11 research outputs found

    Stuck in Traffic (SiT) Attacks: A Framework for Identifying Stealthy Attacks that Cause Traffic Congestion

    Full text link
    Recent advances in wireless technologies have enabled many new applications in Intelligent Transportation Systems (ITS) such as collision avoidance, cooperative driving, congestion avoidance, and traffic optimization. Due to the vulnerable nature of wireless communication against interference and intentional jamming, ITS face new challenges to ensure the reliability and the safety of the overall system. In this paper, we expose a class of stealthy attacks -- Stuck in Traffic (SiT) attacks -- that aim to cause congestion by exploiting how drivers make decisions based on smart traffic signs. An attacker mounting a SiT attack solves a Markov Decision Process problem to find optimal/suboptimal attack policies in which he/she interferes with a well-chosen subset of signals that are based on the state of the system. We apply Approximate Policy Iteration (API) algorithms to derive potent attack policies. We evaluate their performance on a number of systems and compare them to other attack policies including random, myopic and DoS attack policies. The generated policies, albeit suboptimal, are shown to significantly outperform other attack policies as they maximize the expected cumulative reward from the standpoint of the attacker

    Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming

    Get PDF
    We consider the classical nite-state discounted Markovian decision problem, and we introduce a new policy iteration-like algorithm for fi nding the optimal Q-factors. Instead of policy evaluation by solving a linear system of equations, our algorithm requires (possibly inexact) solution of a nonlinear system of equations, involving estimates of state costs as well as Q-factors. This is Bellman's equation for an optimal stopping problem that can be solved with simple Q-learning iterations, in the case where a lookup table representation is used; it can also be solved with the Q-learning algorithm of Tsitsiklis and Van Roy [TsV99], in the case where feature-based Q-factor approximations are used. In exact/lookup table representation form, our algorithm admits asynchronous and stochastic iterative implementations, in the spirit of asynchronous/modi ed policy iteration, with lower overhead and more reliable convergence advantages over existing Q-learning schemes. Furthermore, for large-scale problems, where linear basis function approximations and simulation-based temporal di erence implementations are used, our algorithm resolves e ffectively the inherent difficulties of existing schemes due to inadequate exploration

    Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming (Revised)

    Get PDF
    The revised technical report C-2010-10We consider the classical finite-state discounted Markovian decision problem, and we introduce a new policy iteration-like algorithm for finding the optimal Q-factors. Instead of policy evaluation by solving a linear system of equations, our algorithm requires (possibly inexact) solution of a nonlinear system of equations, involving estimates of state costs as well as Q-factors. This is Bellman's equation for an optimal stopping problem that can be solved with simple Q-learning iterations, in the case where a lookup table representation is used; it can also be solved with the Q-learning algorithm of Tsitsiklis and Van Roy [TsV99], in the case where feature-based Q-factor approximations are used. In exact/lookup table representation form, our algorithm admits asynchronous and stochastic iterative implementations, in the spirit of asynchronous/modified policy iteration, with lower overhead and/or more reliable convergence advantages over existing Q-learning schemes. Furthermore, for large-scale problems, where linear basis function approximations and simulation-based temporal difference implementations are used, our algorithm resolves effectively the inherent difficulties of existing schemes due to inadequate exploration

    Approximate policy iteration: A survey and some new methods

    Get PDF
    We consider the classical policy iteration method of dynamic programming (DP), where approximations and simulation are used to deal with the curse of dimensionality. We survey a number of issues: convergence and rate of convergence of approximate policy evaluation methods, singularity and susceptibility to simulation noise of policy evaluation, exploration issues, constrained and enhanced policy iteration, policy oscillation and chattering, and optimistic and distributed policy iteration. Our discussion of policy evaluation is couched in general terms and aims to unify the available methods in the light of recent research developments and to compare the two main policy evaluation approaches: projected equations and temporal differences (TD), and aggregation. In the context of these approaches, we survey two different types of simulation-based algorithms: matrix inversion methods, such as least-squares temporal difference (LSTD), and iterative methods, such as least-squares policy evaluation (LSPE) and TD (λ), and their scaled variants. We discuss a recent method, based on regression and regularization, which rectifies the unreliability of LSTD for nearly singular projected Bellman equations. An iterative version of this method belongs to the LSPE class of methods and provides the connecting link between LSTD and LSPE. Our discussion of policy improvement focuses on the role of policy oscillation and its effect on performance guarantees. We illustrate that policy evaluation when done by the projected equation/TD approach may lead to policy oscillation, but when done by aggregation it does not. This implies better error bounds and more regular performance for aggregation, at the expense of some loss of generality in cost function representation capability. Hard aggregation provides the connecting link between projected equation/TD-based and aggregation-based policy evaluation, and is characterized by favorable error bounds.National Science Foundation (U.S.) (No.ECCS-0801549)Los Alamos National Laboratory. Information Science and Technology InstituteUnited States. Air Force (No.FA9550-10-1-0412

    Q-learning and enhanced policy iteration in discounted dynamic programming

    Full text link

    Basis Function Adaptation Methods for Cost Approximation in MDP

    No full text
    We generalize a basis adaptation method for cost approximation in Markov decision processes (MDP), extending earlier work of Menache, Mannor, and Shimkin. In our context, basis functions are parametrized and their parameters are tuned by minimizing an objective function involving the cost function approximation obtained when a temporal differences (TD) or other method is used. The adaptation scheme involves only low order calculations and can be implemented in a way analogous to policy gradient methods. In the generalized basis adaptation framework we provide extensions to TD methods for nonlinear optimal stopping problems and to alternative cost approximations beyond those based on TD.Academy of Finland (grant 118653 (ALGODAN))IST Programme of the European Community (IST-2002-506778)National Science Foundation (U.S.) (Grant ECCS-0801549
    corecore