
April 2010 (Revised October 2010) Report LIDS - 2831

Q-Learning and Enhanced Policy Iteration in

Discounted Dynamic Programming

Dimitri P. Bertsekas1 and Huizhen Yu2

Abstract

We consider the classical finite-state discounted Markovian decision problem, and we introduce a new
policy iteration-like algorithm for finding the optimal Q-factors. Instead of policy evaluation by solving
a linear system of equations, our algorithm requires (possibly inexact) solution of a nonlinear system of
equations, involving estimates of state costs as well as Q-factors. This is Bellman’s equation for an optimal
stopping problem that can be solved with simple Q-learning iterations, in the case where a lookup table rep-
resentation is used; it can also be solved with the Q-learning algorithm of Tsitsiklis and Van Roy [TsV99],
in the case where feature-based Q-factor approximations are used. In exact/lookup table representation
form, our algorithm admits asynchronous and stochastic iterative implementations, in the spirit of asyn-
chronous/modified policy iteration, with lower overhead and/or more reliable convergence advantages over
existing Q-learning schemes. Furthermore, for large-scale problems, where linear basis function approxima-
tions and simulation-based temporal difference implementations are used, our algorithm resolves effectively
the inherent difficulties of existing schemes due to inadequate exploration.

1. INTRODUCTION

We consider the approximate solution of large-scale discounted infinite horizon dynamic programming (DP)
problems. The states are denoted i = 1, . . . , n. State transitions (i, j) under control u occur at discrete times
according to given transition probabilities pij(u), and generate a cost αkg(i, u, j) at time k, where α ∈ (0, 1)
is a discount factor. We consider deterministic stationary policies µ such that for each i, µ(i) is a control that
belongs to a constraint set U(i). We denote by Jµ(i) the total discounted expected cost of µ over an infinite
number of stages starting from state i, and by J∗(i) the minimal value of Jµ(i) over all µ. We denote by Jµ
and J∗ the vectors of <n (n-dimensional space) with components Jµ(i) and J∗(i), i = 1, . . . , n, respectively.
This is the standard discounted Markovian decision problem (MDP) context, discussed in many sources (e.g.,
Bertsekas [Ber07], Puterman [Put94]).

For problems where the number of states n is very large, simulation-based approaches that are patterned
after classical policy iteration methods have been popular (see e.g., [BeT96], [SuB98]). Temporal difference
(TD) methods, such as TD(λ) (Sutton [Sut88]), LSPE(λ) (Bertsekas and Ioffe [BeI96]), and LSTD(λ) (Brat-
dke and Barto [BrB96], Boyan [Boy02]), are commonly used for policy evaluation within this context. The

1 Dimitri Bertsekas is with the Dept. of Electr. Engineering and Comp. Science, M.I.T., Cambridge, Mass., 02139,

dimitrib@mit.edu. His research was supported by NSF Grant ECCS-0801549, and by the LANL Information Science

and Technology Institute.
2 Huizhen Yu is with the Dept. of Computer Science, Univ. of Helsinki, Finland, janey.yu@cs.helsinki.fi. Her

research was supported in part by Academy of Finland Grant 118653 (ALGODAN) and the PASCAL Network of

Excellence, IST-2002-506778.

1

Janey
Text Box
Also as: Tech. Report C-2010-10

Janey
Text Box
Univ. of Helsinki

corresponding approximate policy iteration methods have been described in detail in the literature, have
been extensively tested in practice, and constitute one of the major methodologies for approximate DP (see
the books by Bertsekas and Tsitsiklis [BeT96], Sutton and Barto [SuB98], Gosavi [Gos03], Cao [Cao07],
Chang, Fu, Hu, and Marcus [CFH07], Meyn [Mey07], Powell [Pow07], and Borkar [Bor08]; the textbook
[Ber07] together with its on-line chapter [Ber10] provide a recent treatment and up-to-date references).

Approximate policy iteration schemes have been used both in a model-based form, and in a model-free
form for the computation of Q-factors associated with state-control pairs of given policies. In the latter case,
TD methods must contend with a serious difficulty: they generate a sequence of samples

{
(it, µ(it)), t =

0, 1, . . .
}

using the Markov chain corresponding to the current policy µ, which means that state-control pairs
(i, u) 6=

(
i, µ(i)

)
are not generated in the simulation. As a result the policy iteration process breaks down

as it does not provide meaningful Q-factor estimates for u 6= µ(i). In practice, it is well-known that it is
essential to use an artificial mechanism to ensure that a rich and diverse enough sample of state-control pairs
is generated during the simulation.

The use of exploration-enhanced policies is often suggested as a remedy for approximate policy iteration
involving TD methods. A common approach, well-known since the early days of approximate DP, is an off-
policy strategy (using the terminology of Sutton and Barto [SuB98]; see also Precup, Sutton, and Dasgupta
[PSD01]), whereby we occasionally generate transitions involving randomly selected controls rather than
the ones dictated by µ. Unfortunately, in the context of Q-learning the required amount of exploration is
likely to be substantial, and has an undesirable effect: it may destroy the underlying contraction mapping
mechanism on which LSPE(λ) and TD(λ) rely for their validity [see e.g., [BeT96], Example 6.7, which
provides an instance of divergence of TD(0)]. At the same time, while LSTD(λ) does not have this difficulty
(it does not rely on a contraction property), it requires the solution of a linear projected equation, which has
potentially large dimension, particularly when the control constraint sets U(i) have large cardinalities. To
address the convergence difficulty in the presence of exploration using an off-policy, the TD(λ) method has
been modified in fairly complex ways (Sutton, Szepesvari, and Maei [SSM08], Maei et. al. [MSB08], Sutton
et. al. [SMP09]).

The purpose of this paper is to propose an approach to policy iteration-based Q-learning with explo-
ration enhancement, which is radically different from existing methods, and is new even in the context of
exact DP. It is based on replacing the policy evaluation phase of the classical policy iteration method with
(possibly inexact) solution of an optimal stopping problem. This problem is defined by a stopping cost and
by a randomized policy , which are suitably adjusted at the end of each iteration. They encode aspects of the
“current policy” and give our algorithm a modified/optimistic policy iteration-like character (a form that
is intermediate between value and policy iteration). The randomized policy allows an arbitrary and easily
controllable amount of exploration. For extreme choices of the randomized policy and a lookup table repre-
sentation, our algorithm yields as special cases the classical Q-learning/value iteration and policy iteration
methods. Generally, with more exploration and less exact solution of the policy evaluation/optimal stopping
problem, the character of the method shifts in the direction of classical Q-learning/value iteration.

We discuss two situations where our algorithm may offer an advantage over existing Q-learning and
approximate policy iteration methodology:

(a) In the context of exact/lookup table policy iteration, our algorithm admits asynchronous and stochastic
iterative implementations, which can be attractive alternatives to standard methods of asynchronous
policy iteration and Q-learning. The advantage of our algorithms is that they involve lower overhead
per iteration, by obviating the need for minimization over all controls at every iteration (this is the

2

generic advantage that modified policy iteration has over value iteration).

(b) In the context of approximate policy iteration, with linear Q-factor approximation, our algorithm may
be combined with the TD(0)-like method of Tsitsiklis and Van Roy [TsV99], which can be used to
solve the associated stopping problems with low overhead per iteration, thereby resolving the issue of
exploration described earlier.

Regarding (a) above, note that aside from their conceptual/analytical value, lookup table representation
methods can be applied to large scale problems through the use of aggregation (a low-dimensional aggregate
representation of a large, possibly infinite-dimensional problem; see Jaakkola, Jordan, and Singh [JJS94],
[JSJ95], Gordon [Gor95], Tsitsiklis and Van Roy [TsV96], and Bertsekas [Ber05], [Ber10]). Let us also note
that Bhatnagar and Babu [BhB08] have proposed Q-learning/policy iteration type algorithms with lookup
table representation, based on two-time-scale stochastic approximation, and established the convergence for
synchronous implementations. Their algorithms also have low computation overhead per iteration like our
algorithm. However, viewed at the slow-time-scale, their algorithms are close to the standard Q-learning
and have a different basis than our algorithm.

The paper is organized as follows. In Section 2, we introduce our policy iteration-like algorithm for
the case of exact/lookup table representation of Q-factors, and address convergence issues. In Section 3, we
show that our algorithm admits an asynchronous implementation that has improved convergence properties
over the standard asynchronous policy iteration algorithm for Q-factors. In Section 4, we develop stochastic
iterative methods that resemble both Q-learning and modified/optimistic policy iteration, and prove their
convergence. In Section 5, we provide some computational results and a comparison between our optimistic
policy iteration algorithms and Q-learning. In Section 6, we consider the possibility of approximating the
policy evaluation portion of our algorithm, and we derive a corresponding error bound, which is consistent
with existing error bounds for related methods. In Section 7, we briefly discuss implementations of policy
evaluation with linear feature-based approximations and simulation-based optimal stopping algorithms, such
as the one due to Tsitsiklis and Van Roy [TsV99]. These algorithms use calculations of low dimension (equal
to the number of features), and require low overhead per iteration compared with the matrix inversion
overhead required by approximate policy iteration that uses the LSTD(λ) method for policy evaluation.

2. A NEW Q-LEARNING ALGORITHM

In this section we introduce our Q-learning algorithm in exact form. We first introduce notation and provide
some background. It is well-known that the optimal cost vector J∗ is the unique fixed point of the mapping
T : <n 7→ <n given by

(TJ)(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ(j)

)
, ∀ i.

The optimal Q-factor corresponding to a state-control pair (i, u) is denoted by Q∗(i, u), and represents the
optimal expected cost starting from state x, using control u at the first stage, and subsequently using an
optimal policy. Optimal Q-factors and costs are related by the equation

J∗(i) = min
u∈U(i)

Q∗(i, u), ∀ i. (2.1)

The optimal Q-factor vector Q∗ is the unique fixed point of the mapping F defined by

(FQ)(i, u) =
n∑

j=1

pij(u)
(
g(i, u, j) + α min

v∈U(j)
Q(j, v)

)
, ∀ (i, u). (2.2)

3

One possibility to compute Q∗ is the well-known Q-learning algorithm of Watkins [Wat89] (see e.g.,
[BeT96], [SuB98] for descriptions and discussion), which is an iterative stochastic approximation-like method,
based on the fixed point iteration Qk+1 = FQk for solving the equation Q = FQ. Another popular method
for computing Q∗ is based on policy iteration. At the typical iteration, given the (deterministic stationary)
current policy µ, we find Qµ, the unique fixed point of the mapping Fµ corresponding to µ, and given by

(FµQ)(i, u) =
n∑

j=1

pij(u)
(
g(i, u, j) + αQ

(
j, µ(j)

))
, ∀ (i, u), (2.3)

(this is the policy evaluation step). We then obtain a new policy µ by

µ(i) = arg min
u∈U(i)

Qµ(i, u), ∀ i, (2.4)

(this is the policy improvement step).

In this section we propose an alternative policy iteration-like method. The key idea is to replace the
Q-learning mapping Fµ of Eq. (2.3) with another mapping that allows exploration as well as a dependence
on µ. This mapping, denoted FJ,ν , depends on a vector J ∈ <n, with components denoted J(i), and on a
randomized policy ν, which for each state i defines a probability distribution

{
ν(u | i) | u ∈ U(i)

}

over the feasible controls at i. It maps Q, a vector of Q-factors, to FJ,νQ, the vector of Q-factors with
components given by

(FJ,νQ)(i, u) =
n∑

j=1

pij(u)

g(i, u, j) + α

∑

v∈U(j)

ν(v | j) min
{
J(j), Q(j, v)

}

 , ∀ (i, u). (2.5)

Comparing FJ,ν and the classical Q-learning mapping of Eq. (2.2) [or the mapping Fµ of Eq. (2.3)], we see
that they take into account the Q-factors of the next state j differently: F (or Fµ) uses the minimal Q-factor
minv∈U(j)Q(j, v) [the Q-factor Q

(
j, µ(j)

)
, respectively], while FJ,ν uses a randomized Q-factor [according to

ν(v | j)], but only up to the threshold J(j). Note that FJ,ν does not require the overhead for minimization
over all controls that the Q-learning mapping F does [cf. Eq. (2.2)].

The mapping FJ,ν can be interpreted in terms of an optimal stopping problem defined as follows:

(a) The state space is the set of state-control pairs (i, u) of the original problem.

(b) When at state (i, u), if we decide to stop, we incur a stopping cost J(i) (independent of u).

(c) When at state (i, u), if we decide not to stop, we incur a one-stage cost
∑n
j=1 pij(u)g(i, u, j), and

transition to state (j, v) with probability pij(u)ν(v | j).

From well-known general properties of Q-learning for MDP, it can be seen that FJ,ν is a sup-norm contraction
of modulus α for all ν and J , i.e.,

‖FJ,νQ− FJ,νQ̃‖∞ ≤ α‖Q− Q̃‖∞, ∀ Q, Q̃, (2.6)

where ‖ · ‖∞ denotes the sup-norm (‖Q‖∞ = max(i,u)

∣∣Q(i, u)
∣∣). Hence FJ,ν has a unique fixed point, which

we denote by QJ,ν . We may interpret QJ,ν(i, u) as a Q-factor of the optimal stopping problem corresponding

4

to the nonstopping action, i.e., the optimal cost-to-go starting at (i, u) and conditioned on the first decision
being not to stop. Another insight is that if J is the cost of some policy π, which can be randomized and
history dependent, then we may interpret the components of QJ,ν , as the Q-factors of a policy which switches
optimally from following the policy ν to following the policy π.

For a given (J, ν), the optimal stopping problem can be solved exactly by using value iteration. When
linear feature-based Q-factor approximation is used, it can be solved with the algorithm of Tsitsiklis and Van
Roy [TsV99], a simulation-based TD(0)-type method that uses low-dimensional computation [of order O(s)]
at each iteration and does not require an s× s matrix inversion (like LSTD or LSPE). Later, in Sections 6
and 7, we will envision the use of this algorithm for approximating QJ,ν .

Note that if ν = µ, where µ is a deterministic policy, we have QJ,µ ≤ Qµ for all J , with equality
holding if Jµ ≤ J . To get an indication that the mapping FJ,µ can have an advantage in some cases over the
Q-learning mapping Fµ, suppose that J is a known upper bound to Jµ (for example, in the context of policy
iteration, J may be the cost vector of the policy preceding µ). Then it can be seen that Qµ ≤ FJ,µQ ≤ FµQ
for all Q ≥ Qµ, which in turn by using induction, shows that

Qµ ≤ F kJ,µQ ≤ F kµQ, ∀ k = 0, 1, . . . ,

i.e., that starting from Q ≥ Qµ, value iteration/Q-learning using FJ,µ converges to Qµ at least as fast as
it converges using Fµ. Indeed, simple 2-state examples show that the differences between the components
of F kJ,µQ and F kµQ can be substantial [take n = 2, g(i, u, j) ≡ 0, p12(u) = p21(u) ≡ 1, Q(1, u) ≡ J(1) = 1,
Q(2, u) ≡ J(2) = β > 1]. Therefore, in certain circumstances, iterative evaluation of the Q-factors of a policy
µ may converge substantially faster using FJ,µ than using Fµ. In this paper, however, we focus primarily on
other advantages, which are related to asynchronous implementations and exploration, and will be explained
in what follows.

The following proposition generalizes the contraction property (2.6). In the proof and for the remainder
of the paper, Jx denotes the vector J extended to the space of state-control pairs by

Jx(i, u) = J(i), ∀ u ∈ U(i).

Furthermore, minimization over two vectors is interpreted componentwise, i.e., min{Q1, Q2} denotes the
vector with components min

{
Q1(i, u), Q2(i, u)

}
.

Proposition 2.1: For all ν, J , J̃ , Q, and Q̃, we have

‖FJ,νQ− FJ̃,νQ̃‖∞ ≤ αmax
{
‖J − J̃‖∞, ‖Q− Q̃‖∞

}
.

Proof: We write
FJ,ν Q = ḡ + αP ν min

{
Jx, Q

}
, (2.7)

where ḡ is the vector with components

n∑

j=1

pij(u)g(i, u, j), ∀ (i, u),

5

and P ν is the transition probability matrix with probabilities of transition (i, u)→ (j, v) equal to

pij(u)ν(v | j), ∀ (i, u), (j, v).

From Eq. (2.7), we obtain

‖FJ,νQ− FĴ,νQ̃‖∞ ≤ α
∥∥min

{
Jx, Q

}
−min

{
J̃x, Q̃

}∥∥
∞.

We also have† ∥∥min
{
Jx, Q

}
−min

{
J̃x, Q̃

}∥∥
∞ ≤ max

{
‖J − J̃‖∞, ‖Q− Q̃‖∞

}
.

The preceding two relations imply the result. Q.E.D.

Our Q-learning algorithm generates a sequence of pairs (Qk, Jk), starting from an arbitrary pair
(Q0, J0). Given (Qk, Jk), we select an arbitrary randomized policy νk and an arbitrary positive integer
mk, and we obtain the next pair (Qk+1, Jk+1) as follows:

Iteration k with Lookup Table Representation:

(1) Generate Qk+1 with mk iterations involving the mapping FJk,νk
, with νk and Jk held fixed:

Qk+1 = F
mk
Jk,νk

Qk. (2.8)

(2) Update Jk+1 by
Jk+1(i) = min

u∈U(i)
Qk+1(i, u), ∀ i. (2.9)

We will show shortly that Qk and Jk converge to the optimal Q-factor and cost vector of the original
MDP, respectively, but we first discuss the qualitative behavior of the algorithm. To this end, we first
consider the two extreme cases where mk = 1 and mk =∞. For mk = 1,

Qk+1(i, u) =
n∑

j=1

pij(u)

g(i, u, j) + α

∑

v∈U(j)

νk(v | j) min
{

min
v′∈U(j)

Qk(j, v′), Qk(j, v)
}

=
n∑

j=1

pij(u)
(
g(i, u, j) + α min

v∈U(j)
Qk(j, v)

)
, ∀ (i, u),

† Here we are using a nonexpasiveness property of the minimization map: for any Q1, Q2, Q̃1, Q̃2, we have

∥∥min{Q1, Q2} −min{Q̃1, Q̃2}
∥∥
∞
≤ max

{
‖Q1 − Q̃1‖∞, ‖Q2 − Q̃2‖∞

}
.

To see this, write for every (i, u),

Qm(i, u) ≤ max
{
‖Q1 − Q̃1‖∞, ‖Q2 − Q̃2‖∞

}
+ Q̃m(i, u), m = 1, 2,

take the minimum of both sides over m, exchange the roles of Qm and Q̃m, and take maximum over (i, u).

6

so Eq. (2.8) coincides with the synchronous Q-learning algorithm Qk+1 = FQk, while Eq. (2.9) coincides
with the value iteration Jk+1 = TJk for the original MDP.

On the other hand, in the limiting case where mk =∞, Qk+1 is the Q-factor QJk,νk
of the associated

stopping problem (the unique fixed point of FJk,νk
), and the algorithm takes the form

Jk+1(i) = min
u∈U(i)

QJk,νk
(i, u), ∀ i. (2.10)

Assume further that νk is chosen to be the deterministic policy µk that attains the minimum in the equation

µk(i) = arg min
u∈U(i)

Qk(i, u), ∀ i, (2.11)

with ν0 being some deterministic policy µ0 satisfying J0 ≥ Jµ0 . Then Q1 is equal to QJ0,µ0 (since mk =∞)
and can be seen to be also equal to the (exact) Q-factor vector of µ0 (since J0 ≥ Jµ0), so µ1 as generated
by Eq. (2.11), is the policy generated from µ0 by exact policy improvement for the original MDP. Similarly,
it can be shown by induction that for mk = ∞ and νk = µk, the algorithm generates the same sequence of
policies as exact policy iteration for the original MDP.

Generally, the iteration (2.8), (2.9) resembles in some ways the classical modified policy iteration for
MDP (see e.g., [Ber07], [Put94]), where policy evaluation is approximated with a finite number mk of value
iterations, with the case mk = 1 corresponding to value iteration/synchronous Q-learning, and the case
mk =∞ corresponding to (exact) policy iteration.

However, our algorithm has another qualitative dimension, because the randomized policy νk may
differ significantly from the deterministic policy (2.11). In particular, suppose that mk = ∞ and νk is
chosen to assign positive probability to nonoptimal controls, i.e., so that νk

(
µ∗(j) | j

)
= 0 for all j and

optimal policies µ∗. Then since Jk → J∗ (as we will show shortly), we have for all j and sufficiently large k,
Jk(j) < QJk,νk

(j, v) for all v with νk(v | j) > 0, so that

Jk+1(i) = min
u∈U(i)

n∑

j=1

pij(u)

g(i, u, j) + α

∑

v∈U(j)

νk(v | j) min
{
Jk(j), QJk,νk

(j, v)
}

= min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJk(j)

)
, ∀ i.

Thus the algorithm, for sufficiently large k, reduces to synchronous Q-learning/value iteration for the original
MDP, even though mk =∞, and produces the same results as with the choice mk = 1 (or any value of mk)!

The preceding arguments illustrate that the choices of νk and mk are the two factors that affect most the
qualitative character of the algorithm. With little exploration [approaching the extreme case where νk is the
deterministic policy (2.11)] our algorithm tends to act nearly like modified policy iteration (or exact policy
iteration for mk =∞). With substantial exploration [approaching the extreme case where νk

(
µk(j) | j

)
= 0

for any policy µk generated according to Eq. (2.11)] it tends to act nearly like Q-learning/value iteration
(regardless of the value of mk). This reasoning also suggests that with substantial exploration it may be
better to use small values of mk.

When exploration is desired, as in the case where feature-based Q-factor approximations are used (cf.
Sections 6 and 7), a reasonable way to operate the algorithm is to determine νk by “superimposing” some
exploration to the deterministic policy µk of Eq. (2.11). For example, we may use a distribution νk that is
a random mixture of µk and another policy that induces exploration, including visits to state-control pairs

7

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

Figure 2.1. Illustration of exploration-enhanced policy iteration algorithm. The policy evalua-

tion consists of a finite number of Q-value iterations for the optimal stopping problem involving

the randomized policy ν and the theshold/stopping cost J [cf. Eq. (2.8)]. It is followed by policy

improvement that produces a new deterministic policy [cf. Eq. (2.11)], which forms the basis for

constructing the new randomized policy using some exploration mechanism.

that are unlikely/impossible to generate under µk). In this case, we may view the calculation of Qk+1 via
Eq. (2.8) as a form of approximate policy evaluation, somewhat similar to one or more value iterations,
depending on the degree of exploration allowed by νk and the value of mk, and we may view Eq. (2.11) as
a form of corresponding policy improvement (see Fig. 2.1).

We now prove our main convergence result.

Proposition 2.2: For any choice of (Q0, J0), {νk}, and {mk}, a sequence
{

(Qk, Jk)
}

generated by
the algorithm (2.8)-(2.9) converges to (Q∗, J∗), and the rate of convergence is geometric. Furthermore,
for all k after some index k, the generated policies µk are optimal.

Proof: Since J∗(i) = minu∈U(i)Q∗(i, u) [cf. Eq. (2.1)], we have using Eqs. (2.2) and (2.5), FJ∗,νQ∗ =
FQ∗ = Q∗ for all ν. From Prop. 2.1, it follows that

‖FJ,νQ−Q∗‖∞ ≤ αmax
{
‖J − J∗‖∞, ‖Q−Q∗‖∞

}
, ∀ Q, J, ν.

Using this relation, we have

‖F 2
Jk,νk

Qk −Q∗‖∞ ≤ αmax
{
‖Jk − J∗‖∞, ‖FJk,νk

Qk −Q∗‖∞
}
≤ max

{
α‖Jk − J∗‖∞, α2‖Qk −Q∗‖∞

}
,

and by repeating this process,

‖Qk+1 −Q∗‖∞ = ‖Fmk
Jk,νk

Qk −Q∗‖∞ ≤ max
{
α‖Jk − J∗‖∞, αmk‖Qk −Q∗‖∞

}
. (2.12)

Since for all Q, and Q̃, we have †

max
i=1,...,n

∣∣∣∣ min
u∈U(i)

Q(i, u)− min
u∈U(i)

Q̃(i, u)
∣∣∣∣ ≤ ‖Q− Q̃‖∞, (2.13)

† This is a well-known property. For a proof, write

Q(i, u) ≤ ‖Q− Q̃‖∞ + Q̃(i, u), ∀ (i, u),

take minimum of both sides over u ∈ U(i), exchange the roles of Q and Q̃, and take maximum over i.

8

it follows by taking Q = Qk and Q̃ = Q∗, that for k > 0,

‖Jk − J∗‖∞ ≤ ‖Qk −Q∗‖∞. (2.14)

Combining Eqs. (2.12) and (2.14), we obtain

‖Qk+1 −Q∗‖∞ ≤ α‖Qk −Q∗‖∞. (2.15)

Thus Qk converges to Q∗ geometrically, and in view of Eq. (2.14), {Jk} also converges to J∗ geometrically.
The optimality of µk for sufficiently large k follows from the convergence Qk → Q∗, since a policy µ∗ is
optimal if and only if µ∗(i) minimizes Q∗(i, u) over U(i) for all i. Q.E.D.

The preceding proof can also be used to establish a fact that complements Prop. 2.1, namely that for
every randomized policy ν and integer m ≥ 1, the mapping underlying our algorithm,

(Q, J) 7→
(
FmJ,νQ, M FmJ,νQ

)
,

where
(M FmJ,νQ)(i) = min

u∈U(i)
(FmJ,νQ)(i, u), ∀ i = 1, . . . , n,

is a sup-norm contraction of modulus α, and its unique fixed point is (Q∗, J∗). This is the mathematical
foundation for the convergence properties of the algorithm (2.8)-(2.9), as well as its asynchronous variants
to be discussed in the next section.

3. ASYNCHRONOUS VERSION OF THE ALGORITHM

The algorithm, as given in Eqs. (2.8)-(2.9), may be viewed as synchronous in the sense that the Q-factors of all
state-control pairs are simultaneously updated at each iteration. The contraction property of the underlying
mappings [cf. Prop. 2.1 and Eqs. (2.13)-(2.15)] can be used to establish the convergence of the algorithm
under far more irregular conditions. In particular, we consider in this section asynchronous updating of
Q-factors and state costs corresponding to blocks of components, and we discuss in Section 4 model-free
sampled versions, which do not require the explicit knowledge of pij(u) and the calculation of expected
values.

In standard asynchronous versions of policy iteration for Q-factors [cf. Eqs. (2.3)-(2.4)], the updates
of µ and Q are executed selectively, for only some of the states and state-control pairs. In a fairly general
implementation discussed in the literature ([BeT96], Section 2.2, or [Ber07], Section 1.3.3), there are two
types of iterations: those corresponding to an index subset KQ where Q is updated, and those corresponding
to the complementary subset Kµ where µ is updated. The algorithm generates a sequence of pairs (Qk, µk),
starting from an arbitrary pair (Q0, µ0) as follows:

Qk+1(i, u) =
{

(FµkQk)(i, u) if (i, u) ∈ Rk,
Qk(i, u) if (i, u) /∈ Rk,

∀ k ∈ KQ, (3.1)

µk+1(j) =
{

arg minv∈U(j)Qk(j, v) if j ∈ Sk,
µk(j) if j /∈ Sk,

∀ k ∈ Kµ, (3.2)

where Rk and Sk are subsets of state-control pairs and states, respectively, one of which is nonempty while
the other is empty [so that either Eq. (3.1), or Eq. (3.2) is performed]. Relative to ordinary Q-learning, the

9

advantage is that the minimization in Eq. (3.2) is performed only for k ∈ Kµ and only for the states in Sk

(rather than at each iteration, and for all states), thereby saving computational overhead (this is the generic
advantage that modified policy iteration has over ordinary value iteration). Unfortunately, the convergence
of the asynchronous policy iteration (3.1)-(3.2) to Q∗ is questionable in the absence of additional restrictions;
some assumption, such as Fµ0Q0 ≤ Q0, is required for the initial policy µ0 and vector Q0 (see Williams and
Baird [WiB93] for a proof and counterexamples to convergence, or [BeT96], Prop. 2.5, and [Ber07], Prop.
1.3.5). The restriction Fµ0Q0 ≤ Q0 can be satisfied by adding to Q0 a sufficiently large multiple of the unit
vector. The need for it, however, indicates that the convergence properties of the algorithm (3.1)-(3.2) are
fragile and sensitive to the assumptions, which may cause convergence difficulties in both its deterministic
and its stochastic simulation-based variants. In particular, no related convergence results or counterexamples
are currently known for the case where the expected value of Eq. (3.1) is replaced by a single sample in a
stochastic approximation-type of update.

In a corresponding asynchronous version of our algorithm (2.8)-(2.9), again Q is updated selectively,
for only some of the state-control pairs, and J is also updated at some iterations and for some of the states.
There may also be a policy µ that is maintained and updated selectively at some of the states. This policy
may be used to generate a randomized policy ν which enters the algorithm in a material way. However, the
algorithm is valid for any choice of ν, so its definition need not involve the policy µ and the method in which
it is used to update ν (we will later give an example of an updating scheme for µ and ν). Specifically, our
asynchronous algorithm, stated in general terms, generates a sequence of pairs (Qk, Jk), starting from an
arbitrary pair (Q0, J0). Given (Qk, Jk), we obtain the next pair (Qk+1, Jk+1) as follows:

Asynchronous Policy Iteration:

Select a randomized policy νk, a subset Rk of state-control pairs, and a subset of states Sk such that
Rk ∪ Sk 6= ∅, generate Qk+1 according to

Qk+1(i, u) =
{

(FJk,νk
Qk)(i, u) if (i, u) ∈ Rk,

Qk(i, u) if (i, u) /∈ Rk,
(3.3)

and generate Jk+1 according to

Jk+1(i) =
{

minu∈U(i)Qk(i, u) if i ∈ Sk,
Jk(i) if i /∈ Sk.

(3.4)

As mentioned earlier, νk may be selected in special ways so that it gives the algorithm a policy iteration
character, which can then be compared with (synchronous or asynchronous) modified policy iteration for
Q-factors, such as the one of Eqs. (3.1)-(3.2). For an example of such an algorithm, assume that a policy
µk is also maintained, which defines νk (so νk is the deterministic policy µk). The algorithm updates Q
according to

Qk+1(i, u) =
{

(FJk,µk
Qk)(i, u) if (i, u) ∈ Rk,

Qk(i, u) if (i, u) /∈ Rk,
(3.5)

and it updates J and µ according to

Jk+1(j) =
{

minv∈U(j)Qk(j, v) if j ∈ Sk,
Jk(j) if j /∈ Sk,

µk+1(j) =
{

arg minv∈U(j)Qk(j, v) if j ∈ Sk,
µk(j) if j /∈ Sk,

(3.6)

10

where Rk and Sk are subsets of state-control pairs and states.

We may view Eq. (3.5) as a policy evaluation iteration for the state-control pairs in Rk, and Eq. (3.6)
as a policy improvement iteration only for the states in Sk. In comparing the new algorithm (3.5)-(3.6)
with the known algorithm (3.1)-(3.2), we see that the essential difference is that Eq. (3.5) involves the
use of Jk and the minimization in the right-hand side, while Eq. (3.1) does not. As we will show in the
following proposition, this precludes the kind of anomalous behavior that is exhibited in the Williams and
Baird counterexamples [WiB93] mentioned earlier. Mathematically, the reason for this may be traced to the
presence of the cost vector J in Eq. (3.3) and its special case Eq. (3.5), and the sup-norm contraction in the
space of (Q, J), which underlies iterations (3.3)-(3.4) and (3.5)-(3.6) [cf. Prop. 2.1 and Eqs. (2.13)-(2.15)].

The following convergence result bears similarity to general convergence results for asynchronous dis-
tributed DP and related algorithms involving sup-norm contractions (see [Ber82], [Ber83], and [BeT89],
Section 6.2).

Proposition 3.1: Assume that each pair (i, u) is included in the set Rk infinitely often, and each
state i is included in the set Sk infinitely often. Then any sequence

{
(Qk, Jk)

}
generated by the

algorithm (3.3)-(3.4) converges to (Q∗, J∗).

Proof: Let {kj} and {k̂j} be sequences of iteration indices such that k0 = 0, kj < k̂j < kj+1 for j = 0, 1, . . . ,

and for all j, each (i, u) is included in ∪k̂j−1

k=kj
Rk at least once, while each i is included in ∪kj+1−1

k=k̂j
Sk at least

once. Thus, between iterations kj and k̂j , each component of Q is updated at least once, and between
iterations k̂j and kj+1, each component of J is updated at least once.

By using Prop. 2.1, we have for all k

|Qk+1(i, u)−Q∗(i, u)| ≤ αmax
{
‖Jk − J∗‖∞, ‖Qk −Q∗‖∞

}
, ∀ (i, u) ∈ Rk, (3.7)

Qk+1(i, u) = Qk(i, u), ∀ (i, u) /∈ Rk. (3.8)

Also, by using the nonexpansive property of the minimization operation [cf. Eq. (2.13)], we have for all k

|Jk+1(i)− J∗(i)| ≤ ‖Qk −Q∗‖∞, ∀ i ∈ Sk, (3.9)

Jk+1(i) = Jk(i), ∀ i /∈ Sk. (3.10)

From these relations, it follows that

max
{
‖Jk+1 − J∗‖∞, ‖Qk+1 −Q∗‖∞

}
≤ max

{
‖Jk − J∗‖∞, ‖Qk −Q∗‖∞

}
, ∀ k = 0, 1, (3.11)

For each k ∈ [k̂j , kj+1], we have from Eqs. (3.7), (3.8),

|Qk(i, u)−Q∗(i, u)| ≤ αmax
{
‖Jk̃(i,u,k) − J∗‖∞, ‖Qk̃(i,u,k) −Q∗‖∞

}
, ∀ (i, u), (3.12)

where k̃(i, u, k) is the last iteration index between kj and k when the component Q(i, u) is updated. Since
each component of Q is updated at least once between iterations kj and k ∈ [k̂j , kj+1], using also Eq. (3.11),
it follows that

‖Qk −Q∗‖∞ ≤ αmax
{
‖Jkj − J∗‖∞, ‖Qkj −Q∗‖∞

}
, ∀ j = 0, 1, . . . , k ∈ [k̂j , kj+1]. (3.13)

11

Since each component of J is updated at least once between iterations k̂j and kj+1, we have from Eqs. (3.9)
and (3.10) that

|Jkj+1(i)− J∗(i)| ≤ ‖Qk̃(i) −Q∗‖∞, ∀ i = 1, . . . , n,

where k̃(i) is the last iteration index between k̂j and kj+1 when the component J(i) is updated, so from Eq.
(3.13), it follows that

‖Jkj+1 − J∗‖∞ ≤ αmax
{
‖Jkj − J∗‖∞, ‖Qkj −Q∗‖∞

}
, ∀ j = 0, 1, (3.14)

Combining Eqs. (3.13) and (3.14), we obtain

max
{
‖Jkj+1 − J∗‖∞, ‖Qkj+1 −Q∗‖∞

}
≤ αmax

{
‖Jkj − J∗‖∞, ‖Qkj −Q∗‖∞

}
, ∀ j = 0, 1, . . . ,

so max
{
‖Jkj − J∗‖∞, ‖Qkj −Q∗‖∞

}
→ 0 as j →∞, i.e., that (Qkj , Jkj)→ (Q∗, J∗) as j →∞. Using also

Eq. (3.11), this implies that the entire sequence
{

(Qk, Jk)
}

converges to (Q∗, J∗). Q.E.D.

4. STOCHASTIC ITERATIVE VERSIONS OF THE ALGORITHM

In this section we consider stochastic iterative versions of our algorithm, which are patterned after the
classical Q-learning algorithm of Watkins [Wat89], as well as optimistic and modified policy iteration methods
([BeT96], Section 5.4). We will compare our algorithm with the classical Q-learning algorithm, whereby we
generate a sequence of state-control pairs

{
(ik, uk) | k = 0, 1, . . .

}
by any probabilistic mechanism that

guarantees that each pair (i, u) appears infinitely often with probability 1, and at each time k, we generate
a successor state jk according to the distribution pikj(uk), j = 1, . . . , n, and we update only the Q-factor of
(ik, uk),

Qk+1(ik, uk) =
(
1− γ(ik,uk),k

)
Qk(ik, uk) + γ(ik,uk),k

(
g(ik, uk, jk) + α min

v∈U(j)
Qk(jk, v)

)
, (4.1)

while leaving all other components of Qk unchanged: Qk+1(i, u) = Qk(i, u) for all (i, u) 6= (ik, uk). The
positive stepsizes γ(ik,uk),k may depend on the current pair (ik, uk), and must satisfy assumptions that are
standard in stochastic approximation methods (i.e., must diminish to 0 at a suitable rate). There are also
distributed asynchronous versions of the algorithm (4.1), where Qk(jk, v) may be replaced by Qτk,v (jk, v),
where k − τk,v may be viewed as a nonnegative integer “delay” that depends on k and v, as discussed by
Tsitsiklis [Tsi94], and other sources on asynchronous stochastic approximation methods such as [TBA86],
[BeT89], [Bor98], [ABB02], and [Bor08].

In what follows in this section, we present three model-free optimistic policy iteration algorithms, which
update a cost vector J in addition to the Q-factor vector Q, similar to the algorithms of Sections 2 and 3.
We focus on a specific order of updates (simultaneous updates of selected components of J and Q), but other
orders may also be considered. We refer to these algorithms as Algorithms I-III, and we briefly describe
them below:

(I) This algorithm resembles the classical Q-learning algorithm (4.1), but requires less overhead per itera-
tion [the minimization over u ∈ U(j) is replaced by a simpler operation]. It also bears similarity with
a known partially optimistic TD(0) algorithm, discussed in Section 5.4 of [BeT96], but has improved
convergence properties.

12

(II) This algorithm parallels the asynchronous policy iteration method (3.3)-(3.4) of the preceding section,
but is model-free and uses a single sample per state instead of computing an expected value.

(III) This algorithm generalizes the first two, and allows more complex mechanisms for generating state
control pairs, as well as “delayed” components of state costs and Q-factors in its iteration. Among
others, the extra generality is helpful in addressing implementations in an asynchronous distributed
computing system, and also facilitates the convergence analysis, as we will explain later.

We find it useful to present Algorithms I and II first, since they offer different advantages in different
situations, and they help to motivate the more general Algorithm III. We establish the convergence of the
latter algorithm using the asynchronous stochastic approximation-type convergence framework of Tsitsiklis
[Tsi94]. All the variables involved in the algorithms (states, state-control pairs, costs of states, Q-factors,
policies, sets of indexes that determine which components are updated, etc) are to be viewed as random
variables defined on a common probability space. Specific technical assumptions about their probabilistic
properties will be given at the appropriate points later.

4.1. Some Model-Free Optimistic Policy Iteration Algorithms

Similar to classical Q-learning, our first algorithm generates a sequence of state-control pairs
{

(ik, uk) | k =
0, 1, . . .

}
, and updates only the Q-factor of (ik, uk) at iteration k, using a positive stepsize γ(ik,uk),k. It also

updates a single component of J if k ∈ KJ , where KJ is an infinite subset of indices (which need not be
predetermined, but may depend on algorithmic progress). The algorithm may choose νk arbitrarily for each
k and with dependence on (ik, uk), but one possibility is to maintain a policy µk that is updated at selected
states simultaneously with J , and then use νk = µk, similar to algorithm (3.5)-(3.6). Furthermore, the
controls uk may be generated in accordance with νk; this gives the algorithm a modified/optimistic policy
iteration character. The states ik+1 may be generated according to pikj(uk), as in some optimistic policy
iteration methods, although this is not essential for the convergence of the algorithm. Compared to the
preceding Q-learning algorithm (4.1), the algorithm has an advantage similar to the one that modified policy
iteration has over value iteration [less overhead because it does not require the minimization over all controls
v ∈ U(j) at every iteration]. In particular, given the pair (Qk, Jk), the algorithm obtains (Qk+1, Jk+1) as
follows:

Model-Free Optimistic Policy Iteration I:

(1) Select a state-action pair (ik, uk). If k ∈ KJ , update Jk according to

Jk+1(j) =
{

minv∈U(j)Qk(j, v) if j = ik,
Jk(j) if j 6= ik;

(4.2)

otherwise leave Jk unchanged (Jk+1 = Jk).

(2) Select a stepsize γ(ik,uk),k ∈ (0, 1] and a policy ν(ik,uk),k. Generate a successor state jk according
to the distribution pikj(uk), j = 1, . . . , n, and generate a control vk according to the distribution
ν(ik,uk),k(v | jk), v ∈ U(jk).

13

(3) Update the (ik, uk)th component of Q according to

Qk+1(ik, uk) =
(
1− γ(ik,uk),k

)
Qk(ik, uk) + γ(ik,uk),k

(
g(ik, uk, jk) + αmin

{
Jk(jk), Qk(jk, vk)

})
,

(4.3)
and leave all other components of Qk unchanged: Qk+1(i, u) = Qk(i, u) for all (i, u) 6= (ik, uk).

The preceding algorithm (Algorithm I) has similarities with the partially optimistic TD(0) algorithm,
discussed in Section 5.4 of [BeT96]. The latter algorithm updates only J [rather than (J,Q)] using TD(0),
and also maintains a policy, which is updated at selected iterations. However, its convergence properties are
dubious, as discussed in p. 231 of [BeT96] (see also Tsitsiklis [Tsi02]). By contrast, we will show that our
algorithm above has satisfactory convergence properties.

We now give another stochastic iterative algorithm, which parallels the asynchronous policy iteration
method (3.3)-(3.4) of Section 3. Given the pair (Qk, Jk), the algorithm obtains (Qk+1, Jk+1) as follows:

Model-Free Optimistic Policy Iteration II:

Select a subset Rk of state-control pairs, and a subset of states Sk such that Rk ∪ Sk 6= ∅.
Update Jk according to

Jk+1(i) =
{

minu∈U(i)Qk(i, u) if i ∈ Sk,
Jk(i) if i /∈ Sk.

(4.4)

For each ` = (i, u) ∈ Rk, select a stepsize γ`,k ∈ (0, 1] and a policy ν`,k, and:

(1) Generate a successor state jk according to the distribution pij(u), j = 1, . . . , n, and generate a
control vk according to the distribution ν`,k(v | jk), v ∈ U(jk).

(2) Update the (i, u)th component of Qk according to

Qk+1(i, u) =
(
1− γ(i,u),k

)
Qk(i, u) + γ`,k

(
g(i, u, jk) + αmin

{
Jk(jk), Qk(jk, vk)

})
. (4.5)

Leave all other components of Qk unchanged: Qk+1(i, u) = Qk(i, u) for all (i, u) /∈ Rk.

In the preceding algorithm (Algorithm II), the successor state-control pair (jk, vk) corresponding to the
different pairs ` = (i, u) ∈ Rk are different random variables. We have used the same notation for simplicity.
Compared with Algorithm I, the chief difference in Algorithm II is that it allows multiple components of J
and Q to be updated at each iteration. Compared with the deterministic asynchronous version (3.3)-(3.4),
the chief difference is that selected components of Q are updated using a single sample in place of the
expected value that defines FJk,ν`,k

[cf. Eqs. (3.3) and (3.5)]. Such updates must satisfy certain properties,
to be discussed in what follows, so that the error due to simulation noise will vanish in the limit.

It is convenient to view the next algorithm (Algorithm III) as an algorithm that operates in the joint
space of the pair (J,Q). We denote xk = (Jk, Qk) and introduce outdated information in updating xk. This
is natural for asynchronous distributed computation, in which case each component ` may be associated with

14

a processor, which keeps at time k a local, outdated version of xk, denoted by x(`)
k . We introduce outdated

information not just for more generality, but also to facilitate the association with the algorithmic framework
of [Tsi04], which we will use in our convergence proof. In particular, x(`)

k has the form

x
(`)
k =

(
x1,τ`

1,k
, . . . , xm,τ`

m,k

)
, (4.6)

where the nonnegative difference k − τ `j,k indicates a “communication delay” relative to the “current” time
k for the jth component of x at the processor updating component ` (j, ` = 1, . . . ,m, with m being the sum
of the number of states and the number of state-control pairs). We write x(`)

k in terms of its components J
and Q as

x
(`)
k =

(
J

(`)
k , Q

(`)
k

)
. (4.7)

We will require later that limk→∞ τ `j,k = ∞ for all ` and j, but the exact values of τ `j,k are immaterial and
need not even be known to the processor.

In the following Algorithm III, we can use outdated information to update J and Q, and the choice
of the policy ν at time k may depend on the successor state jk in addition to the history of the algorithm
up to time k. To be more precise, let Ik be an information vector, a random variable that consists of the
entire history of the algorithm up to time k (this includes the stepsizes γ`,t, the index sets St and Rt selected
for cost and Q-factor updates, the results of the updates, and the delays t − τ `j,t, at all times t ≤ k). We
will assume that the selection of the policy is based on (Ik, jk), where jk is the successor state generated
according to probabilities pij(u) similar to Algorithm II.

Model-Free Optimistic Policy Iteration III:

Select a subset Rk of state-control pairs, and a subset of states Sk such that Rk ∪ Sk 6= ∅. For each
` ∈ Rk ∪ Sk, choose a stepsize γ`,k ∈ (0, 1] and times τ `j,k ≤ k, j = 1, . . . ,m. Let (J (`)

k , Q
(`)
k) be as

defined in Eqs. (4.6) and (4.7).

Update Jk according to

Jk+1(i) =

{
(1− γ`,k)Jk(i) + γ`,k minu∈U(i)Q

(`)
k (i, u), with ` = i, if i ∈ Sk,

Jk(i) if i /∈ Sk.
(4.8)

For each ` = (i, u) ∈ Rk:

(1) Generate a successor state j`,k according to the distribution pij(u), j = 1, . . . , n. Select a
policy ν`,Ik,j`,k

based on the information (Ik, j`,k), and generate a control v`,k according to the
distribution ν`,Ik,j`,k

(v | j`,k), v ∈ U(j`,k).

(2) Update the (i, u)th component of Qk according to

Qk+1(i, u) =
(
1− γ`,k

)
Qk(i, u) + γ`,k

(
g(i, u, j`,k) + αmin

{
J

(`)
k (j`,k), Q(`)

k (j`,k, v`,k)
})
. (4.9)

Leave all other components of Qk unchanged: Qk+1(i, u) = Qk(i, u) for all (i, u) /∈ Rk.

15

4.2. A General Algorithmic Model

As preparation for an analytically more convenient description of Algorithm III, we introduce some notation.
Let M denote the set of all stationary (deterministic or randomized) policies. For each ν ∈ M, define an
operator Lν on the space of (J,Q) by

(J̃ , Q̃) = Lν(J,Q), (4.10)

where
J̃(i) = min

u∈U(i)
Q(i, u), i = 1, . . . , n, Q̃ = FJ,νQ. (4.11)

Denote the `th component of the mapping Lν by Lν` , where ` = 1, . . . ,m. As can be seen from Eq. (4.11), if
` corresponds to the ith component of J , then Lν` (J,Q) = minu∈U(i)Q(i, u), whereas if ` corresponds to the
(i, u)th component of Q, then Lν` (J,Q) = (FJ,νQ)(i, u).

We note that for a given ` ∈ Rk, the policy ν`,Ik,j`,k
is a measurable M-valued random variable with

respect to the σ-field σ(Ik, j`,k) generated by (Ik, j`,k) [since it is selected with knowledge of (Ik, j`,k)]. We
introduce the σ(Ik)-measurable M-valued random variable ν̄`,Ik =

{
ν̄`,Ik(v | j) | v ∈ U(j), j = 1, . . . , n

}
,

which is the conditional distribution of v corresponding to the joint distribution P (j`,k = j, v`,k = v | Ik),
i.e.,

P (j`,k = j, v`,k = v | Ik) = pij(u) ν̄`,Ik(v | j), ∀ j, v ∈ U(j). (4.12)

[If ` = (i, u) and j is such that pij(u) = 0, we have P (j`,k = j, v`,k = v | Ik) = 0 for all v ∈ U(j), and we
may define ν̄`,Ik(v | j) to be any distribution over U(j), for example the uniform distribution.] Note that if
in Algorithm III, ν`,Ik,j`,k

(· | j) is chosen before j`,k is generated, then ν̄`,Ik coincides with ν`,k; this is the
case in Algorithm II.

We can now express Algorithm III in a compact form using the mappings Lν of Eqs. (4.10)-(4.11). It
can be equivalently written as

x`,k+1 = (1− γ`,k)x`,k + γ`,k

(
L
ν̄`,Ik
`

(
x

(`)
k

)
+ w`,k

)
, (4.13)

where:

(a) If ` = (i, u) ∈ Rk, we have γ`,k ∈ (0, 1], and w`,k is a noise term given by

w`,k = g(i, u, j`,k) + αmin
{
J

(`)
k (j`,k) , Q(`)

k (j`,k, v`,k)
}
−
(
F
J

(`)
k
,ν̄`,Ik

Q
(`)
k

)
(i, u). (4.14)

[cf. Eqs. (4.9) and (4.11), and noticing that L
ν̄`,Ik
` (x(`)

k) = (F
J

(`)
k
,ν̄`,Ik

Q
(`)
k)(i, u).]

(b) If ` ∈ Sk, we have γ`,k ∈ (0, 1], w`,k = 0, and ν̄`,Ik is immaterial [cf. Eqs. (4.8) and (4.11)].

(c) If ` 6∈ Rk ∪ Sk, we have γ`,k = 0, w`,k = 0.

With γ`,k defined for all ` and k, the sets Rk, Sk may also be specified implicitly by those γ`,k that are
positive.

4.3. Convergence Analysis

Our convergence analysis of the general algorithm (4.8)-(4.9), equivalently given in (4.13)-(4.14), uses exten-
sions of two results from Tsitsiklis [Tsi94], which relate to the convergence of algorithms of the form (4.13)

16

with the exception that there is only a single contraction mapping L in place of Lν̄`,Ik . Our analysis is based
on the observation that these results of [Tsi94] extend to the case with multiple mappings, if the latter are
contraction mappings with respect to the same norm and have the same fixed point.

Thus, the first step of our convergence proof is to establish a common contraction property of Lν for
all stationary policies ν. Define a weighted sup-norm ‖ · ‖ζ on the space of (J,Q) by

‖(J,Q)‖ζ = max
{‖J‖∞

ξ
, ‖Q‖∞

}
, (4.15)

where ξ is a positive scalar such that

ξ > 1, αξ < 1. (4.16)

Proposition 4.1: Let ‖ · ‖ζ and ξ be given by Eqs. (4.15) and (4.16), respectively, and let β =
max{αξ, 1/ξ} < 1. For all stationary policies ν, (J∗, Q∗) is the unique fixed point of the mapping Lν

given by Eqs. (4.10)-(4.11), and we have

‖Lν(J,Q)− Lν(J ′, Q′)‖ζ ≤ β‖(J,Q)− (J ′, Q′)‖ζ (4.17)

for all pairs (J,Q) and (J ′, Q′).

Proof: At the beginning of the proof of Prop. 2.2 we showed that (J∗, Q∗) is a fixed point of Lν for all ν.
The uniqueness of the fixed point will be implied by Eq. (4.17), which we now prove. Let (J̃ , Q̃) = Lν(J,Q)
and (J̃ ′, Q̃′) = Lν(J ′, Q′). By Prop. 2.1, we have

‖Q̃− Q̃′‖∞ ≤ αmax{‖J − J ′‖∞ , ‖Q−Q′‖∞}

= αmax
{
ξ · ‖J − J

′‖∞
ξ

, ‖Q−Q′‖∞
}

≤ αmax
{
ξ · ‖J − J

′‖∞
ξ

, ξ · ‖Q−Q′‖∞
}

= αξ · ‖(J,Q)− (J ′, Q′)‖ζ ,

(4.18)

where we used ξ > 1 to derive the second inequality. We also have

‖J̃ − J̃ ′‖∞ ≤ ‖Q−Q′‖∞,

which implies that
‖J̃ − J̃ ′‖∞

ξ
≤ 1
ξ
· ‖Q−Q′‖∞

≤ 1
ξ
·max

{‖J − J ′‖∞
ξ

, ‖Q−Q′‖∞
}

=
1
ξ
· ‖(J,Q)− (J ′, Q′)‖ζ .

(4.19)

17

Equations (4.18) and (4.19) imply the desired property (4.17):

‖(J̃ , Q̃)− (J̃ ′, Q̃′)‖ζ = max

{
‖J̃ − J̃ ′‖∞

ξ
, ‖Q̃− Q̃′‖∞

}

≤ max{αξ, 1/ξ} · ‖(J,Q)− (J ′, Q′)‖ζ
= β ‖(J,Q)− (J ′, Q′)‖ζ .

Q.E.D.

We now specify conditions on the variables involved in the algorithm (4.13)-(4.14). Our conditions
parallel the assumptions given in [Tsi94] (Assumptions 1-3), which are standard for asynchronous stochastic
approximation. We use the shorthand “w.p.1” for “with probability 1.” The first condition is a mild, natural
requirement for the delays.

Condition 4.1: For any ` and j, limk→∞ τ `j,k =∞ w.p.1.

The next condition is mainly about the noise terms w`,k. Let (Ω,F , P) be the common probability
space on which all the random variables involved in the algorithm are defined, and let {Fk, k ≥ 0} be an
increasing sequence of subfields of F .

Condition 4.2:

(a) x0 is F0-measurable.

(b) For every ` corresponding to a component of Q and every k, w`,k is Fk+1-measurable.

(c) For every j, `, and k, γ`,k, τ `j,k and ν̄`,Ik are Fk-measurable.

(d) For every ` corresponding to a component of Q and every k,

E
[
w`,k | Fk

]
= 0.

(e) There exist (deterministic) constants A and B such that for every ` corresponding to a component of
Q and every k,

E
[
w2
`,k | Fk

]
≤ A+Bmax

j
max
τ≤k
|xj,τ |2.

The next condition deals with the stepsize variables.

Condition 4.3:

(a) For every `, ∑

k≥0

γ`,k =∞, w.p.1.

(b) There exists some (deterministic) constant C such that for every ` corresponding to a component of Q,
∑

k≥0

γ2
`,k ≤ C, w.p.1.

Condition 4.3(a) implies that all components of J and Q are updated infinitely often, which is also part
of the assumptions of Prop. 3.1. A simple way to choose stepsize sequences {γ`,k} that satisfy Condition 4.3

18

is to define them using a positive scalar sequence {γk} which diminishes to 0 at a suitable rate [e.g., O(1/k)]:
For all ` ∈ Rk, let γ`,k have a common value γk, and select all state-control pairs (i, u) “comparably often” in
the sense that the fraction of times (i, u) is selected for iteration is nonzero in the limit (see Borkar [Bor08]).

There are two insignificant differences between the preceding conditions and the assumptions in [Tsi94]
(Assumptions 1-3). First, Condition 4.2(c) is imposed on the random variables ν̄`,Ik , which do not appear in
[Tsi94]. Second, Conditions 4.2(d) and 4.2(e) are imposed on the noise terms w`,k, which are involved in the
updates of components of Q only [for components of J , there is no noise (w`,k = 0) in the updates and these
conditions are trivially satisfied]. For the same reason, Condition 4.3(b), a standard condition for bounding
asymptotically the error due to noise, is also imposed on the components of Q only [in [Tsi94], Condition
4.3(b) is imposed on all components of x].

We now verify that by its definition, the algorithm (4.13)-(4.14) satisfies Condition 4.2. Let Fk = σ(Ik).
Then Conditions 4.2(a)-(c) are satisfied by the definition of the algorithm; in particular, note that ν̄`,Ik is by
definition Fk-measurable [cf. Eq. (4.12)]. We verify Conditions 4.2(d)-(e), similar to the standard Q-learning
case given in [Tsi94]. Let ` ∈ Rk and (j`,k, v`,k) be the corresponding successor state-control pair. From the
way j`,k is generated, it is seen that

E
[
g(i, u, j`,k) | Fk

]
=

n∑

j=1

pij(u)g(i, u, j).

From the way
(
j`,k, v`,k

)
is generated and the definition of ν̄`,Ik [cf. Eq. (4.12)], we have

E
[
min

{
J

(`)
k (j`,k), Q(`)

k (j`,k, v`,k)
} ∣∣ Fk

]
=

n∑

j=1

pij(u)
∑

v∈U(j)

ν̄`,Ik(v | j) min
{
J

(`)
k (j) , Q(`)

k (j, v)
}
.

Taking conditional expectation in Eq. (4.14) and using the preceding two equations, we obtain

E
[
w`,k | Fk

]
=

n∑

j=1

pij(u)

g(i, u, j) + α

∑

v∈U(j)

ν̄`,Ik(v | j) min
{
J

(`)
k (j) , Q(`)

k (j, v)
}

−
(
F
J

(`)
k
,ν̄`,Ik

Q
(`)
k

)
(i, u)

= 0,

so Condition 4.2(d) is satisfied. It can also be seen that we may write w`,k = Z1 + Z2 with

Z1 = g(i, u, j`,k)− E
[
g(i, u, j`,k) | Fk

]
,

Z2 = αmin
{
J

(`)
k (j`,k) , Q(`)

k (j`,k, v`,k)
}
− E

[
αmin

{
J

(`)
k (j`,k) , Q(`)

k (j`,k, v`,k)
} ∣∣ Fk

]
,

where the first expectation is over j`,k and the second is over (j`,k, v`,k). Since the number of state-control
pairs is finite, the variance of g(i, u, j`,k) can be bounded by a constant C for all (i, u): E

[
Z2

1 | Fk
]
≤ C. †

The conditional variance of min
{
J

(`)
k (j`,k), Q(`)

k (j`,k, v`,k)
}

, conditioned on Fk, is bounded by the square of
the largest absolute value that this random variable can possibly take, so

E
[
Z2

2 | Fk
]
≤ α2 max

j
max
τ≤k
|xj,τ |2.

† If instead of a scalar, g(i, u, j) is also treated as random, then one may impose a finite variance condition on it.

19

Thus, using also the Cauchy-Schwarz inequality, we have

E
[
w2
`,k | Fk

]
≤ C + α2 max

j
max
τ≤k
|xj,τ |2 + 2

√
C · α2 max

j
max
τ≤k
|xj,τ |2

≤ A+Bmax
j

max
τ≤k
|xj,τ |2, ∀ k, ` ∈ Rk,

for some deterministic constants A and B, so Condition 4.2(e) is satisfied.

Proposition 4.2: Under Conditions 4.1 and 4.3, any sequence {xk} with xk = (Jk, Qk) gener-
ated by the model-free optimistic policy iteration algorithm (4.13)-(4.14) [or equivalently, (4.8)-(4.9)]
converges to x∗ = (J∗, Q∗) with probability 1.

Proof: We have shown that Condition 4.2 is satisfied by the algorithm (4.13)-(4.14), so under the assump-
tion of the proposition, we have that all Conditions 4.1-4.3 hold. We apply the analysis of [Tsi94], and in
particular, the proofs of Theorems 1 and 3 of that reference. The two theorems imply the boundedness of
{xk} and the convergence of {xk} to x∗ with probability 1, respectively, for iterates of the form

x`,k+1 = (1− γ`,k)x`,k + γ`,k
(
L`
(
x

(`)
k

)
+ w`,k

)
,

where L is a contraction mapping with fixed point x∗, under assumptions that parallel Conditions 4.1-4.3
with minor differences, which we address below [in our algorithm, there are multiple contraction mappings Lν

that share the same fixed point, and the condition 4.3(b) is satisfied only for ` corresponding to components
of Q].

First, for a contraction mapping L with modulus β and with respect to a weighted sup-norm ‖ · ‖ζ , L
enters in the proofs of Theorems 1 and 3 of [Tsi94], only via the two inequalities:

‖L(x)‖ζ ≤ β‖x‖ζ +D, ∀x, (4.20)

where D is some constant, and
‖L(x)− x∗‖ζ ≤ β‖x− x∗‖ζ , ∀x. (4.21)

Implications of these inequalities are used to bound L`(x
(`)
k) in the iterates x`,k+1 for each sample path from

a set of probability one.

Second, in the proofs of Theorems 1 and 3 of [Tsi94], the effect of the noise {w`,k} on {x`,k} for each
component ` is analyzed in two lemmas, Lemmas 1 and 2, under Conditions 4.2(b)-(e) and 4.3 for that
particular component. It is only in those two places that Condition 4.3(b) for a component is used. The rest
of the analysis for Theorems 1 and 3 relies only indirectly on Condition 4.3(b) through the two lemmas.

In our case, the inequalities (4.20) and (4.21) are satisfied by all Lν̄`,Ik for the same ‖ · ‖ζ , β,D, and
x∗ = (J∗, Q∗), as established in Prop. 4.1. Moreover, when ` corresponds to a component of J , while the
stepsizes γ`,k are not restricted by Condition 4.3(b), because the noise terms w`,k, k ≥ 0 are always zero,
Lemmas 1 and 2 of [Tsi94] trivially hold without Condition 4.3(b) for such `. It then follows that Lemmas
1 and 2 hold for all components ` of x in our case. We can thus apply the proofs of the two theorems of
[Tsi94] with L`

(
x

(`)
k

)
replaced by L

ν̄`,Ik
`

(
x

(`)
k

)
to establish the convergence to x∗ with probability 1 for the

sequence {xk} generated by the algorithm (4.13)-(4.14). Q.E.D.

20

5. COMPUTATIONAL EXPERIMENTS

In this section we illustrate the behavior of our algorithms of Sections 3 and 4 with three numerical examples.
In summary, our experiments confirm the results of the theoretical analysis. In particular:

(1) Our asynchronous policy iteration algorithms of Section 3 converge under conditions where the classical
algorithm fails.

(2) Our Q-learning algorithms of Section 4 exhibit comparable convergence to the standard Q-learning
algorithm, with substantially less overhead per iteration.

5.1. Williams-Baird Counterexample

Williams and Baird [WiB93] provided several examples in which the initial conditions and the order of
updating the components (i.e., the sets Rk and Sk) are chosen so that the sequence of Q-factors generated
by the asynchronous modified policy iteration algorithm (3.1)-(3.2) oscillates and fails to converge. In Fig. 5.1
we compare the behavior of three asynchronous algorithms for one such example (Example 2 of [WiB93],
which involves 6 states and 2 controls; we chose the discount factor to be 0.9). The three algorithms
are the algorithm (3.1)-(3.2), the algorithm (3.3)-(3.4), and the non-stochastic version of the Q-learning
algorithm (2.2). Our experiments with algorithm (3.3)-(3.4) involved two special choices of the policies νk,
yielding two variant algorithms. The first variant is the one of Eqs. (3.5)-(3.6), and its updates are shown
in the second column. The second variant involves a deterministic policy νk selected randomly according to
the uniform distribution, and its updates are shown in the third column.

Figure 5.1 shows the values of Qk for a fixed state-control pair, which is indicated at the beginning of
each row. It can be seen that our algorithm converges as predicted by the theoretical analysis, and so does
Q-learning.

5.2. Dynamic Allocation Example

We next compare the stochastic optimistic policy iteration algorithms of Section 4 on a dynamic allocation
problem adapted from the book [Put94] (Problem 3.17, p. 70-71, attributed to Rosenthal, Whitel, and
Young). A repairman moves between 10 sites according to certain stationary transition probabilities, and a
trailer carrying supplies to the repairman may be relocated to any of the sites. The problem is to dynamically
relocate the trailer, with knowledge of the locations of the repairman and the trailer, so as to minimize the
expected discounted total cost. We chose the discount factor to be 0.98. We define the one-stage costs as
follows: at each stage, if the repairman and the trailer are at sites dr and de, respectively, and the trailer is
moved to site d̃e, then the cost is |dr − de|+ |de − d̃e|/2. Regarding the repairman’s transition probabilities,
if the repairman is at site dr, he next moves to any site dr ≤ d ≤ 10 with equal probability unless dr = 10,
in which case he moves to site 1 with probability 3/4 and stays at site 10 with probability 1/4.

In this problem there are 102 states (dr, de), dr, de = 1, . . . , 10, corresponding to the locations of the
repairman and the trailer, and 10 controls d̃e = 1, . . . 10, corresponding to the next location of the trailer.
So there are 103 Q-factors, which we denote by Q

(
(dr, de), d̃e

)
. Because the movement of the repairman

is uncontrolled, if he moves from site dr to d̃r, this transition can be used to update simultaneously the
Q-factors Q

(
(dr, de), d̃e

)
for all possible locations and moves of the trailer, de, d̃e = 1, . . . , 10. The simulation

results we present below are obtained in this way. In particular, we simulate a single trajectory of sites
s0, s1, . . . visited by the repairman. Simultaneously we apply the optimistic policy iteration algorithm II

21

0 200 400
−35

−30

−25

−20

−15

−10

−5
(2.2)

0 200 400
−35

−30

−25

−20

−15

−10

−5

0 200 400
−35

−30

−25

−20

−15

−10

−5
(3.1)−(3.2)

0 200 400
−35

−30

−25

−20

−15

−10

−5

0 200 400
−35

−30

−25

−20

−15

−10

−5
(3.5)−(3.6)

0 200 400
−35

−30

−25

−20

−15

−10

−5

0 200 400
−35

−30

−25

−20

−15

−10

−5
(3.3)−(3.4)

0 200 400
−35

−30

−25

−20

−15

−10

−5

Qk(2,2)

Qk(2,1)

0 200 400
−35

−30

−25

−20

−15

−10

−5
(2.2)

0 200 400
−35

−30

−25

−20

−15

−10

−5

0 200 400
−35

−30

−25

−20

−15

−10

−5
(3.1)−(3.2)

0 200 400
−35

−30

−25

−20

−15

−10

−5

0 200 400
−35

−30

−25

−20

−15

−10

−5
(3.5)−(3.6)

0 200 400
−35

−30

−25

−20

−15

−10

−5

0 200 400
−35

−30

−25

−20

−15

−10

−5
(3.3)−(3.4)

0 200 400
−35

−30

−25

−20

−15

−10

−5

Qk(1,1)

Qk(5,1)

Figure 5.1. Illustration of performance on Example 2 of [WiB93] for the algorithm (3.1)-(3.2),

the algorithm (3.5)-(3.6), the algorithm (3.3)-(3.4) with random selection of νk, and the non-

stochastic version of the Q-learning algorithm (2.2). The plots give the values of four Q-factors

as functions of iteration number, with the desired limit values indicated by horizontal lines.

[Eqs. (4.4)-(4.5)], in which, for updating Q-factors at iterations k = 0, 1, . . ., we let the set Rk of state-
control pairs be

{
(sk, de, d̃e) | de, d̃e = 1, . . . , 10

}
, while we update Jk once every 50 iterations, with the

corresponding set Rk of states being
{

(sk, de) | de = 1, . . . , 10
}

. We use the stepsize γ`,k = (10 + k)−0.55.

Figure 5.2 compares the algorithm (4.4)-(4.5) with ordinary Q-learning. Both algorithms use the same
stepsize sequence, the same trajectory of the repairman’s move, and the same set Rk for the block of Q-factors
to be updated at each iteration. Each subfigure corresponds to a simulation run, and shows the values of
Qk at two state-control pairs generated by the two algorithms. The two pairs consist of the same state with
two different controls, one being optimal and the other non-optimal for that state. Together with the true

22

0 1 2 3 4 5

x 10
6

136

Q*((10,10),6)

Q*((10,10),1)
140

142

144

146

148

150

152

154
O.P.I. II vs Q−Learning

0 1 2 3 4 5

x 10
6

142

Q*((10,1),1)

145

Q*((10,1),6)
148

151

154

157

160

162
O.P.I. II vs Q−Learning

0 1 2 3 4 5

x 10
6

120

125

130

135

140

Q*((10,1),1)
145

Q*((10,1),6)

150
O.P.I. II vs Q−Learning

Q−Learning

O.P.I. II
Q−Learning

O.P.I. II O.P.I. II

Q−Learning

0 1 2 3 4 5

x 10
6

136

Q*((10,10),6)

Q*((10,10),1)
140

142

144

146

148

150

152

154
O.P.I. II vs Q−Learning

0 1 2 3 4 5

x 10
6

142

Q*((10,1),1)

145

Q*((10,1),6)
148

151

154

157

160

162
O.P.I. II vs Q−Learning

0 1 2 3 4 5

x 10
6

120

125

130

135

140

Q*((10,1),1)
145

Q*((10,1),6)

150
O.P.I. II vs Q−Learning

Q−Learning

O.P.I. II

Q−Learning

O.P.I. II
O.P.I. II

Q−Learning

Figure 5.2. Comparison of the optimistic policy iteration algorithm II and Q-learning for the

dynamic allocation problem. The two rows correspond to two variants of the algorithm resulting

from different choices of the policies ν`,k, with the second choice involving more exploration than

the first one.

values, they are indicated on the vertical axis of each subfigure. The optimistic policy iteration algorithm II
is designated by “O.P.I. II.” In Fig. 5.2 we present results with two variants of the algorithm, which differ in
the choice of the policy ν`,k. In the first variant (shown in the top row of Fig. 5.2), ν`,k = νk, a deterministic
policy, initially chosen randomly and maintained throughout iterations. Its components νk(i), i ∈ Sk are
updated to be the controls that attain the minima in Eq. (4.4), whenever we update Jk. In the second variant
(shown in the bottom row of Fig. 5.2), we let ν`,k be a deterministic policy chosen randomly according to
the uniform distribution.

As the figures show, our optimistic policy iteration algorithm behaves similar to Q-learning for both
choices of ν`,k, even though it has about 90% percent less computation overhead in the minimization oper-
ations than Q-learning. We also run the algorithms with initial values Q0 and J0 well below the optimal.
The results are shown in the third column of Fig. 5.2, from which it can be seen that the updates of our
algorithm tend to produce smaller values and increase more slowly than Q-learning. This can be attributed
to the minimization operation in Eq. (4.5).

23

5.3. Automobile Replacement Example

We now compare the stochastic algorithms of Section 4 with Q-learning on the classical automobile replace-
ment problem from Howard [How60]. The problem is to decide when to replace a car as it ages, given that
the cost and value of a car decrease with its age, while the operating expense and the probability of breaking
down increase with its age. Decisions of whether to keep the car or to trade it for another car are made
at 3-month intervals. We have 41 states corresponding to the age of a car: a new car is at state/age 1, a
3-month-old car at state/age 2, and so on; but if a car breaks down or if it is more than 10 year old, then
it is at state/age 41. We have 41 controls: control 1 represents keeping the car, while controls u = 2, . . . , 41
represent trading the car for a car at state/age u− 1, i.e., a (u− 2)× 3-month-old car. For our experiments,
we set the discount factor α = 0.999 and scaled down the prices/costs so that 1 unit represents $100. We
found that the optimal policy in this case is to keep the car if it is at any of the states 4-26, and to trade it
for a 31

4 -year-old car (state 14) otherwise.

We run the optimistic policy iteration algorithms II and III, and the ordinary Q-learning algorithm
under comparable conditions. In particular, all the algorithms have access to the prices and operating costs
of cars at all ages, and they all simulate a trajectory of state-control pairs (i0, u0), (i1, u1), . . ., where ik+1

is generated according to the transition model pij(u) with i = ik, u = uk, and uk is generated by some
randomized policy to be described shortly. To make computation more efficient, at iteration k, based on the
value of (ik, uk), we update multiple Q-factors using the subsequent transition to ik+1. More specifically,
given that the control uk instantly makes the age of the car at hand to be ī, we let the set Rk of state-control
pairs, at which the algorithms update the Q-factors, to include (i) the state ī with the control to keep the
car, and (ii) all states i with the control to trade the car at hand for a car of age ī. In the Q-factor updates,
we use the stepsize γ`,k = (100 + k/104)−0.8.

The controls uk, k ≥ 0, are generated as follows. All the algorithms maintain a deterministic policy µk.
At iteration k, uk = µk(ik) with probability 0.7, while with probability 0.3, uk is chosen randomly uniformly
from a set of reasonable controls (which excludes those obviously inferior decisions to trade for an older car
that does not result in any instant benefit). Once every 50 iterations, the algorithms update the policy µk
at 10 randomly chosen states, and set the controls at those states to be the ones minimizing the respective
Q(i, u) over u. The optimistic policy iteration algorithms also update the costs Jk at these chosen states,
which form the set Sk.

In the experiments shown below, all the algorithms start with i0 = 41 and the initial policy µ0, which
is to always keep the car if it is not at state/age 41, and to buy a new car only then. The initial J0 and Q0

are calculated using this policy and the prices/costs given by the model, assuming that a car never breaks.

Figures 5.3 and 5.4 compare Q-learning and the optimistic policy iteration algorithm II [Eqs. (4.4)-
(4.5), designated by “O.P.I. II” in the figures]. In the latter algorithm, the policies ν`,k used for the Q-factor
updates (4.5) are µk. Figure 5.3 shows the iterates Qk(10, 1) and Qk(10, 14) generated by the two algorithms.
[In the experiments, only Qk(ik, uk) are recorded, and interpolation is used to generate the curves shown in
this and the following figures.] It can be seen that the optimistic policy iteration algorithm behaves similar
to Q-learning, even though in each Q-factor update, it only compares two values instead of 41 values in the
minimization operation. The right subfigure shows that near convergence, the optimistic policy iteration
algorithm tends to approach the true values from below and converges more slowly than Q-learning. Again
this can be attributed to the minimization operation in Eq. (4.5).

Figure 5.4 shows that during the early phase when the Q-factors are still far from the true values
(shown in the left subfigure), the policies µk generated by both algorithms improve rapidly. In the middle

24

0
0.

5
1

1.
5

2
x

10
8

15
00

15
20

15
40

15
60

15
80

16
00

16
20

16
40

O
.P

.I.
 v

s.
 Q
−L

ea
rn

in
g

1.
5

1.
6

1.
7

1.
8

1.
9

2
x

10
8

1,
50

0

1,
50

1

1,
50

2

1,
50

3

1,
50

4

Q
*(1

0,
1)

1,
50

6
Q

*(1
0,

14
)

1,
50

7

1,
50

8

1,
50

9

1,
51

0

Q
−L

ea
rn

in
g

O
.P

.I.
 II

Q
−L

ea
rn

in
g

O
.P

.I.
 II

F
ig

u
r
e

5
.3

.
C

o
m

p
a
ri

so
n

o
f

th
e

o
p

ti
m

is
ti

c
p

o
li
cy

it
er

a
ti

o
n

a
lg

o
ri

th
m

II
a
n

d

Q
-l

ea
rn

in
g

fo
r

th
e

a
u

to
m

o
b

il
e

re
p

la
ce

m
en

t
p

ro
b

le
m

.

0
0.

5
1

1.
5

2
x

10
6

15
00

15
20

15
40

15
60

15
80

16
00

16
20

16
40

O
.P

.I.
 v

s.
 Q
−L

ea
rn

in
g

0
0.

5
1

1.
5

2
x

10
6

1,
50

0
av

e.
 J

*

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0
Co

st
s

of
 P

ol
ici

es
: Q

−L
ea

rn
in

g

0
0.

5
1

1.
5

2
x

10
6

1,
50

0
av

e.
 J

*

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0
Co

st
s

of
 P

ol
ici

es
: O

.P
.I.

Q
−L

ea
rn

in
g

O
.P

.I.
 II

F
ig

u
r
e

5
.4

.
C

o
m

p
a
ri

so
n

o
f

th
e

o
p

ti
m

is
ti

c
p

o
li
cy

it
er

a
ti

o
n

a
lg

o
ri

th
m

II
a
n

d

Q
-l

ea
rn

in
g

a
t

th
e

ea
rl

y
p

h
a
se

fo
r

th
e

a
u

to
m

o
b

il
e

re
p

la
ce

m
en

t
p

ro
b

le
m

.

0
0.

5
1

1.
5

2
x

10
8

13
20

13
40

13
60

13
80

14
00

14
20

14
40

14
60

14
80

15
00

15
20

O
.P

.I.
 v

s.
 Q
−L

ea
rn

in
g

1.
5

1.
6

1.
7

1.
8

1.
9

2
x

10
8

1,
50

0

1,
50

1

1,
50

2

1,
50

3

1,
50

4

Q
*(1

0,
1)

1,
50

6
Q

*(1
0,

14
)

1,
50

7

1,
50

8

1,
50

9

1,
51

0

Q
−L

ea
rn

in
g

Q
−L

ea
rn

in
g O
.P

.I.
 II

O
.P

.I.
 II

F
ig

u
r
e

5
.5

.
C

o
m

p
a
ri

so
n

o
f

th
e

o
p

ti
m

is
ti

c
p

o
li
cy

it
er

a
ti

o
n

a
lg

o
ri

th
m

II
a
n

d

Q
-l

ea
rn

in
g

fo
r

th
e

a
u

to
m

o
b

il
e

re
p

la
ce

m
en

t
p

ro
b

le
m

.

0
0.

5
1

1.
5

2
x

10
6

13
20

13
40

13
60

13
80

14
00

14
20

14
40

14
60

14
80

15
00

15
20

O
.P

.I.
 v

s.
 Q
−L

ea
rn

in
g

0
0.

5
1

1.
5

2
x

10
6

av
e.

 J
*

1,
60

0

1,
70

0

1,
80

0

1,
90

0

2,
00

0

2,
10

0

2,
20

0

2,
30

0

2,
40

0

2,
50

0
Co

st
s

of
 P

ol
ici

es
: Q

−L
ea

rn
in

g

0
0.

5
1

1.
5

2
x

10
6

av
e.

 J
*

1,
60

0

1,
70

0

1,
80

0

1,
90

0

2,
00

0

2,
10

0

2,
20

0

2,
30

0

2,
40

0

2,
50

0
Co

st
s

of
 P

ol
ici

es
: O

.P
.I.

Q
−L

ea
rn

in
g O

.P
.I.

 II

F
ig

u
r
e

5
.6

.
C

o
m

p
a
ri

so
n

o
f

th
e

o
p

ti
m

is
ti

c
p

o
li
cy

it
er

a
ti

o
n

a
lg

o
ri

th
m

II
a
n

d

Q
-l

ea
rn

in
g

a
t

th
e

ea
rl

y
p

h
a
se

fo
r

th
e

a
u

to
m

o
b

il
e

re
p

la
ce

m
en

t
p

ro
b

le
m

.

25

and right subfigures, we plot the averaged cost 1
41

∑
i Jµk(i) of the policies µk for the two algorithms; the

averaged optimal value, 1
41

∑
i J
∗(i), is indicated on the vertical axis. The averaged cost of the initial policy

µ0 is about 1, 731.

We observe that this rapid policy improvement at the early phase depends on how the initial Q0 and J0

are chosen. For comparison, Figs. 5.5 and 5.6 illustrate the behavior of both algorithms when Q0 and J0 are
shifted by a negative constant to make them well below the optimal values. Figure 5.6 shows wild oscillation
in the performance of the policies µk generated by both algorithms during the early phase. The tendency of
the optimistic policy iteration algorithm to generate smaller values can also be observed in Fig. 5.5.

We also run the same experiments to compare standard Q-learning and the optimistic policy iteration
algorithm III [Eqs. (4.8)-(4.9), designated by “O.P.I. III” in the figures]. In the latter algorithm, we use a
constant stepsize γ`,k = 0.5 to update Jk via Eq. (4.8), and we tested two variants with different choices of
the policies ν`,Ik,j`,k

in the Q-factor updates (4.9). In the first variant, we set ν`,Ik,j`,k
to be the policy µk̃,

k̃ < k, prior to the most recent policy update that gives the present µk. The results are shown in Figs. 5.7
and 5.8. In the second variant, ν`,Ik,j`,k

depends also on j`,k = ik+1, the subsequent state of the car. If
the latter is no less than 30, ν`,Ik,j`,k

= µk; otherwise, ν`,Ik,j`,k
is the randomized policy which, with equal

probability, follows µk or applies a control randomly selected from the set of reasonable controls. The results
are shown in Figs. 5.9 and 5.10. It can be seen that the behavior of the algorithm in both cases is similar to
the one described above.

6. ERROR BOUNDS FOR APPROXIMATE IMPLEMENTATIONS

In this section, we discuss the effect of approximations on the algorithm of Section 2. In particular, we
consider performing the iteration Qk+1 = F

mk
Jk,νk

Qk [cf. Eq. (2.8)] approximately, possibly using simulation
and function approximation. In such an algorithm, we generate a sequence {Qk} such that

∥∥Qk+1 − Fmk
Jk,νk

Qk
∥∥
∞ ≤ δ, (6.1)

for some δ > 0 and a sequence of positive integers {mk}. We then update Jk according to

Jk+1(i) = min
u∈U(i)

Qk+1(i, u), ∀ i, (6.2)

and let the randomized policy νk+1 be arbitrary as before.

The analysis also holds when mk may be equal to ∞, in which case Eq. (6.1) is replaced by

‖Qk+1 −QJk,νk
‖∞ ≤ δ.

The computation of Qk+1 can be done in a number of ways, some of which are discussed in the next section.
In this section, we derive an error bound in the following proposition.

Proposition 6.1: Assume that for some δ ≥ 0 and each k ≥ 0, there exists a positive integer mk

such that Eq. (6.1) holds. Let µk+1 be a policy such that µk+1(i) attains the minimum in Eq. (6.2)
for all i. Then, for any stationary policy µ that is a limit point of {µk}, we have

‖Jµ − J∗‖∞ ≤
2δ

(1− α)2
. (6.3)

26

0
0.

5
1

1.
5

2
x

10
8

15
00

15
20

15
40

15
60

15
80

16
00

16
20

16
40

O
.P

.I.
 v

s.
 Q
−L

ea
rn

in
g

1.
5

1.
6

1.
7

1.
8

1.
9

2
x

10
8

1,
50

0

1,
50

1

1,
50

2

1,
50

3

1,
50

4

Q
*(1

0,
1)

1,
50

6
Q

*(1
0,

14
)

1,
50

7

1,
50

8

1,
50

9

1,
51

0

Q
−L

ea
rn

in
g

Q
−L

ea
rn

in
g

O
.P

.I.
 II

I

O
.P

.I.
 II

I

F
ig

u
r
e

5
.7

.
C

o
m

p
a
ri

so
n

o
f

th
e

o
p

ti
m

is
ti

c
p

o
li
cy

it
er

a
ti

o
n

a
lg

o
ri

th
m

II
I

a
n

d

Q
-l

ea
rn

in
g

fo
r

th
e

a
u

to
m

o
b

il
e

re
p

la
ce

m
en

t
p

ro
b

le
m

.

0
0.

5
1

1.
5

2
x

10
6

15
00

15
20

15
40

15
60

15
80

16
00

16
20

16
40

O
.P

.I.
 v

s.
 Q
−L

ea
rn

in
g

0
0.

5
1

1.
5

2
x

10
6

1,
50

0
av

e.
 J

*

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0
Co

st
s

of
 P

ol
ici

es
: Q

−L
ea

rn
in

g

0
0.

5
1

1.
5

2
x

10
6

1,
50

0
av

e.
 J

*

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0
Co

st
s

of
 P

ol
ici

es
: O

.P
.I.

Q
−L

ea
rn

in
g

O
.P

.I.
 II

I

F
ig

u
r
e

5
.8

.
C

o
m

p
a
ri

so
n

o
f

th
e

o
p

ti
m

is
ti

c
p

o
li
cy

it
er

a
ti

o
n

a
lg

o
ri

th
m

II
I

a
n

d

Q
-l

ea
rn

in
g

a
t

th
e

ea
rl

y
p

h
a
se

fo
r

th
e

a
u

to
m

o
b

il
e

re
p

la
ce

m
en

t
p

ro
b

le
m

.

0
0.

5
1

1.
5

2
x

10
8

15
00

15
20

15
40

15
60

15
80

16
00

16
20

16
40

O
.P

.I.
 v

s.
 Q
−L

ea
rn

in
g

1.
5

1.
6

1.
7

1.
8

1.
9

2
x

10
8

1,
50

0

1,
50

1

1,
50

2

1,
50

3

1,
50

4

Q
*(1

0,
1)

1,
50

6
Q

*(1
0,

14
)

1,
50

7

1,
50

8

1,
50

9

1,
51

0

Q
−L

ea
rn

in
g

O
.P

.I.
 II

I

Q
−L

ea
rn

in
g

O
.P

.I.
 II

I

F
ig

u
r
e

5
.9

.
C

o
m

p
a
ri

so
n

o
f

th
e

o
p

ti
m

is
ti

c
p

o
li
cy

it
er

a
ti

o
n

a
lg

o
ri

th
m

II
I

a
n

d

Q
-l

ea
rn

in
g

fo
r

th
e

a
u

to
m

o
b

il
e

re
p

la
ce

m
en

t
p

ro
b

le
m

.

0
0.

5
1

1.
5

2
x

10
6

15
00

15
20

15
40

15
60

15
80

16
00

16
20

16
40

O
.P

.I.
 v

s.
 Q
−L

ea
rn

in
g

0
0.

5
1

1.
5

2
x

10
6

1,
50

0
av

e.
 J

*

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0
Co

st
s

of
 P

ol
ici

es
: Q

−L
ea

rn
in

g

0
0.

5
1

1.
5

2
x

10
6

1,
50

0
av

e.
 J

*

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0
Co

st
s

of
 P

ol
ici

es
: O

.P
.I.

Q
−L

ea
rn

in
g

O
.P

.I.
 II

I

F
ig

u
r
e

5
.1

0
.

C
o
m

p
a
ri

so
n

o
f

th
e

o
p

ti
m

is
ti

c
p

o
li
cy

it
er

a
ti

o
n

a
lg

o
ri

th
m

II
I

a
n

d

Q
-l

ea
rn

in
g

a
t

th
e

ea
rl

y
p

h
a
se

fo
r

th
e

a
u

to
m

o
b

il
e

re
p

la
ce

m
en

t
p

ro
b

le
m

.

27

The bound (6.3) is identical to what is generally viewed as the standard bound for the performance of
approximate policy iteration ([BeT96], Prop. 6.2). We prove this bound through three lemmas.

Lemma 6.1: For all ν, J , J̃ , Q, Q̃, and m ≥ 1, we have

∥∥FmJ,νQ− FmJ̃,νQ̃
∥∥
∞ ≤ αmax

{
‖J − J̃‖∞, ‖Q− Q̃‖∞

}
.

Proof: Follows by repeated application of Prop. 2.1. Q.E.D.

Lemma 6.2: Given (J, ν) and δ ≥ 0, let Q, Q̂, and m ≥ 1 be such that

‖Q̂− FmJ,νQ‖∞ ≤ δ,

and let Ĵ be defined by
Ĵ(i) = min

u∈U(i)
Q̂(i, u), ∀ i.

Then,
‖Ĵ − J∗‖∞ ≤ ‖Q̂−Q∗‖∞ ≤ αmax

{
‖J − J∗‖∞, ‖Q−Q∗‖∞

}
+ δ.

Proof: Using the triangle inequality, the fact Q∗ = FmJ∗,νQ
∗, and Lemma 6.1, we have

‖Q̂−Q∗‖∞ − ‖Q̂− FmJ,νQ‖∞ ≤ ‖FmJ,νQ−Q∗‖∞ ≤ αmax
{
‖J − J∗‖∞, ‖Q−Q∗‖∞

}
,

which together with the assumption ‖Q̂−FmJ,νQ‖∞ ≤ δ, implies the right-hand side of the desired inequality.
The left-hand side follows from the generic inequality (2.13). Q.E.D.

For any policy µ, we denote by Tµ the mapping defined by

(TµJ)(i) =
n∑

j=1

pij
(
µ(i)

)(
g
(
i, µ(i), j

)
+ αJ(j)

)
, ∀ i.

Lemma 6.3: Given Q, let µ be a policy such that µ(i) attains the minimum of Q(i, u) over u ∈ U(i),
for all i. Then,

‖TµJ∗ − J∗‖∞ ≤ 2‖Q−Q∗‖∞.

28

Proof: Let β = ‖Q−Q∗‖∞, and let µ∗ be an optimal policy. We have for all i,

∣∣Q
(
i, µ(i)

)
−Q∗

(
i, µ(i)

)∣∣ ≤ β,
∣∣Q
(
i, µ∗(i)

)
−Q∗

(
i, µ∗(i)

)∣∣ ≤ β.

Note that

Q∗
(
i, µ(i)

)
= (TµJ∗)(i), Q∗

(
i, µ∗(i)

)
= (Tµ∗J∗)(i) = J∗(i),

and by the definition of µ,

Q
(
i, µ(i)

)
≤ Q

(
i, µ∗(i)

)
.

Combining these relations, we have for all i,

(TµJ∗)(i)− J∗(i) ≤ (TµJ∗)(i)−Q
(
i, µ(i)

)
+Q

(
i, µ∗(i)

)
− J∗(i) ≤ β + β = 2β,

from which the desired inequality follows. Q.E.D.

Proof of Prop. 6.1: Let

βk = max
{
‖Jk − J∗‖∞, ‖Qk −Q∗‖∞

}
.

By applying Lemma 6.2 with J = Jk, Ĵ = Jk+1, Q = Qk, Q̂ = Qk+1, we have

‖Jk+1 − J∗‖∞ ≤ ‖Qk+1 −Q∗‖∞ ≤ αmax
{
‖Jk − J∗‖∞, ‖Qk −Q∗‖∞

}
+ δ = αβk + δ. (6.4)

By taking the maximum of the two leftmost terms, this relation also implies that

βk+1 ≤ αβk + δ,

and by iteration

βk+1 ≤ αk+1β0 + (αk + αk−1 + · · ·+ 1)δ. (6.5)

From Eq. (6.4) and Lemma 6.3,

‖Tµk+1J
∗ − J∗‖∞ ≤ 2

(
αβk + δ

)
.

Taking limit along a subsequence of µk that converges to a stationary policy µ, we obtain

‖TµJ∗ − J∗‖∞ ≤ 2 lim sup
k→∞

(
αβk + δ

)
≤ 2δ

1− α,

where the second inequality follows from Eq. (6.5). We also have

‖T kµJ∗ − J∗‖∞ ≤ ‖T kµJ∗ − T k−1
µ J∗‖∞ + ‖T k−1

µ J∗ − T k−2
µ J∗‖∞ + · · ·+ ‖TµJ∗ − J∗‖∞

≤ (αk−1 + αk−2 + · · ·+ 1)‖TµJ∗ − J∗‖∞.

Combining the last two relations, taking limit as k →∞, and using the fact T kµJ∗ → Jµ, we obtain

‖Jµ − J∗‖∞ ≤
2δ

(1− α)2
.

Q.E.D.
29

7. APPROXIMATION ALGORITHMS

In this section, we provide some details on how to combine the approximation scheme of Section 6 with Q-
factor approximations and simulation-based methods that use low-dimensional calculations. In particular,
we discuss algorithms for constructing approximations Qk+1 to QJk,νk

or to Fmk
Jk,νk

Qk [cf. Eq. (6.1)], which
can be combined with the updating rule of Eq. (6.2),

Jk+1(i) = min
u∈U(i)

Qk+1(i, u), ∀ i, (7.1)

and with some method to select νk+1. These algorithms can also be viewed as approximation counterparts of
specific cases of the lookup-table-based stochastic policy iteration Algorithm I, given in Section 4. The error
bound of Prop. 6.1 holds for such schemes (although the constant δ is generally unknown). We first focus
on the algorithm of Tsitsiklis and Van Roy [TsV99], which can be used for solving approximately optimal
stopping problems. This algorithm obtains a Q-factor vector Q̂ that approximates a fixed point QJ,ν , in
place of the “policy evaluation” step (2.8) of the algorithm, and belongs to the class of projected equation
methods (see e.g., [Ber07], [BeY09]).

For a given J and ν, we view QJ,ν(i, u) as the Q-factor of the optimal stopping problem described in
Section 2, which corresponds to the action of not stopping at pair (i, u). We approximate QJ,ν(i, u) using a
linear approximation architecture of the form

Q̂(i, u) = φ(i, u)′r, ∀ (i, u). (7.2)

Here, φ(i, u)′ is a row vector of s features whose inner product Q̂(i, u) with a column vector of weights r ∈ <s
provides a Q-factor approximation for (i, u). We may view φ(i, u) as forming an n×s matrix whose columns
are basis functions for a subspace within which Q-factor vectors are approximated. We do not discuss the
important issue of selection of φ(i, u), but we note the possibility of its optimal choice within some restricted
class by using gradient and random search algorithms (see Menache, Mannor, and Shimkin [MMS06], and
Yu and Bertsekas [YuB09] for recent work on this subject).

For the typical policy evaluation cycle, we have an estimate of optimal cost

J(i) = min
u∈U(i)

φ(i, u)′r0, ∀ i,

where r0 is the weight vector obtained at the end of the preceding policy evaluation cycle (J may be arbitrarily
chosen for the first cycle). We select a randomized policy ν, and we generate a single infinitely long simulated
trajectory

{
(i0, u0), (i1, u1), . . .

}
corresponding to an unstopped system, i.e., using transition probabilities

from (it, ut) to (it+1, ut+1) given by
pitit+1(ut)ν(ut+1 | it+1).

Following the transition
(
(it, ut), (it+1, ut+1)

)
, we update rt by

rt+1 = rt − γtφ(it, ut)qt, (7.3)

where qt is the temporal difference

qt = φ(it, ut)′rt − g(it, ut, it+1)− αmin
{
J(it+1), φ(it+1, ut+1)′rt

}
, (7.4)

and γt is a positive stepsize that diminishes to 0.

30

For convergence the stepsize γt must satisfy some conditions that are standard for stochastic approxi-
mation-type algorithms [e.g., γt = O(1/t); see [TsV99]]. Assuming that these and some other technical
conditions are satisfied [such as a full-rank assumption for the matrix formed by φ(i, u)], Tsitsiklis and
Van Roy [TsV99] show the convergence of {rt} to a vector r∗ such that φ(i, u)′r∗ is the solution of a
projected equation that is characteristic of the TD methodology. They also provide a bound on the error
φ(i, u)′r∗ −QJ,ν(i, u); see also Van Roy [Van09].

The preceding algorithm describes how to obtain an approximation Q̂k to QJk,νk
. Combined with

the update rule (7.1), it yields an approximate policy iteration method, where exploration is encoded in
the choice of νk (which can be selected arbitrarily). The convergence properties of this method may be
quite complicated, not only because Q̂k is just an approximation to QJk,νk

, but also because when Q-factor
approximations of the form (7.2) are used, policy oscillations may occur, a phenomenon described in Section
6.4 of [BeT96] (see also [Ber10], Section 6.3).

We note a related scaled version of the algorithm (7.3), proposed by Choi and Van Roy [ChV06]:

rt+1 = rt − γtD−1
t φ(it, ut)qt, (7.5)

where Dt is a positive definite scaling matrix. For our purposes, to keep overhead per iteration low, it is
important that Dt is chosen to be diagonal, and [ChV96] suggests suitable simulation-based choices. We
also note alternative iterative optimal stopping algorithms given by Yu and Bertsekas [YuB07], which have
faster convergence properties, but require more overhead per iteration because they require a sum of past
temporal differences in the right-hand side of Eq. (7.5).

The preceding algorithms require an infinitely long trajectory
{

(i0, u0), (i1, u1), . . .
}

for convergence.
In the context of our policy iteration algorithm, however, it may be important to use finitely long and
even short trajectories between updates of Jk and νk. This is consistent with the ideas of optimistic policy
iteration (explained for example in [BeT96], [SuB98], [Ber07], [Ber10]; for recent experimental studies, see
Jung and Polani [JuP07], and Busoniu et al. [BED09]). It is also suggested by the value iteration nature of
the lookup table version of the algorithm when νk involves a substantial amount of exploration, as explained
in Section 2. Some experimentation with optimistic methods and exploration enhancement should be helpful
in clarifying the associated issues.

8. CONCLUSIONS

We have developed a new policy iteration-like algorithm for Q-learning in discounted MDP. In its lookup
table form, the algorithm admits interesting asynchronous and optimistic implementations, with sound
convergence properties and less overhead per iteration over the classical Q-learning algorithm. In its compact
representation/approximate form, the algorithm addresses in a new way the critical issue of exploration in
the context of simulation-based approximations using TD methods.

REFERENCES

[ABB02] Abounadi, J., Bertsekas, D. P., and Borkar, V., “Stochastic Approximation for Non-Expansive Maps:

Application to Q-Learning Algorithms,” SIAM J. on Control and Optimization, Vol. 41, pp. 1-22.

[BED09] Busoniu, L., Ernst, D., De Schutter, B., and Babuska, R., 2009. “Online Least-Squares Policy Iteration for

Reinforcement Learning Control,” unpublished report, Delft Univ. of Technology, Delft, NL.

[BeI96] Bertsekas, D. P., and Ioffe, S., 1996. “Temporal Differences-Based Policy Iteration and Applications in Neuro-

Dynamic Programming,” Lab. for Info. and Decision Systems Report LIDS-P-2349, MIT, Cambridge, MA.

31

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed Computation: Numerical Methods,

Prentice-Hall, Englewood Cliffs, N. J; republished by Athena Scientific, Belmont, MA, 1997.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena Scientific, Belmont, MA.

[Ber82] Bertsekas, D. P., 1982. “Distributed Dynamic Programming,” IEEE Trans. Automatic Control, Vol. AC-27,

pp. 610-616.

[Ber83] Bertsekas, D. P., 1983. “Asynchronous Distributed Computation of Fixed Points,” Math. Programming, Vol.

27, pp. 107-120.

[Ber05] Bertsekas, D. P., 2005. Dynamic Programming and Optimal Control, 3rd Edition, Vol. I, Athena Scientific,

Belmont, MA.

[Ber07] Bertsekas, D. P., 2007. Dynamic Programming and Optimal Control, 3rd Edition, Vol. II, Athena Scientific,

Belmont, MA.

[Ber10] Bertsekas, D. P., 2010. Approximate Dynamic Programming, on-line at

http://web.mit.edu/dimitrib/www/dpchapter.html.

[Bor98] Borkar, V. S., 1998. “Asynchronous Stochastic Approximations,” SIAM J. on Control and Optimization, Vol.

36, pp. 840-851; correction note in ibid., Vol. 38, pp. 662-663.

[Bor08] Borkar, V. S., 2008. Stochastic Approximation: A Dynamical Systems Viewpoint, Cambridge Univ. Press,

N. Y.

[Boy02] Boyan, J. A., 2002. “Technical Update: Least-Squares Temporal Difference Learning,” Machine Learning,

Vol. 49, pp. 1-15.

[BrB96] Bradtke, S. J., and Barto, A. G., 1996. “Linear Least-Squares Algorithms for Temporal Difference Learning,”

Machine Learning, Vol. 22, pp. 33-57.

[CFH07] Chang, H. S., Fu, M. C., Hu, J., Marcus, S. I., 2007. Simulation-Based Algorithms for Markov Decision

Processes, Springer, N. Y.

[Cao07] Cao, X. R., 2007. Stochastic Learning and Optimization: A Sensitivity-Based Approach, Springer, N. Y.

[ChV06] Choi, D. S., and Van Roy, B., 2006. “A Generalized Kalman Filter for Fixed Point Approximation and

Efficient Temporal-Difference Learning,” Discrete Event Dynamic Systems: Theory and Applications, Vol. 16, pp.

207-239.

[Gor95] Gordon, G. J., 1995. “Stable Function Approximation in Dynamic Programming,” in Machine Learning:

Proceedings of the Twelfth International Conference, Morgan Kaufmann, San Francisco, CA.

[Gos03] Gosavi, A., 2003. Simulation-Based Optimization Parametric Optimization Techniques and Reinforcement

Learning, Springer-Verlag, N. Y.

[How60] Howard, 1960. Dynamic Programming and Markov Process, MIT Press, Cambridge, MA.

[JJS94] Jaakkola, T., Jordan, M. I., and Singh, S. P., 1994. “On the Convergence of Stochastic Iterative Dynamic

Programming Algorithms,” Neural Computation, Vol. 6, pp. 1185-1201.

[JSJ95] Jaakkola, T., Singh, S. P., and Jordan, M. I., 1995. “Reinforcement Learning Algorithm for Partially

Observable Markov Decision Problems,” Advances in Neural Information Processing Systems, Vol. 7, pp. 345-352.

[JuP07] Jung, T., and Polani, D., 2007. “Kernelizing LSPE(λ),” in Proc. 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning, Honolulu, Hawaii. pp. 338-345.

[MMS06] Menache, I., Mannor, S., and Shimkin, N., 2005. “Basis Function Adaptation in Temporal Difference

Reinforcement Learning,” Ann. Oper. Res., Vol. 134, pp. 215-238.

[MSB08] Maei, H. R., Szepesvari, C., Bhatnagar, S., Silver, D., Precup, D., and Sutton, R. S., 2009. “Convergent

Temporal-Difference Learning with Arbitrary Smooth Function Approximation,” Proc. NIPS.

32

[Mey07] Meyn, S., 2007. Control Techniques for Complex Networks, Cambridge University Press, N. Y.

[Pow07] Powell, W. B., 2007. Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley,

N. Y.

[Put94] Puterman, M. L., 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming, J. Wiley,

N. Y.

[SMP09] Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvari, C., and Wiewiora, E., 2009.

“Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation,” Proc. of

ICML.

[SSM08] Sutton, R. S., Szepesvari, C., and Maei, H. R., 2008. “A Convergent O(n) Algorithm for Off-Policy Temporal-

Difference Learning with Linear Function Approximation,” Proc. of NIPS 21.

[SuB98] Sutton, R. S., and Barto, A. G., 1998. Reinforcement Learning, MIT Press, Cambridge, MA.

[Sut88] Sutton, R. S., 1988. “Learning to Predict by the Methods of Temporal Differences,” Machine Learning, Vol.

3, pp. 9-44.

[TBA86] Tsitsiklis, J. N., Bertsekas, D. P., and Athans, M., 1986. “Distributed Asynchronous Deterministic and

Stochastic Gradient Optimization Algorithms,” IEEE Trans. on Aut. Control, Vol. AC-31, pp. 803-812.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “Feature-Based Methods for Large-Scale Dynamic Programming,”

Machine Learning, Vol. 22, pp. 59-94.

[TsV99] Tsitsiklis, J. N., and Van Roy, B., 1999. “Optimal Stopping of Markov Processes: Hilbert Space Theory,

Approximation Algorithms, and an Application to Pricing Financial Derivatives,” IEEE Transactions on Automatic

Control, Vol. 44, pp. 1840-1851.

[Tsi94] Tsitsiklis, J. N., 1994. “Asynchronous Stochastic Approximation and Q-Learning,” Machine Learning, Vol.

16, pp. 185-202.

[Tsi02] Tsitsiklis, J. N., 2002. “On the Convergence of Optimistic Policy Iteration,” J. of Machine Learning Research,

Vol. 3, pp. 59-72.

[Van09] Van Roy, B., 2009. “On Regression-Based Stopping Times,” Discrete Event Dynamic Systems, to appear.

[Wat89] Watkins, C. J. C. H., Learning from Delayed Rewards, Ph.D. Thesis, Cambridge Univ., England.

[WiB93] Williams, R. J., and Baird, L. C., 1993. “Analysis of Some Incremental Variants of Policy Iteration: First

Steps Toward Understanding Actor-Critic Learning Systems,” Report NU-CCS-93-11, College of Computer Science,

Northeastern University, Boston, MA.

[YuB07] Yu, H., and Bertsekas, D. P., 2007. “A Least Squares Q-Learning Algorithm for Optimal Stopping Problems,”

Lab. for Information and Decision Systems Report 2731, MIT; also in Proc. European Control Conference 2007, Kos,

Greece.

[YuB09] Yu, H., and Bertsekas, D. P., 2009. “Basis Function Adaptation Methods for Cost Approximation in MDP,”

Proc. of 2009 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning, Nashville,

Tenn.

33

