterions are in their
close-packed configuration.

D. Equilibrium condition

Once the equilibrium density profiles ρ±(r) are obtained
through the solution of the PB equation, Eq. (4), at fixed mi-
crogel radius a, the total free energy inside the cell as a func-
tion of a can be calculated by combining Eqs. (2), (5), (11),
and (12),

βF(a) = βFion + βFid + βFsol−poly + βFel . (14)

For a given number of chains N, number of monomers per
chain m, salt concentration cs, and a fraction of dissociation f,
the equilibrium state will be determined by the minimization
of the free energy with respect to the microgel radius, keeping
constant all the remaining system parameters,

∂βF
∂a

∣∣∣∣
N,m,c

s
,f

= 0. (15)

This condition is equivalent to the mechanical requirement
that the internal microgel pressure must be exactly balanced
by the external one across the microgel-solution interface.

The equilibrium microgel size as determined by Eq. (15)
will be dictated by the balance between several competing in-
teractions. First, the electrostatic contributions act in the sense
of reducing the overall charge density inside the charged mi-
crogel, therefore increasing its size, and attempting to keep
the counterions inside the microgel, in such a way as to neu-
tralize its charge. The physical picture behind this is that sim-
ilarly charged monomers will try to be as far as possible from
one another, leading to a stretching of the polymer chains.
On the other hand, entropic effects make some counterions to
leave the microgel, leaving space for the solvent molecules
to come in. This contribution also tries to minimize the ionic
density inside the microgel, and therefore leads to an increase
of the particle size. At the same time, solvent entropy tries to
produce an uniform solvent distribution throughout the cell,
leading to the penetration of solvent particles into the micro-
gel. Again, this uptake of solvent molecules by the microgel
produces the increase of its volume. This effect is on the other
hand counterbalanced by the repulsive solvent-polymer inter-
actions, which will try to expel the solvent out from the mi-
crogel, decreasing its size. Finally, there is the elastic penalty
for stretching the network, always trying to bring the microgel
back to its unstressed state. Starting from the minimum vol-
ume (close-packing) microgel configuration, the strong elec-
trostatic forces between the mobile counterions will stretch
the polymer network, while entropic effects will make solvent
molecules to penetrate into the microgel. At some point, how-
ever, these effects are exactly counterbalanced by the elas-
tic penalty for further increasing the particle size, together
with the hydrophobic polymer-solvent repulsion effects. This
is precisely when the Helmholtz free energy attain its mini-
mum, and therefore Eq. (15) is verified.
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Equation (15) implicitly contains all the contributions to
the microgel osmotic pressure. In particular, the ionic contri-
butions can, according to Eq. (2), be split into entropic and
electrostatic contributions. As demonstrated by Barrat et al.23

in the context of the Donnan equilibrium theory, the entropic
contributions strongly dominate over the electrostatic ones.
The same entropic dominance has also been observed in the
similar case of star-shaped polyelectrolytes.61, 62 Due to the
strong ionic condensation, a similar behavior is expected in
the present situation, where the ionic contributions are ob-
tained in the framework of the PB theory. It is important to
note, however, that the mechanisms behind the ionic chemi-
cal equilibrium across the microgel interface will be slightly
different. In the case of the ideal Donnan theory, chemical
equilibrium is established between the condensed counterions
and an infinite salt reservoir of concentration cs. In the present
case, the particle exchange across the microgel-solution inter-
face must be such that the total number of particles inside the
WS cell is conserved according to Eq. (3). At large microgel
volume fractions, we expect this effect to play a non-trivial
role in the ionic chemical equilibrium.

E. Numerical implementation

Having established the theoretical basis of the model, we
now turn to a short description of its numeral implementation.
Due to the singular behavior of the PB equation, Eq. (4), close
to the origin, a direct numerical integration of this equation is
plagued by the numerical instabilities in this region – particu-
larly in regimes of highly charged microgels. The easiest way
to avoid such instabilities is to rewrite Eq. (4) as an integral
equation for the electric field. Application of Gauss’ Law, to-
gether with the spherical symmetry inside the cell allow us to
transform the Eq. (4) into

E(r) = λBZ

r2a3
(a3 − r3)�(a − r) − 4πλB

r2

∫ R

r

r ′2dr ′

× (
c+e− ∫ R

r′ E(r ′′)dr ′′ + c−e
∫ R

r′ E(r ′′)dr ′′)
, (16)

where E(r) ≡ βqψ ′(r) = φ′(r) is the reduced electric field in-
side the cell, with the charge neutrality requiring that E(R)
= 0. The first term on the right-hand side of this expression
represents the contribution to the electric field provided by the
homogeneous monomer charge distribution, while the second
term accounts for the inhomogeneous ionic distribution inside
the cell. The coefficients c± are determined from the equilib-
rium distributions ρ±(r) = c±e∓φ(r), together with the require-
ment (3) of fixed number of ions inside the cell,

c± = N±
4π

∫ R

0 r2dr exp
( ∓ ∫ R

r
E(r ′)dr ′) , (17)

and are themselves functionals of the electric field. It is easy
to check that the solutions of Eqs. (16) and (17) automatically
satisfy the desired boundary condition E(0) = 0.

The set of Eqs. (16) and (17) have to be solved in a
self-consistent fashion. This can be done by a direct Picard-
like iteration procedure: starting from a guess field E0(r), the
right-hand side of Eq. (16) is numerically evaluated, allowing
for the calculation of the output function E(r). A new esti-

mation for the electric field is then constructed by taking a
proper combination of input and output fields, and the pro-
cedure is repeated until convergence is achieved. In most of
the cases, however, this direct iteration procedure is unsta-
ble, resulting in non-convergent solutions. In order to stabi-
lize the iteration procedure, a suitable combination of several
previous input functions had to be taken. The coefficients for
this combination are conveniently calculated according to the
minimization criteria described by Ng,63 which strongly opti-
mize numerical convergence. In the high charge regimes, up
to 50 coefficients had to be taken at each iteration step in or-
der to achieve convergence. The numerical accuracy of the
calculated ionic free energies was established by checking the
equality of the osmotic pressure as calculated from the numer-
ical derivative of Eq. (2) with respect to the cell volume, with
the one resulting from the application of the contact value the-
orem at the cell edge,17 to a reasonable degree of accuracy.

IV. RESULTS

Following Ref. 24, we consider microgels comprising a
total of Nm = 3 × 107 monomers of radius rm = 3.2 Å each,
along with ions of radius ri = 2 Å. The Bjerrum length is set
to be λB = 7.2 Å, which is the typical value for an aqueous
solution at room temperature. The WS cell radius is R = 2
μm, corresponding to a concentrated microgel solution with
overall density ρ = 0.03 μm−3. Two different situations are
considered: N = 3 × 105 chains with monomer number m
= 100 and N = 6 × 104 polymer chains carrying m = 500
monomers each. Since the product mN is the same in both
cases, the larger number of chains N = 3 × 105 corresponds,
according to Eq. (12), to a weaker deformability, whereas in
the situation where the number of chains is smaller (N = 6
× 104), the microgels are more easily deformed. We are now
going to analyze separately three different aspects of this sys-
tem, namely, its swelling properties, the density profiles, and
the effective charge of the microgel particles.

A. Swelling

Fig. 2 shows the effects of salt on the swelling process, in
the case of microgels with N = 3 × 105 chains, for different
renormalized Flory parameters χR ≡ χ (ri/rm)3 and different
dissociation fractions f. Clearly, the increase in salt concentra-
tion beyond certain amount leads to a considerable reduction
in the particle size in the regime of sufficiently high micro-
gel charges. This is a consequence of the strong ionic imbal-
ance across the microgel-solution interface, which results in
an increase of the pressure exerted by the external ions on the
microgel surface (Donnan effect). For weakly charged micro-
gels (f = 0.05), addition of salt has a minor effect on the par-
ticle size. In this regime of weak electrostatic coupling, the
swelling is strongly dominated by the solvent contributions.
As the Flory parameter χR is increased, solvent molecules are
expelled out from the microgel, resulting in a reduction of
the particle size. In the case of moderate microgel charge (f
= 0.15), the swelling is influenced by both solvent and elec-
trostatic contributions, and the particle size is considerably
reduced when the salt concentration increases beyond a cer-
tain value. In the opposite limit of strongly charged micro-
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FIG. 2. Microgel radius a as a function of the salt concentration cs for different Flory parameters χR = χ (ri/rm)3, and fractions of dissociation f = 0.05
(a), f = 0.15 (b), and f = 0.7 (c). The total number of polymer chains is N = 3 × 105, each one carrying an average of m = 100 monomers.

gels, electrostatic effects start to dominate over the solvent
interactions, and the particle size becomes very weakly de-
pendent on χR, as shown in Fig. 2(c) for the case f = 0.7. The
particle shrinking with the addition of salt is however more
pronounced at larger dissociation fractions f. In the case f
= 0.7, the microgel volume becomes approximately 4 times
smaller as the salt concentration is increased from cs = 10−3

mM to cs = 101 mM. Again, this effect can be easily un-
derstood in terms of the corresponding stronger ionic dis-
continuity across the microgel-solution interface for larger
fractions f.

A similar scenario is observed in the case of microgels
with a smaller number of chains (N = 6 × 104), as is shown
in Fig. 3. The effect of salinity, however, is enhanced in this
case. Since the elastic penalty is reduced (see Eq. (12)), the
microgels are easily deformed by the external pressure, so
that addition of salt has a stronger effect. Furthermore, the
electrostatic effects become dominant even in the case of
moderate charged microgels (f = 0.15), where the microgel
size becomes very weakly dependent on χR. Since the parti-
cle is more easily expanded in this case, there is an entropic
gain from the incoming solvent molecules, which overcomes
the solvent-monomer repulsion. Even in the case of weakly
charged microgels (f = 0.05), the ionic contributions play an
important role, and the particle size is considerably reduced
when the salt concentration increases. In the case of strongly
charged microgels f = 0.7, the microgel volume becomes now
about 8 times smaller when the salt concentration is increased
from cs = 10−3 mM to cs = 101 mM.

In all the situations, the microgel radius changes very
slowly at small salt concentrations. However, as the amount

of added salt grows beyond some value (cs ≈ 0.01 mM for
N = 6 × 104 and cs ≈ 0.1 mM for N = 3 × 105), an abrupt
decay of the microgel size is observed. This dramatic reduc-
tion in the particle size with the increase of salt concentration
after a certain limit is also predicted by the traditional Don-
nan and Debye-Hückel theories,33, 48–50 and has been strongly
supported by experimental measurements.25, 38, 41, 45, 47, 51, 53 In
Ref. 64, it was experimentally shown that a similar behaviour
also holds for the case of addition of salt in neutral microgels.
Due to the absence of Donnan effect13 in the case of neu-
tral microgels, the region of de-swelling in that case is shifted
to higher salt concentrations (cs ≈ 100 mM), where then the
entropic contributions from the ions become overwhelmingly
dominant.64

For the two cases of N considered, the microgel swelling
appears to be strongly influenced by the dissociation fraction
f. For highly charged microgels, the swelling is mostly dic-
tated by the ionic contributions, whereas for smaller fractions
f the solvent interactions start to play an important role, and
the particle size becomes highly χ -dependent. This trend is
verified in Fig. 4, where the microgel size as a function of f
for different salt concentration and Flory parameters is shown.
In all the cases, the particle radius a increases significantly as
the microgel charge grows larger. By increasing the degree
of ionic dissociation, the electrostatic repulsion between the
charged backbones becomes stronger, resulting in an expan-
sion of the polymer chains. Again, these electrostatic effects
become stronger in the case where the polymer network is
more flexible (N = 6 × 104).

As Fig. 4 suggests, the effects from the ionic Donnan
equilibrium become negligible in the case of small fraction
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FIG. 3. (a)–(c) Same as in Fig. 2, but with N = 6 × 104 polymer chains and m = 500 monomers per chain.



234902-7 Colla, Likos, and Levin J. Chem. Phys. 141, 234902 (2014)

0 0.2 0.4 0.6 0.8
f

0

0.2

0.4

0.6

0.8

1

a 
[μ

m
]

χ
R
 = 0

χ
R
 = 0.2

χ
R
 = 0.4

χ
R
 = 0.6

c
s
 = 0.025 mM(a)

0 0.2 0.4 0.6 0.8
f

0

0.2

0.4

0.6

0.8

1

a 
[μ

m
]

χ
R
 = 0

χ
R
 = 0.2

χ
R
 = 0.4

χ
R
 = 0.6

c
s

= 0.1 mM(b)

0 0.2 0.4 0.6 0.8
f

0

0.2

0.4

0.6

0.8

a 
[μ

m
]

χ
R
 = 0

χ
R
 = 0.2

χ
R
 = 0.4

χ
R
 = 0.6

c
s
 = 5 mM(c)

0 0,2 0,4 0,6 0,8
f

0

0,5

1

1,5

2

a 
[μ

m
]

χ
R
 = 0

χ
R
 = 0.2

χ
R
 = 0.4

χ
R
= 0.6

c
s
 = 0.025 mM(d)

0 0.2 0.4 0.6 0.8
f

0

0.5

1

1.5

2

a 
[μ

m
]

χ
R
 = 0

χ
R
 = 0.2

χ
R
 = 0.4

χ
R
 =0.6

c
s
 = 0.1 mM(e)

0 0,2 0,4 0,6 0,8
f

0

0,5

1

a 
[μ

m
]

χ
R
 = 0

χ
R
 = 0.2

χ
R
 = 0.4

χ
R
 = 0.6

c
s
 = 5 mM(f)

FIG. 4. Microgel radius a as a function of the fraction of dissociated monomers f for different Flory parameters χR = χ (ri/rm)3 and salt concentration
cs = 0.025 mM (a) and (d), cs = 0.1 mM (b) and (e), and cs = 5 mM (c) and (f). The curves (a), (b), and (c) represent the case (N = 3 × 105), while curves
(d), (e), and (f) correspond to microgels with the lower number of chains (N = 3 × 104).

of dissociated ions. Moreover, the particle size is not influ-
enced by the increase in salt concentration in this limit, as can
be seen in Fig. 2(a). The swelling behavior will be therefore
mostly dictated by the polymer-solvent interactions when f is
small enough. In fact, when f � 1 the ionic concentrations
become approximately constant throughout the cell, and the
equilibrium condition Eq. (15) reduces to

(
1 − 8πcsr

3
i

3

)
ln

[
1 − 3Nmr3

m

a3(3 − 8πcsr
3
i )

]

+Nm

(
rm

ri

)3 (
1 + χRmNr3

m

a3

)

+ N

2

(
2a2

N2/3m2/3r2
m

− 1

)
= 0. (18)

Since csr
3
i � 1 for all the experimentally relevant salt con-

centrations, it results from this relation that the microgel size
depends very little on the amount of added salt in the limit
of neutral polymer networks, in accordance with Fig. 2(a).
The particle radius resulting from this equation are shown in
Fig. (5) for a salt concentration cs = 0.025 mM, and two dif-
ferent number of chains. For χR > 0.2, the radius a becomes
independent of both Flory parameter and the number of chains
in the polymer network.

B. Ionic profiles

For a given set of system parameters, the equilibrium
ionic density profiles are the ones that satisfy both the PB
equation, Eq. (4), and the equilibrium condition, Eq. (15), si-
multaneously. The resulting density profiles for the case χR
= 0.1 and N = 3 × 105 are shown in Fig. 6, for several differ-
ent salt concentrations and fractions of dissociation f = 10−4

(Figs. 6(a) and 6(b)) and f = 0.05 (Figs. 6(c) and 6(d)). Due
to strong electrostatic interactions, the density distributions

are highly inhomogeneous across the microgel-solution inter-
face. While the counterions are accumulated inside the mi-
crogel, the coions are expelled out of this region. This abrupt
change of ionic concentrations resulting from the charge bal-
ance across an interface is followed by a strong electric field
gradient, and is known in the chemical-physics literature as
the Donnan effect.13, 14 This effect is more pronounced at
small salt concentrations, where electrostatic effects clearly
dominate.19, 21 As the salt concentration increases, the en-
tropic contributions start to rival the electrostatic ones, result-
ing in more homogeneous ionic distributions.21 For the same
reason, it also becomes favorable for the coions to penetrate
the microgel, as can be clearly seen in Fig. 6(b). While the
ionic inhomogeneities at the microgel surface are smooth for
weakly charged microgels (f = 10−4), the profiles become
very sharp already at moderate charged macroions (f = 0.05).
In this case, the electrostatic coupling is so strong that the
counterion penetration is approximately the same for all the
salinities considered. Inside the microgel, a local charge neu-
trality is achieved (zero electric field), resulting in almost
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= 3 × 105 polymer chains (black curves) and N = 6 × 104. The salt concen-
tration is fixed in cs = 0.01 mM. The particle size is obtained by numerically
solving Eq. (18).
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uniform distribution functions (Figs. 6(c) and 6(d)). This is
followed by a strong electric field difference across the in-
terface, responsible for the charge gradient in this region.
Clearly, the uniform pattern observed in the microgel interior
is a consequence of the homogeneous charge distribution as-
signed to the microgel charge, Eq. (1). The local charge neu-
trality resulting from the PB equation confirms the charge-
neutral picture that has been assumed in experiments as well
as in many theoretical models for the ionic contributions.33

C. Effective and renormalized charges

Due to the strong electrostatic interaction, most of the
dissociated counterions remain trapped inside the polymer
backbones, as can be clearly seen in Figs. 6(a) and 6(c). As
a consequence, the microgels have an effective net charge
Zeff, whose magnitude is much smaller than the initial poly-
mer charge, Zeff � Z. This ionic penetration effect has
been experimentally verified through electrophoretic mobility
measurements.45, 65, 66 Within the present model, the effective
charge can be easily obtained as a functional of the calculated
density profiles,

Zeff = Z − 4π

∫ a

0
r2[ρ+(r) − ρ−(r)]dr = a2E(a)

λB

, (19)

where E(a) = φ′(a) is the reduced electric field at the micro-
gel surface. The typical behavior of this quantity as a function
of the bare polymer charge for three different salt concentra-
tions is displayed in Fig. 7. For a given set of parameters,
the effective charge corresponding to high polymer charges Z
shows a weak dependence on the amount of added salt. This
result is consistent with the calculated density profiles (see
Fig. 6(a)), where the counterion condensation is practically

the same for a wide range of salt concentrations. At large val-
ues of Z, the effective charge increases monotonically, show-
ing a perfect power-low dependency Zeff ∼ Z1/2 (inset of
Fig. 7). This behavior is quite general and holds in fact for
arbitrary particle sizes, as has been analytically demonstrated
by Chepelianskii et al. in the context of the PB equation for
penetrable macroions in salt-free solutions,19, 20 and further
extended by Bauli and Trizac for the case of added salt.21 The
same scaling law for the effective charge has also been ob-
served experimentally.24

In the case of microgel systems, a clear distinction must
be made between the aforementioned effective charge and
the concept of charge renormalization, usually employed in
the description of hard colloids.12 While the effective charge
represents the net microgel charge – which accounts for the
ionic penetration – the renormalized charge is an effective
parameter designed to incorporate the strong nonlinear
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effects resulting from the large charge asymmetry between
macroions and the small ions.19, 21 When dealing with linear
theories for describing highly charged systems (e.g., Yukawa-
like models), it is the renormalized charge which should be
used as input to implicitly account for nonlinear effects.

In the framework of the mean-field cell model, the renor-
malized charge can be easily obtained through the so-called
Alexander prescription, which has been successfully em-
ployed in the case of hard colloidal systems,67, 68 and recently
extended to account for counterion penetration.19, 21 The basic
idea is to linearize the PB equation, Eq. (4), around the po-
tential at edge of the WS cell. The resulting potential φlin(r)
satisfies the following linear equation:

∇2φlin(r) = κ2(φlin(r) − φR)

− 4πλB

(
ρ̃+ − ρ̃− − 3Zren

4πa3
�(a − r)

)
, (20)

where φR ≡ φ(R) is the potential at the cell boundary, ρ̃±
= c±e∓φ

R are the corresponding ionic densities at r = R, and
κ ≡ √

4πλB(ρ̃+ + ρ̃−) is the inverse of the (renormalized)
screening length. Note that we have replaced Z by Zren. By ex-
tending the linear solution φlin(r) throughout the cell volume,
the macroion charge must assume a different value from the
bare charge Zren � Z, in order to produce the asymptotically
correct potential and electric field at the cell boundary.68 The
calculation is done as follows. For a given set of parameters,
Eq. (4) is solved numerically, and the electric potential at the
cell border φR is calculated. This potential is then used as an
input in Eq. (20), which is solved under the boundary condi-
tions φlin(R) = φR and φ′

lin(R) = 0. These conditions guaran-
tee that both linear and nonlinear solutions provide the same
electrostatic potential and electric field at the cell boundary.
Equation (20) can be solved analytically, resulting in the lin-
ear potential

φlin(r) = −γ

[
(κ2Ra − 1) sinh(κ(a − R)) + κ(a − R) cosh(κ(a − R))

κa cosh(κa) − sinh(κa)

sinh(κr)

κr
− 1

]

− 3ZrenλB

κ2a3
+ φR (21)

for r ≤ a, and

φlin(r) = − γ

κr
[κR cosh(κ(r − R)) + sinh(κ(r − R))] + γ + φR (22)

for a < r ≤ R, where γ ≡ 4πλB(ρ̃+ − ρ̃−)/κ2. The renormalized charge in Eq. (21) follows from the requirement that Eqs. (21)
and (22) must be equal at r = a. Applying this condition, the renormalized charge can then be written as

Zren = γ κ2a3

3λB

[
(κR − tanh(κa)) cosh(κ(a − R)) + (1 − κR tanh(κa)) sinh(κ(a − R))

κa − tanh(κa)

]
. (23)

For a given microgel radius a and salt concentration cs, the
only input necessary for the calculation of Zren are the poten-
tial φ(R) and concentrations ρ̃±, which follow directly from
the nonlinear solution of the PB equation. In the present situ-
ation where the salt concentration inside the WS cell is fixed,
the potential at the cell edge φ(R) is actually arbitrary, and
can be set to be zero. If, however, the system is in contact
with a salt reservoir, this quantity can be identified with the
Donnan potential, required to keep electroneutrality inside the
WS cell.

In Fig. 8, the linear potential from Eqs. (21) and (22) is
compared with the numerical solutions of the PB equation,
Eq. (4). In the linear regime of moderate microgel charges (Z
≈ 1500), the linear solution reproduces quite well the nonlin-
ear potential, and the renormalized charge is approximately
equal to the bare polymer charge, Zren ≈ Z. As the microgel
charge increases, the nonlinear effects become progressively
more relevant and strong deviations between the linear and
the nonlinear solutions are observed at small distances from
the microgel center. The renormalized charge, however, en-
sures that the linear solution is able to correctly account for
the large-distance behavior of the nonlinear potential.

In Fig. 9, the renormalized charge resulting from
Eq. (23) (solid curves) is compared with the effective one
(dotted curves), Eq. (19), as a function of the bare microgel
charge, for different salt concentrations, Flory parameter χR
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replaced by the renormalized one, Zren. The salt concentration is cs = 0.025
mM, the Flory parameter was set at χR = 0.1, and the number of polymer
chains is N = 3 × 105.
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= 0.1 and N = 3 × 105. Clearly, the qualitative behavior of
these quantities as functions of the bare polymer charge is
completely different. Upon addition of salt, the ionic conden-
sation is already present even in the case of small microgel
charges, resulting in an effective charge much smaller than
the microgel charge. The renormalized charge, in contrast,
coincides with the bare polymer charge in this linear limit,
Zren ≈ Z, as can be clearly identified by the linear curves
with slope 1 close to the origin. A similar linear relation is
also observed for the effective charges in the absence of salt
(dotted black curve). Clearly, the additional of salt makes it
favorable for the counterions to penetrate the microgel, lead-
ing the strong counterion condensation even at small micro-
gel bare charges. As the bare microgel charge increases be-
yond this linear regime, quite different functional behaviors
for the effective and renormalized charges are observed: while
the former grows as a power-law for large values of Z (see
Fig. 7), the renormalized charge increases much faster at
larger bare charges Z, in a way that clearly deviates from the
simple power-low trend. This qualitative behavior is quite dis-
tinct from the classical picture observed in the case of hard
colloids in the presence of monovalent ions, where the renor-
malized charge rapidly achieves a saturation value beyond the
linear regime.68 In the case of charged microgels, the particle
swelling derived by the increase of the microgel bare charge
(see Fig. 4) prevents this saturation regime to be reached.
Instead, the renormalized charge grows monotonically as
the microgel charge (and therefore the particle size) grows
further.

Due to the large difference observed between the ef-
fective and renormalized charges, it is extremely impor-
tant to rely on the renormalized charge (instead of Zeff) as
the relevant input parameter in order to properly account
for strongly nonlinear effects, while describing thermody-
namic and structural properties of highly charged micro-
gels through the traditional, Yukawa-like theories. In the
limit of relatively small polymer charges, the linear the-
ory is quite accurate, and the bare polymer charge is suffi-
cient to correctly account for the system properties. Analo-
gous conclusions have been recently reported for the similar
case of hydrophobic polyelectrolytes,19 as well as for core-
shell like charged polymers in the presence of monovalent
salt.21

V. CONCLUSIONS

A simple model has been put forward to calculate the
equilibrium properties of charged microgels in the framework
of the traditional PB and Flory theories. Particular emphasis
was given to the role of salt. While the effective charges are
weakly influenced by the addition of salt, a strong salt de-
pendence was found for the swelling behavior, the renormal-
ized charges, as well as for the ionic density distributions. The
Alexander prescription for charge renormalization67 was ex-
tended to the situation of penetrable macroions with varying
particle size. It was shown that the effective and the renormal-
ized charges behave dramatically differently in the regime of
high microgel charges.

For highly charged microgels, the calculated ionic pro-
files show a very simple functional behavior, in which both
coion and counterion distributions are approximately uniform
inside the microgel, resulting in a local charge neutrality. This
behavior is clearly a consequence of the uniform charge dis-
tribution assigned to the charged backbones.19, 21, 23, 69 It is
known, however, that the highly inhomogeneous counterion
distribution of the trapped counterions might have a strong in-
fluence on the resulting swelling behavior.62, 69, 70 A possible
improvement of the theory will be to consider non-uniform
monomer distributions inside the microgel. Another limita-
tion of the present model is the absence of the counterion-
polymer steric interaction: when calculating the ionic free en-
ergy in Eq. (2), it is assumed that the ions are free to move
throughout the WS cell. It is well known, however, that the
mobility of the counterions is dramatically reduced by their
strong electrostatic interaction with the microgel backbone.
A proper way to account for this entropic limitation is to ex-
plicitly consider the exclusion volume polymer-ion interac-
tion. Once a distribution is assigned to the polymer chains,
these steric effects can be incorporated with the formulation
of a weight-density functional theory, in the framework of the
Rosenfeld fundamental measure theory.71, 72 Work along these
lines is currently in progress.
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