
April 2010 Report LIDS - 2831

Q-Learning and Enhanced Policy Iteration in

Discounted Dynamic Programming

Dimitri P. Bertsekas1 and Huizhen Yu2

Abstract

We consider the classical finite-state discounted Markovian decision problem, and we introduce a new
policy iteration-like algorithm for finding the optimal Q-factors. Instead of policy evaluation by solving
a linear system of equations, our algorithm requires (possibly inexact) solution of a nonlinear system of
equations, involving estimates of state costs as well as Q-factors. This is Bellman’s equation for an op-
timal stopping problem that can be solved with simple Q-learning iterations, in the case where a lookup
table representation is used; it can also be solved with the Q-learning algorithm of Tsitsiklis and Van Roy
[TsV99], in the case where feature-based Q-factor approximations are used. In exact/lookup table represen-
tation form, our algorithm admits asynchronous and stochastic iterative implementations, in the spirit of
asynchronous/modified policy iteration, with lower overhead and more reliable convergence advantages over
existing Q-learning schemes. Furthermore, for large-scale problems, where linear basis function approxima-
tions and simulation-based temporal difference implementations are used, our algorithm resolves effectively
the inherent difficulties of existing schemes due to inadequate exploration.

1. INTRODUCTION

We consider the approximate solution of large-scale discounted infinite horizon dynamic programming (DP)

problems. The states are denoted i = 1, . . . , n. State transitions (i, j) under control u occur at discrete times

according to given transition probabilities pij(u), and generate a cost αkg(i, u, j) at time k, where α ∈ (0, 1)

is a discount factor. We consider deterministic stationary policies µ such that for each i, µ(i) is a control that

belongs to a constraint set U(i). We denote by Jµ(i) the total discounted expected cost of µ over an infinite

number of stages starting from state i, and by J∗(i) the minimal value of Jµ(i) over all µ. We denote by Jµ

and J∗ the vectors of <n (n-dimensional space) with components Jµ(i) and J∗(i), i = 1, . . . , n, respectively.

This is the standard discounted Markovian decision problem (MDP) context, discussed in many sources (e.g.,

1 Dimitri Bertsekas is with the Dept. of Electr. Engineering and Comp. Science, M.I.T., Cambridge, Mass., 02139,

dimitrib@mit.edu. His research was supported by NSF Grant ECCS-0801549.
2 Huizhen Yu is with the Dept. of Computer Science, Univ. of Helsinki, Finland, janey.yu@cs.helsinki.fi. Her

research was supported in part by Academy of Finland Grant 118653 (ALGODAN) and the PASCAL Network of

Excellence, IST-2002-506778.

1

Janey
Text Box
Also as: Tech. Report C-2010-10

Janey
Text Box
Univ. of Helsinki

Janey
Text Box

Bertsekas [Ber07], Puterman [Put94]).

For problems where the number of states n is very large, simulation-based approaches that are patterned

after classical policy iteration methods have been popular (see e.g., [BeT96], [SuB98]). Temporal difference

(TD) methods, such as TD(λ) (Sutton [Sut88]), LSPE(λ) (Bertsekas and Ioffe [BeI96]), and LSTD(λ) (Brat-

dke and Barto [BrB96], Boyan [Boy02]), are commonly used for policy evaluation within this context. The

corresponding approximate policy iteration methods have been described in detail in the literature, have

been extensively tested in practice, and constitute one of the major methodologies for approximate DP (see

the books by Bertsekas and Tsitsiklis [BeT96], Sutton and Barto [SuB98], Gosavi [Gos03], Cao [Cao07],

Chang, Fu, Hu, and Marcus [CFH07], Meyn [Mey07], Powell [Pow07], and Borkar [Bor08]; the textbook

[Ber07] together with its on-line chapter [Ber10] provide a recent treatment and up-to-date references).

Approximate policy iteration schemes have been used both in a model-based form, and in a model-free

form for the computation of Q-factors associated with state-control pairs of given policies. In the latter case,

TD methods must contend with a serious difficulty: they generate a sequence of samples
{

(it, µ(it)), t =

0, 1, . . .
}

using the Markov chain corresponding to the current policy µ, which means that state-control pairs

(i, u) 6=
(
i, µ(i)

)
are not generated in the simulation. As a result the policy iteration process breaks down

as it does not provide meaningful Q-factor estimates for u 6= µ(i). In practice, it is well-known that it is

essential to use an artificial mechanism to ensure that a rich and diverse enough sample of state-control pairs

is generated during the simulation.

The use of exploration-enhanced policies is often suggested as a remedy for approximate policy iteration

involving TD methods. A common approach, well-known since the early days of approximate DP, is an off-

policy strategy (using the terminology of Sutton and Barto [SuB98]; see also Precup, Sutton, and Dasgupta

[PSD01]), whereby we occasionally generate transitions involving randomly selected controls rather than

the ones dictated by µ. Unfortunately, in the context of Q-learning the required amount of exploration is

likely to be substantial, and has an undesirable effect: it may destroy the underlying contraction mapping

mechanism on which LSPE(λ) and TD(λ) rely for their validity [see e.g., [BeT96], Example 6.7, which

provides an instance of divergence of TD(0)]. At the same time, while LSTD(λ) does not have this difficulty

(it does not rely on a contraction property), it requires the solution of a linear projected equation, which has

potentially large dimension, particularly when the control constraint sets U(i) have large cardinalities. To

address the convergence difficulty in the presence of exploration using an off-policy, the TD(λ) method has

been modified in fairly complex ways (Sutton, Szepesvari, and Maei [SSM08], Maei et. al. [MSB08], Sutton

et. al. [SMP09]).

The purpose of this paper is to propose an approach to Q-learning with exploration enhancement,

which is radically different from existing methods, and is new even in the context of exact DP. It is based on

replacing the policy evaluation phase of the classical policy iteration method with (possibly inexact) solution

2

of an optimal stopping problem. This problem is defined by a stopping cost and by a randomized policy ,

which are suitably adjusted at the end of each iteration. They encode aspects of the “current policy” and

give our algorithm a modified/optimistic policy iteration-like character (a form that is intermediate between

value and policy iteration). The randomized policy allows an arbitrary and easily controllable amount of

exploration. For extreme choices of the randomized policy and a lookup table representation, our algorithm

yields as special cases the classical Q-learning/value iteration and policy iteration methods. Generally, with

more exploration and less exact solution of the policy evaluation/optimal stopping problem, the character

of the method shifts in the direction of classical Q-learning/value iteration.

We discuss two situations where our algorithm may offer an advantage over existing Q-learning and

approximate policy iteration methodology:

(a) In the context of exact/lookup table policy iteration, our algorithm admits asynchronous and stochastic

iterative implementations, which can be attractive alternatives to standard methods of asynchronous

policy iteration and Q-learning. The advantage of our algorithms is that they involve lower overhead

per iteration, by obviating the need for minimization over all controls at every iteration (this is the

generic advantage that modified policy iteration has over value iteration).

(b) In the context of approximate policy iteration, with linear Q-factor approximation, our algorithm may

be combined with the TD(0)-like method of Tsitsiklis and Van Roy [TsV99], which can be used to

solve the associated stopping problems with low overhead per iteration, thereby resolving the issue of

exploration described earlier.

Regarding (a) above, note that aside from their conceptual/analytical value, lookup table representation

methods can be applied to large scale problems through the use of aggregation (a low-dimensional aggregate

representation of a large, possibly infinite-dimensional problem; see Jaakkola, Jordan, and Singh [JJS94],

[JSJ95], Gordon [Gor95], Tsitsiklis and Van Roy [TsV96], and Bertsekas [Ber05], [Ber10]). Let us also note

that Bhatnagar and Babu [BhB08] have proposed Q-learning/policy iteration type algorithms with lookup

table representation, based on two-time-scale stochastic approximation, and established the convergence for

synchronous implementations. Their algorithms also have low computation overhead per iteration like our

algorithm. However, viewed at the slow-time-scale, their algorithms are close to the standard Q-learning

and have a different basis than our algorithm.

The paper is organized as follows. In Section 2, we introduce our policy iteration-like algorithm for

the case of exact/lookup table representation of Q-factors, and address convergence issues. In Section 3, we

show that our algorithm admits an asynchronous implementation that has improved convergence properties

over the standard asynchronous policy iteration algorithm for Q-factors. In Section 4, we develop stochastic

iterative methods that resemble both Q-learning and modified/optimistic policy iteration, and prove their

3

convergence. In Section 5, we consider the possibility of approximating the policy evaluation portion of our

algorithm, and we derive a corresponding error bound, which is consistent with existing error bounds for

related methods. In Section 6, we briefly discuss implementations of policy evaluation with linear feature-

based approximations and simulation-based optimal stopping algorithms, such as the one due to Tsitsiklis

and Van Roy [TsV99]. These algorithms use calculations of low dimension (equal to the number of features),

and require low overhead per iteration compared with the matrix inversion overhead required by approximate

policy iteration that uses the LSTD(λ) method for policy evaluation.

2. A NEW Q-LEARNING ALGORITHM

In this section we introduce our Q-learning algorithm in exact form. We first introduce notation and provide

some background. It is well-known that the optimal cost vector J∗ is the unique fixed point of the mapping

T : <n 7→ <n given by

(TJ)(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ(j)

)
, ∀ i.

The optimal Q-factor corresponding to a state-control pair (i, u) is denoted by Q∗(i, u), and represents the

optimal expected cost starting from state x, using control u at the first stage, and subsequently using an

optimal policy. Optimal Q-factors and costs are related by the equation

J∗(i) = min
u∈U(i)

Q∗(i, u), ∀ i. (2.1)

The optimal Q-factor vector Q∗ is the unique fixed point of the mapping F defined by

(FQ)(i, u) =
n∑

j=1

pij(u)
(
g(i, u, j) + α min

v∈U(j)
Q(j, v)

)
, ∀ (i, u). (2.2)

One possibility to compute Q∗ is the well-known Q-learning algorithm of Watkins [Wat89] (see e.g.,

[BeT96], [SuB98] for descriptions and discussion), which is an iterative stochastic approximation-like method,

based on the fixed point iteration Qk+1 = FQk for solving the equation Q = FQ. Another popular method

for computing Q∗ is based on policy iteration. At the typical iteration, given the (deterministic stationary)

current policy µ, we find Qµ, the unique fixed point of the mapping Fµ corresponding to µ, and given by

(FµQ)(i, u) =
n∑

j=1

pij(u)
(
g(i, u, j) + αQ

(
j, µ(j)

))
, ∀ (i, u), (2.3)

(this is the policy evaluation step). We then obtain a new policy µ by

µ(i) = arg min
u∈U(i)

Qµ(i, u), ∀ i, (2.4)

(this is the policy improvement step).

4

In this section we propose an alternative policy iteration-like method. The key idea is to replace the

Q-learning mapping Fµ of Eq. (2.3) with another mapping that allows exploration as well as a dependence

on µ. This mapping, denoted FJ,ν , depends on a vector J ∈ <n, with components denoted J(i), and on a

randomized policy ν, which for each state i defines a probability distribution

{
ν(u | i) | u ∈ U(i)

}

over the feasible controls at i. It maps Q, a vector of Q-factors, to FJ,νQ, the vector of Q-factors with

components given by

(FJ,νQ)(i, u) =
n∑

j=1

pij(u)


g(i, u, j) + α

∑

v∈U(j)

ν(v | j) min
{
J(j), Q(j, v)

}

 , ∀ (i, u). (2.5)

Comparing FJ,ν and the classical Q-learning mapping of Eq. (2.2) [or the mapping Fµ of Eq. (2.3)], we see

that they take into account the Q-factors of the next state j differently: F (or Fµ) uses the minimal Q-factor

minv∈U(j)Q(j, v) [the Q-factor Q
(
j, µ(j)

)
, respectively], while FJ,ν uses a randomized Q-factor [according to

ν(v | j)], but only up to the threshold J(j). Note that FJ,ν does not require the overhead for minimization

over all controls that the Q-learning mapping F does [cf. Eq. (2.2)].

The mapping FJ,ν can be interpreted in terms of an optimal stopping problem defined as follows:

(a) The state space is the set of state-control pairs (i, u) of the original problem.

(b) When at state (i, u), if we decide to stop, we incur a stopping cost J(i) (independent of u).

(c) When at state (i, u), if we decide not to stop, we incur a one-stage cost
∑n
j=1 pij(u)g(i, u, j), and

transition to state (j, v) with probability pij(u)ν(v | j).

From well-known general properties of Q-learning for MDP, it can be seen that FJ,ν is a sup-norm contraction

of modulus α for all ν and J , i.e.,

‖FJ,νQ− FJ,νQ̃‖∞ ≤ α‖Q− Q̃‖∞, ∀ Q, Q̃, (2.6)

where ‖ · ‖∞ denotes the sup-norm (‖Q‖∞ = max(i,u)

∣∣Q(i, u)
∣∣). Hence FJ,ν has a unique fixed point, which

we denote by QJ,ν . We may interpret QJ,ν(i, u) as a Q-factor of the optimal stopping problem corresponding

to the nonstopping action, i.e., the optimal cost-to-go starting at (i, u) and conditioned on the first decision

being not to stop. Another insight is that if J is the cost of some policy π, which can be randomized and

history dependent, then we may interpret the components of QJ,ν , as the Q-factors of a policy which switches

optimally from following the policy ν to following the policy π.

For a given (J, ν), the optimal stopping problem can be solved exactly by using value iteration. When

linear feature-based Q-factor approximation is used, it can be solved with the algorithm of Tsitsiklis and Van

5

Roy [TsV99], a simulation-based TD(0)-type method that uses low-dimensional computation [of order O(s)]

at each iteration and does not require an s× s matrix inversion (like LSTD or LSPE). Later, in Sections 5

and 6, we will envision the use of this algorithm for approximating QJ,ν .

Note that if ν = µ, where µ is a deterministic policy, we have QJ,µ ≤ Qµ for all J , with equality

holding if Jµ ≤ J . To get an indication that the mapping FJ,µ can have an advantage in some cases over the

Q-learning mapping Fµ, suppose that J is a known upper bound to Jµ (for example, in the context of policy

iteration, J may be the cost vector of the policy preceding µ). Then it can be seen that Qµ ≤ FJ,µQ ≤ FµQ
for all Q ≥ Qµ, which in turn by using induction, shows that

Qµ ≤ F kJ,µQ ≤ F kµQ, ∀ k = 0, 1, . . . ,

i.e., that starting from Q ≥ Qµ, value iteration/Q-learning using FJ,µ converges to Qµ at least as fast as

it converges using Fµ. Indeed, simple 2-state examples show that the differences between the components

of F kJ,µQ and F kµQ can be substantial [take n = 2, g(i, u, j) ≡ 0, p12(u) = p21(u) ≡ 1, Q(1, u) ≡ J(1) = 1,

Q(2, u) ≡ J(2) = β > 1]. Therefore, in certain circumstances, iterative evaluation of the Q-factors of a policy

µ may converge substantially faster using FJ,µ than using Fµ. In this paper, however, we focus primarily on

other advantages, which are related to asynchronous implementations and exploration, and will be explained

in what follows.

The following proposition generalizes the contraction property (2.6). In the proof and for the remainder

of the paper, Jx denotes the vector J extended to the space of state-control pairs by

Jx(i, u) = J(i), ∀ u ∈ U(i).

Furthermore, minimization over two vectors is interpreted componentwise, i.e., min{Q1, Q2} denotes the

vector with components min
{
Q1(i, u), Q2(i, u)

}
.

Proposition 2.1: For all ν, J , J̃ , Q, and Q̃, we have

‖FJ,νQ− FJ̃,νQ̃‖∞ ≤ αmax
{
‖J − J̃‖∞, ‖Q− Q̃‖∞

}
.

Proof: We write

FJ,ν Q = ḡ + αP ν min
{
Jx, Q

}
, (2.7)

where ḡ is the vector with components
n∑

j=1

pij(u)g(i, u, j), ∀ (i, u),

6

and P ν is the transition probability matrix with probabilities of transition (i, u)→ (j, v) equal to

pij(u)ν(v | j), ∀ (i, u), (j, v).

From Eq. (2.7), we obtain

‖FJ,νQ− FĴ,νQ̃‖∞ ≤ α
∥∥min

{
Jx, Q

}
−min

{
J̃x, Q̃

}∥∥
∞.

We also have†
∥∥min

{
Jx, Q

}
−min

{
J̃x, Q̃

}∥∥
∞ ≤ max

{
‖J − J̃‖∞, ‖Q− Q̃‖∞

}
.

The preceding two relations imply the result. Q.E.D.

Our Q-learning algorithm generates a sequence of pairs (Qk, Jk), starting from an arbitrary pair

(Q0, J0). Given (Qk, Jk), we select an arbitrary randomized policy νk and an arbitrary positive integer

mk, and we obtain the next pair (Qk+1, Jk+1) as follows:

Iteration k with Lookup Table Representation:

(1) Generate Qk+1 with mk iterations involving the mapping FJk,νk
, with νk and Jk held fixed:

Qk+1 = F
mk
Jk,νk

Qk. (2.8)

(2) Update Jk+1 by

Jk+1(i) = min
u∈U(i)

Qk+1(i, u), ∀ i. (2.9)

We will show shortly that Qk and Jk converge to the optimal Q-factor and cost vector of the original

MDP, respectively, but we first discuss the qualitative behavior of the algorithm. To this end, we first

† Here we are using a nonexpasiveness property of the minimization map: for any Q1, Q2, Q̃1, Q̃2, we have

∥∥min{Q1, Q2} −min{Q̃1, Q̃2}
∥∥
∞
≤ max

{
‖Q1 − Q̃1‖∞, ‖Q2 − Q̃2‖∞

}
.

To see this, write for every (i, u),

Qm(i, u) ≤ max
{
‖Q1 − Q̃1‖∞, ‖Q2 − Q̃2‖∞

}
+ Q̃m(i, u), m = 1, 2,

take the minimum of both sides over m, exchange the roles of Qm and Q̃m, and take maximum over (i, u).

7

consider the two extreme cases where mk = 1 and mk =∞. For mk = 1,

Qk+1(i, u) =
n∑

j=1

pij(u)


g(i, u, j) + α

∑

v∈U(j)

νk(v | j) min
{

min
v′∈U(j)

Qk(j, v′), Qk(j, v)
}


=
n∑

j=1

pij(u)
(
g(i, u, j) + α min

v∈U(j)
Qk(j, v)

)
, ∀ (i, u),

so Eq. (2.8) coincides with the synchronous Q-learning algorithm Qk+1 = FQk, while Eq. (2.9) coincides

with the value iteration Jk+1 = TJk for the original MDP.

On the other hand, in the limiting case where mk =∞, Qk+1 is the Q-factor QJk,νk
of the associated

stopping problem (the unique fixed point of FJk,νk
), and the algorithm takes the form

Jk+1(i) = min
u∈U(i)

QJk,νk
(i, u), ∀ i. (2.10)

Assume further that νk is chosen to be the deterministic policy µk that attains the minimum in the equation

µk(i) = arg min
u∈U(i)

Qk(i, u), ∀ i, (2.11)

with ν0 being some deterministic policy µ0 satisfying J0 ≥ Jµ0 . Then Q1 is equal to QJ0,µ0 (since mk =∞)

and can be seen to be also equal to the (exact) Q-factor vector of µ0 (since J0 ≥ Jµ0), so µ1 as generated

by Eq. (2.11), is the policy generated from µ0 by exact policy improvement for the original MDP. Similarly,

it can be shown by induction that for mk = ∞ and νk = µk, the algorithm generates the same sequence of

policies as exact policy iteration for the original MDP.

Generally, the iteration (2.8), (2.9) resembles in some ways the classical modified policy iteration for

MDP (see e.g., [Ber07], [Put94]), where policy evaluation is approximated with a finite number mk of value

iterations, with the case mk = 1 corresponding to value iteration/synchronous Q-learning, and the case

mk =∞ corresponding to (exact) policy iteration.

However, our algorithm has another qualitative dimension, because the randomized policy νk may

differ significantly from the deterministic policy (2.11). In particular, suppose that mk = ∞ and νk is

chosen to assign positive probability to nonoptimal controls, i.e., so that νk
(
µ∗(j) | j

)
= 0 for all j and

optimal policies µ∗. Then since Jk → J∗ (as we will show shortly), we have for all j and sufficiently large k,

Jk(j) < QJk,νk
(j, v) for all v with νk(v | j) > 0, so that

Jk+1(i) = min
u∈U(i)

n∑

j=1

pij(u)


g(i, u, j) + α

∑

v∈U(j)

νk(v | j) min
{
Jk(j), QJk,νk

(j, v)
}



= min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJk(j)

)
, ∀ i.

Thus the algorithm, for sufficiently large k, reduces to synchronous Q-learning/value iteration for the original

MDP, even though mk =∞, and produces the same results as with the choice mk = 1 (or any value of mk)!

8

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

Figure 2.1. Illustration of exploration-enhanced policy iteration algorithm. The policy evalua-

tion consists of a finite number of Q-value iterations for the optimal stopping problem involving

the randomized policy ν and the theshold/stopping cost J [cf. Eq. (2.8)]. It is followed by policy

improvement that produces a new deterministic policy [cf. Eq. (2.11)], which forms the basis for

constructing the new randomized policy using some exploration mechanism.

The preceding arguments illustrate that the choices of νk and mk are the two factors that affect most the

qualitative character of the algorithm. With little exploration [approaching the extreme case where νk is the

deterministic policy (2.11)] our algorithm tends to act nearly like modified policy iteration (or exact policy

iteration for mk =∞). With substantial exploration [approaching the extreme case where νk
(
µk(j) | j

)
= 0

for any policy µk generated according to Eq. (2.11)] it tends to act nearly like Q-learning/value iteration

(regardless of the value of mk). This reasoning also suggests that with substantial exploration it may be

better to use small values of mk.

When exploration is desired, as in the case where feature-based Q-factor approximations are used (cf.

Sections 5 and 6), a reasonable way to operate the algorithm is to determine νk by “superimposing” some

exploration to the deterministic policy µk of Eq. (2.11). For example, we may use a distribution νk that is

a random mixture of µk and another policy that induces exploration, including visits to state-control pairs

that are unlikely/impossible to generate under µk). In this case, we may view the calculation of Qk+1 via

Eq. (2.8) as a form of approximate policy evaluation, somewhat similar to one or more value iterations,

depending on the degree of exploration allowed by νk and the value of mk, and we may view Eq. (2.11) as

a form of corresponding policy improvement (see Fig. 2.1).

We now prove our main convergence result.

Proposition 2.2: For any choice of (Q0, J0), {νk}, and {mk}, a sequence
{

(Qk, Jk)
}

generated by

the algorithm (2.8)-(2.9) converges to (Q∗, J∗), and the rate of convergence is geometric. Furthermore,

for all k after some index k, the generated policies µk are optimal.

Proof: Since J∗(i) = minu∈U(i)Q∗(i, u) [cf. Eq. (2.1)], we have using Eqs. (2.2) and (2.5), FJ∗,νQ∗ =

FQ∗ = Q∗ for all ν. From Prop. 2.1, it follows that

‖FJ,νQ−Q∗‖∞ ≤ αmax
{
‖J − J∗‖∞, ‖Q−Q∗‖∞

}
, ∀ Q, J, ν.

9

Using this relation, we have

‖F 2
Jk,νk

Qk −Q∗‖∞ ≤ αmax
{
‖Jk − J∗‖∞, ‖FJk,νk

Qk −Q∗‖∞
}
≤ max

{
α‖Jk − J∗‖∞, α2‖Qk −Q∗‖∞

}
,

and by repeating this process,

‖Qk+1 −Q∗‖∞ = ‖Fmk
Jk,νk

Qk −Q∗‖∞ ≤ max
{
α‖Jk − J∗‖∞, αmk‖Qk −Q∗‖∞

}
. (2.12)

Since for all Q, and Q̃, we have †

max
i=1,...,n

∣∣∣∣ min
u∈U(i)

Q(i, u)− min
u∈U(i)

Q̃(i, u)
∣∣∣∣ ≤ ‖Q− Q̃‖∞, (2.13)

it follows by taking Q = Qk and Q̃ = Q∗, that for k > 0,

‖Jk − J∗‖∞ ≤ ‖Qk −Q∗‖∞. (2.14)

Combining Eqs. (2.12) and (2.14), we obtain

‖Qk+1 −Q∗‖∞ ≤ α‖Qk −Q∗‖∞. (2.15)

Thus Qk converges to Q∗ geometrically, and in view of Eq. (2.14), {Jk} also converges to J∗ geometrically.

The optimality of µk for sufficiently large k follows from the convergence Qk → Q∗, since a policy µ∗ is

optimal if and only if µ∗(i) minimizes Q∗(i, u) over U(i) for all i. Q.E.D.

The preceding proof can also be used to establish a fact that complements Prop. 2.1, namely that for

every randomized policy ν and integer m ≥ 1, the mapping underlying our algorithm,

(Q, J) 7→
(
FmJ,νQ, M FmJ,νQ

)
,

where

(M FmJ,νQ)(i) = min
u∈U(i)

(FmJ,νQ)(i, u), ∀ i = 1, . . . , n,

is a sup-norm contraction of modulus α, and its unique fixed point is (Q∗, J∗). This is the mathematical

foundation for the convergence properties of the algorithm (2.8)-(2.9), as well as its asynchronous variants

to be discussed in the next section.

† This is a well-known property. For a proof, write

Q(i, u) ≤ ‖Q− Q̃‖∞ + Q̃(i, u), ∀ (i, u),

take minimum of both sides over u ∈ U(i), exchange the roles of Q and Q̃, and take maximum over i.

10

3. ASYNCHRONOUS VERSION OF THE ALGORITHM

The algorithm, as given in Eqs. (2.8)-(2.9), may be viewed as synchronous in the sense that the Q-factors of all

state-control pairs are simultaneously updated at each iteration. The contraction property of the underlying

mappings [cf. Prop. 2.1 and Eq. (2.13)] can be used to establish the convergence of the algorithm under far

more irregular conditions. In particular, we consider in this section asynchronous updating of Q-factors and

state costs corresponding to blocks of components, and we discuss in Section 4 model-free sampled versions,

which do not require the explicit knowledge of pij(u) and the calculation of expected values.

In standard asynchronous versions of policy iteration for Q-factors [cf. Eqs. (2.3)-(2.4)], the updates

of µ and Q are executed selectively, for only some of the states and state-control pairs. In a fairly general

implementation discussed in the literature ([BeT96], Section 2.2, or [Ber07], Section 1.3.3), there are two

types of iterations: those corresponding to an index subset KQ where Q is updated, and those corresponding

to the complementary subset Kµ where µ is updated. The algorithm generates a sequence of pairs (Qk, µk),

starting from an arbitrary pair (Q0, µ0) as follows:

Qk+1(i, u) =

{
(FµkQk)(i, u) if (i, u) ∈ Rk,
Qk(i, u) if (i, u) /∈ Rk,

∀ k ∈ KQ, (3.1)

µk+1(j) =

{
arg minv∈U(j)Qk(j, v) if j ∈ Sk,

µk(j) if j /∈ Sk,
∀ k ∈ Kµ, (3.2)

where Rk and Sk are subsets of state-control pairs and states, respectively, one of which is nonempty while

the other is empty [so that either Eq. (3.1), or Eq. (3.2) is performed]. Relative to ordinary Q-learning,

the advantage is that the minimization in Eq. (3.2) is performed only for k ∈ Kµ and only for the states

in Sk (rather than at each iteration, and for all states), thereby saving computational overhead (this is

the generic advantage that modified policy iteration has over ordinary value iteration). Unfortunately, the

convergence of the asynchronous policy iteration (3.1)-(3.2) to Q∗ is questionable in the absence of additional

restrictions; some assumption, such as Fµ0Q0 ≤ Q0, is required for the initial policy µ0 and vector Q0 (see

[BeT96], Prop. 2.5, or [Ber07], Prop. 1.3.5, and a counterexample by Williams and Baird [WiB93]). The

restriction Fµ0Q0 ≤ Q0 can be satisfied by adding to Q0 a sufficiently large multiple of the unit vector.

The need for it, however, indicates that the convergence properties of the algorithm (3.1)-(3.2) are fragile

and sensitive to the assumptions, which may cause convergence difficulties in its stochastic simulation-based

variants. In particular, no related convergence results or counterexamples are currently known for the case

where the expected value of Eq. (3.1) is replaced by a single sample in a stochastic approximation-type of

update.

In a corresponding asynchronous version of our algorithm (2.8)-(2.9), again Q is updated selectively,

for only some of the state-control pairs, and J is also updated at some iterations and for some of the states.

11

There may also be a policy µ that is maintained and updated selectively at some of the states. This policy

may be used to generate a randomized policy ν which enters the algorithm in a material way. However, the

algorithm is valid for any choice of ν, so its definition need not involve the policy µ and the method in which

it is used to update ν (we will later give an example of an updating scheme for µ and ν). Specifically, our

asynchronous algorithm, stated in general terms, generates a sequence of pairs (Qk, Jk), starting from an

arbitrary pair (Q0, J0). Given (Qk, Jk), we obtain the next pair (Qk+1, Jk+1) as follows:

Asynchronous Policy Iteration:

Select a randomized policy νk, a subset Rk of state-control pairs, and a subset of states Sk such that

Rk ∪ Sk 6= ∅, generate Qk+1 according to

Qk+1(i, u) =

{
(FJk,νk

Qk)(i, u) if (i, u) ∈ Rk,

Qk(i, u) if (i, u) /∈ Rk,
(3.3)

and generate Jk+1 according to

Jk+1(i) =

{
minu∈U(i)Qk(i, u) if i ∈ Sk,

Jk(i) if i /∈ Sk.
(3.4)

As mentioned earlier, the preceding algorithm as stated does not have the form of policy iteration.

However, νk may be selected in special ways so that it gives the algorithm a policy iteration character, which

can then be compared with (synchronous or asynchronous) modified policy iteration for Q-factors, such as

the one of Eqs. (3.1)-(3.2). For an example of such an algorithm, assume that a policy µk is also maintained,

which defines νk (so νk is the deterministic policy µk). The algorithm updates Q according to

Qk+1(i, u) =

{
(FJk,µk

Qk)(i, u) if (i, u) ∈ Rk,
Qk(i, u) if (i, u) /∈ Rk,

(3.5)

and it updates J and µ according to

Jk+1(j) =

{
minv∈U(j)Qk(j, v) if j ∈ Sk,

Jk(j) if j /∈ Sk,
µk+1(j) =

{
arg minv∈U(j)Qk(j, v) if j ∈ Sk,

µk(j) if j /∈ Sk,
(3.6)

where Rk and Sk are subsets of state-control pairs and states.

We may view Eq. (3.5) as a policy evaluation iteration for the state-control pairs in Rk, and Eq. (3.6)

as a policy improvement iteration only for the states in Sk. In comparing the new algorithm (3.5)-(3.6)

with the known algorithm (3.1)-(3.2), we see that the essential difference is that Eq. (3.5) involves the

12

use of Jk and the minimization in the right-hand side, while Eq. (3.1) does not. As we will show in the

following proposition, this precludes the kind of anomalous behavior that is exhibited in the Williams and

Baird counterexample [WiB93] mentioned earlier. Mathematically, the reason for this may be traced to the

presence of the cost vector J in Eq. (3.3) and its special case Eq. (3.5), and the sup-norm contraction in the

space of (Q, J), which underlies iterations (3.3)-(3.4) and (3.5)-(3.6) (cf. Prop. 2.1).

The following convergence result bears similarity to general convergence results for asynchronous dis-

tributed DP and related algorithms involving sup-norm contractions (see [Ber82], [Ber83], and [BeT89],

Section 6.2).

Proposition 3.1: Assume that each pair (i, u) is included in the set Rk infinitely often, and each

state i is included in the set Sk infinitely often. Then any sequence
{

(Qk, Jk)
}

generated by the

algorithm (3.3)-(3.4) converges to (Q∗, J∗).

Proof: Let {kj} and {k̂j} be sequences of iteration indices such that k0 = 0, kj < k̂j < kj+1 for j = 0, 1, . . . ,

and for all j, each (i, u) is included in ∪k̂j−1

k=kj
Rk at least once, while each i is included in ∪kj+1−1

k=k̂j
Sk at least

once. Thus, between iterations kj and k̂j , each component of Q is updated at least once, and between

iterations k̂j and kj+1, each component of J is updated at least once.

By using Prop. 2.1, we have for all k

|Qk+1(i, u)−Q∗(i, u)| ≤ αmax
{
‖Jk − J∗‖∞, ‖Qk −Q∗‖∞

}
, ∀ (i, u) ∈ Rk, (3.7)

Qk+1(i, u) = Qk(i, u), ∀ (i, u) /∈ Rk. (3.8)

Also, by using the nonexpansive property of the minimization operation [cf. Eq. (2.13)], we have for all k

|Jk+1(i)− J∗(i)| ≤ ‖Qk −Q∗‖∞, ∀ i ∈ Sk, (3.9)

Jk+1(i) = Jk(i), ∀ i /∈ Sk. (3.10)

From these relations, it follows that

max
{
‖Jk+1 − J∗‖∞, ‖Qk+1 −Q∗‖∞

}
≤ max

{
‖Jk − J∗‖∞, ‖Qk −Q∗‖∞

}
, ∀ k = 0, 1, (3.11)

For each k ∈ [k̂j , kj+1], we have from Eqs. (3.7), (3.8),

|Qk(i, u)−Q∗(i, u)| ≤ αmax
{
‖Jk̃(i,u,k) − J∗‖∞, ‖Qk̃(i,u,k) −Q∗‖∞

}
, ∀ (i, u), (3.12)

13

where k̃(i, u, k) is the last iteration index between kj and k when the component Q(i, u) is updated. Since

each component of Q is updated at least once between iterations kj and k ∈ [k̂j , kj+1], using also Eq. (3.11),

it follows that

‖Qk −Q∗‖∞ ≤ αmax
{
‖Jkj − J∗‖∞, ‖Qkj −Q∗‖∞

}
, ∀ j = 0, 1, . . . , k ∈ [k̂j , kj+1]. (3.13)

Since each component of J is updated at least once between iterations k̂j and kj+1, we have from Eqs. (3.9)

and (3.10) that

|Jkj+1(i)− J∗(i)| ≤ ‖Qk̃(i) −Q∗‖∞, ∀ i = 1, . . . , n,

where k̃(i) is the last iteration index between k̂j and kj+1 when the component J(i) is updated, so from Eq.

(3.13), it follows that

‖Jkj+1 − J∗‖∞ ≤ αmax
{
‖Jkj − J∗‖∞, ‖Qkj −Q∗‖∞

}
, ∀ j = 0, 1, (3.14)

Combining Eqs. (3.13) and (3.14), we obtain

max
{
‖Jkj+1 − J∗‖∞, ‖Qkj+1 −Q∗‖∞

}
≤ αmax

{
‖Jkj − J∗‖∞, ‖Qkj −Q∗‖∞

}
, ∀ j = 0, 1, . . . ,

so max
{
‖Jkj − J∗‖∞, ‖Qkj −Q∗‖∞

}
→ 0 as j →∞, i.e., that (Qkj , Jkj)→ (Q∗, J∗) as j →∞. Using also

Eq. (3.11), this implies that the entire sequence
{

(Qk, Jk)
}

converges to (Q∗, J∗). Q.E.D.

4. STOCHASTIC ITERATIVE VERSIONS OF THE ALGORITHM

In this section we consider stochastic iterative versions of our algorithm, which are patterned after the

classical Q-learning algorithm of Watkins [Wat89], as well as optimistic and modified policy iteration methods

([BeT96], Section 5.4). We will compare our algorithm with the classical Q-learning algorithm, whereby we

generate a sequence of state-control pairs
{

(ik, uk) | k = 0, 1, . . .
}

by any probabilistic mechanism that

guarantees that each pair (i, u) appears infinitely often with probability 1, and at each time k, we generate

a successor state jk according to the distribution pikj(uk), j = 1, . . . , n, and we update only the Q-factor of

(ik, uk),

Qk+1(ik, uk) =
(
1− γ(ik,uk),k

)
Qk(ik, uk) + γ(ik,uk),k

(
g(ik, uk, jk) + α min

v∈U(j)
Qk(jk, v)

)
, (4.1)

while leaving all other components of Qk unchanged: Qk+1(i, u) = Qk(i, u) for all (i, u) 6= (ik, uk). The

positive stepsizes γ(ik,uk),k may depend on the current pair (ik, uk), and must satisfy assumptions that are

standard in stochastic approximation methods (i.e., must diminish to 0 at a suitable rate). There are also

distributed asynchronous versions of the algorithm (4.1), where Qk(jk, v) may be replaced by Qτk,v (jk, v),

14

where k − τk,v may be viewed as a nonnegative integer “delay” that depends on k and v, as discussed by

Tsitsiklis [Tsi94], and other sources on asynchronous stochastic approximation methods such as [TBA86],

[BeT89], [Bor98], [ABB02], and [Bor08].

In what follows in this section, we present three model-free optimistic policy iteration algorithms, which

update a cost vector J in addition to the Q-factor vector Q, similar to the algorithms of Sections 2 and 3.

We focus on a specific order of updates (simultaneous updates of selected components of J and Q), but other

orders may also be considered. We refer to these algorithms as Algorithms I-III, and we briefly describe

them below:

(I) This algorithm resembles the classical Q-learning algorithm (4.1), but requires less overhead per itera-

tion [the minimization over u ∈ U(j) is replaced by a simpler operation]. It also bears similarity with

a known partially optimistic TD(0) algorithm, discussed in Section 5.4 of [BeT96], but has improved

convergence properties.

(II) This algorithm parallels the asynchronous policy iteration method (3.3)-(3.4) of the preceding section,

but is model-free and uses a single sample per state instead of computing an expected value.

(III) This algorithm generalizes the first two, and allows more complex mechanisms for generating state

control pairs, as well as “delayed” components of state costs and Q-factors in its iteration. Among

others, the extra generality is helpful in addressing implementations in an asynchronous distributed

computing system, and also facilitates the convergence analysis, as we will explain later.

We find it useful to present Algorithms I and II first, since they offer different advantages in different

situations, and they help to motivate the more general Algorithm III. We establish the convergence of the

latter algorithm using the asynchronous stochastic approximation-type convergence framework of Tsitsiklis

[Tsi94]. All the variables involved in the algorithms (states, state-control pairs, costs of states, Q-factors,

policies, sets of indexes that determine which components are updated, etc) are to be viewed as random

variables defined on a common probability space. Specific technical assumptions about their probabilistic

properties will be given at the appropriate points later.

Some Model-Free Optimistic Policy Iteration Algorithms

Similar to classical Q-learning, our first algorithm generates a sequence of state-control pairs
{

(ik, uk) | k =

0, 1, . . .
}

, and updates only the Q-factor of (ik, uk) at iteration k, using a positive stepsize γ(ik,uk),k. It also

updates a single component of J if k ∈ KJ , where KJ is an infinite subset of indices (which need not be

predetermined, but may depend on algorithmic progress). The algorithm may choose νk arbitrarily for each

k and with dependence on (ik, uk), but one possibility is to maintain a policy µk that is updated at selected

15

states simultaneously with J , and then use νk = µk, similar to algorithm (3.5)-(3.6). Furthermore, the

controls uk may be generated in accordance with νk; this gives the algorithm a modified/optimistic policy

iteration character. The states ik+1 may be generated according to pikj(uk), as in some optimistic policy

iteration methods, although this is not essential for the convergence of the algorithm. Compared to the

preceding Q-learning algorithm (4.1), the algorithm has an advantage similar to the one that modified policy

iteration has over value iteration [less overhead because it does not require the minimization over all controls

v ∈ U(j) at every iteration]. In particular, given the pair (Qk, Jk), the algorithm obtains (Qk+1, Jk+1) as

follows:

Model-Free Optimistic Policy Iteration I:

(1) Select a state-action pair (ik, uk). If k ∈ KJ , update Jk according to

Jk+1(j) =

{
minv∈U(j)Qk(j, v) if j = ik,

Jk(j) if j 6= ik;
(4.2)

otherwise leave Jk unchanged (Jk+1 = Jk).

(2) Select a stepsize γ(ik,uk),k ∈ (0, 1] and a policy ν(ik,uk),k. Generate a successor state jk according

to the distribution pikj(uk), j = 1, . . . , n, and generate a control vk according to the distribution

ν(ik,uk),k(v | jk), v ∈ U(jk).

(3) Update the (ik, uk)th component of Q according to

Qk+1(ik, uk) =
(
1− γ(ik,uk),k

)
Qk(ik, uk) + γ(ik,uk),k

(
g(ik, uk, jk) + αmin

{
Jk(jk), Qk(jk, vk)

})
,

(4.3)

and leave all other components of Qk unchanged: Qk+1(i, u) = Qk(i, u) for all (i, u) 6= (ik, uk).

The preceding algorithm (Algorithm I) has similarities with the partially optimistic TD(0) algorithm,

discussed in Section 5.4 of [BeT96]. The latter algorithm updates only J [rather than (J,Q)] using TD(0),

and also maintains a policy, which is updated at selected iterations. However, its convergence properties are

dubious, as discussed in p. 231 of [BeT96] (see also Tsitsiklis [Tsi02]). By contrast, we will show that our

algorithm above has satisfactory convergence properties.

We now give another stochastic iterative algorithm, which parallels the asynchronous policy iteration

method (3.3)-(3.4) of Section 3. Given the pair (Qk, Jk), the algorithm obtains (Qk+1, Jk+1) as follows:

16

Model-Free Optimistic Policy Iteration II:

Select a subset Rk of state-control pairs, and a subset of states Sk such that Rk ∪ Sk 6= ∅.

Update Jk according to

Jk+1(i) =

{
minu∈U(i)Qk(i, u) if i ∈ Sk,

Jk(i) if i /∈ Sk.
(4.4)

For each ` = (i, u) ∈ Rk, select a stepsize γ`,k ∈ (0, 1] and a policy ν`,k, and:

(1) Generate a successor state jk according to the distribution pij(u), j = 1, . . . , n, and generate a

control vk according to the distribution ν`,k(v | jk), v ∈ U(jk).

(2) Update the (i, u)th component of Qk according to

Qk+1(i, u) =
(
1− γ(i,u),k

)
Qk(i, u) + γ`,k

(
g(i, u, jk) + αmin

{
Jk(jk), Qk(jk, vk)

})
. (4.5)

Leave all other components of Qk unchanged: Qk+1(i, u) = Qk(i, u) for all (i, u) /∈ Rk.

In the preceding algorithm (Algorithm II), the successor state-control pair (jk, vk) corresponding to the

different pairs ` = (i, u) ∈ Rk are different random variables. We have used the same notation for simplicity.

Compared with Algorithm I, the chief difference in Algorithm II is that it allows multiple components of J

and Q to be updated at each iteration. Compared with the deterministic asynchronous version (3.3)-(3.4),

the chief difference is that selected components of Q are updated using a single sample in place of the

expected value that defines FJk,ν`,k
[cf. Eqs. (3.3) and (3.5)]. Such updates must satisfy certain properties,

to be discussed in what follows, so that the error due to simulation noise will vanish in the limit.

It is convenient to view the next algorithm (Algorithm III) as an algorithm that operates in the joint

space of the pair (J,Q). We denote xk = (Jk, Qk) and introduce outdated information in updating xk. This

is natural for asynchronous distributed computation, in which case each component ` may be associated with

a processor, which keeps at time k a local, outdated version of xk, denoted by x(`)
k . We introduce outdated

information not just for more generality, but also to facilitate the association with the algorithmic framework

of [Tsi04], which we will use in our convergence proof. In particular, x(`)
k has the form

x
(`)
k =

(
x1,τ`

1,k
, . . . , xm,τ`

m,k

)
, (4.6)

where the nonnegative difference k − τ `j,k indicates a “communication delay” relative to the “current” time

k for the jth component of x at the processor updating component ` (j, ` = 1, . . . ,m, with m being the sum

17

of the number of states and the number of state-control pairs). We write x(`)
k in terms of its components J

and Q as

x
(`)
k =

(
J

(`)
k , Q

(`)
k

)
. (4.7)

We will require later that limk→∞ τ `j,k = ∞ for all ` and j, but the exact values of τ `j,k are immaterial and

need not even be known to the processor.

In the following Algorithm III, we can use outdated information to update J and Q, and the choice

of the policy ν at time k may depend on the successor state jk in addition to the history of the algorithm

up to time k. To be more precise, let Ik be an information vector, a random variable that consists of the

entire history of the algorithm up to time k (this includes the stepsizes γ`,t, the index sets St and Rt selected

for cost and Q-factor updates, the results of the updates, and the delays t − τ `j,t, at all times t ≤ k). We

will assume that the selection of the policy is based on (Ik, jk), where jk is the successor state generated

according to probabilities pij(u) similar to Algorithm II.

Model-Free Optimistic Policy Iteration III:

Select a subset Rk of state-control pairs, and a subset of states Sk such that Rk ∪ Sk 6= ∅. For each

` ∈ Rk ∪ Sk, choose a stepsize γ`,k ∈ (0, 1] and times τ `j,k ≤ k, j = 1, . . . ,m. Let (J (`)
k , Q

(`)
k) be as

defined in Eqs. (4.6) and (4.7).

Update Jk according to

Jk+1(i) =

{
(1− γ`,k)Jk(i) + γ`,k minu∈U(i)Q

(`)
k (i, u), with ` = i, if i ∈ Sk,

Jk(i) if i /∈ Sk.
(4.8)

For each ` = (i, u) ∈ Rk:

(1) Generate a successor state j`,k according to the distribution pij(u), j = 1, . . . , n. Select a

policy ν`,Ik,j`,k
based on the information (Ik, j`,k), and generate a control v`,k according to the

distribution ν`,Ik,j`,k
(v | j`,k), v ∈ U(j`,k).

(2) Update the (i, u)th component of Qk according to

Qk+1(i, u) =
(
1− γ`,k

)
Qk(i, u) + γ`,k

(
g(i, u, j`,k) + αmin

{
J

(`)
k (j`,k), Q(`)

k (j`,k, v`,k)
})
. (4.9)

Leave all other components of Qk unchanged: Qk+1(i, u) = Qk(i, u) for all (i, u) /∈ Rk.

18

A General Algorithmic Model

As preparation for an analytically more convenient description of Algorithm III, we introduce some notation.

Let M denote the set of all stationary (deterministic or randomized) policies. For each ν ∈ M, define an

operator Lν on the space of (J,Q) by

(J̃ , Q̃) = Lν(J,Q), (4.10)

where

J̃(i) = min
u∈U(i)

Q(i, u), i = 1, . . . , n, Q̃ = FJ,νQ. (4.11)

Denote the `th component of the mapping Lν by Lν` , where ` = 1, . . . ,m. As can be seen from Eq. (4.11), if

` corresponds to the ith component of J , then Lν` (J,Q) = minu∈U(i)Q(i, u), whereas if ` corresponds to the

(i, u)th component of Q, then Lν` (J,Q) = (FJ,νQ)(i, u).

We note that for a given ` ∈ Rk, the policy ν`,Ik,j`,k
is a measurable M-valued random variable with

respect to the σ-field σ(Ik, j`,k) generated by (Ik, j`,k) [since it is selected with knowledge of (Ik, j`,k)]. We

introduce the σ(Ik)-measurable M-valued random variable ν̄`,Ik =
{
ν̄`,Ik(v | j) | v ∈ U(j), j = 1, . . . , n

}
,

which is the conditional distribution of v corresponding to the joint distribution P (j`,k = j, v`,k = v | Ik),

i.e.,

P (j`,k = j, v`,k = v | Ik) = pij(u) ν̄`,Ik(v | j), ∀ j, v ∈ U(j). (4.12)

[If ` = (i, u) and j is such that pij(u) = 0, we have P (j`,k = j, v`,k = v | Ik) = 0 for all v ∈ U(j), and we

may define ν̄`,Ik(v | j) to be any distribution over U(j), for example the uniform distribution.] Note that if

in Algorithm III, ν`,Ik,j`,k
(· | j) is chosen before j`,k is generated, then ν̄`,Ik coincides with ν`,k; this is the

case in Algorithm II.

We can now express Algorithm III in a compact form using the mappings Lν of Eqs. (4.10)-(4.11). It

can be equivalently written as

x`,k+1 = (1− γ`,k)x`,k + γ`,k

(
L
ν̄`,Ik
`

(
x

(`)
k

)
+ w`,k

)
, (4.13)

where:

(a) If ` = (i, u) ∈ Rk, we have γ`,k ∈ (0, 1], and w`,k is a noise term given by

w`,k = g(i, u, j`,k) + αmin
{
J

(`)
k (j`,k) , Q(`)

k (j`,k, v`,k)
}
−
(
F
J

(`)
k
,ν̄`,Ik

Q
(`)
k

)
(i, u). (4.14)

[cf. Eqs. (4.9) and (4.11), and noticing that L
ν̄`,Ik
` (x(`)

k) = (F
J

(`)
k
,ν̄`,Ik

Q
(`)
k)(i, u).]

(b) If ` ∈ Sk, we have γ`,k ∈ (0, 1], w`,k = 0, and ν̄`,Ik is immaterial [cf. Eqs. (4.8) and (4.11)].

(c) If ` 6∈ Rk ∪ Sk, we have γ`,k = 0, w`,k = 0.

19

With γ`,k defined for all ` and k, the sets Rk, Sk may also be specified implicitly by those γ`,k that are

positive.

Convergence Analysis

Our convergence analysis of the general algorithm (4.8)-(4.9), equivalently given in (4.13)-(4.14), uses exten-

sions of two results from Tsitsiklis [Tsi94], which relate to the convergence of algorithms of the form (4.13)

with the exception that there is only a single contraction mapping L in place of Lν̄`,Ik . Our analysis is based

on the observation that these results of [Tsi94] extend to the case with multiple mappings, if the latter are

contraction mappings with respect to the same norm and have the same fixed point.

Thus, the first step of our convergence proof is to establish a common contraction property of Lν for

all stationary policies ν. Define a weighted sup-norm ‖ · ‖ζ on the space of (J,Q) by

‖(J,Q)‖ζ = max
{‖J‖∞

ξ
, ‖Q‖∞

}
, (4.15)

where ξ is a positive scalar such that

ξ > 1, αξ < 1. (4.16)

Proposition 4.1: Let ‖ · ‖ζ and ξ be given by Eqs. (4.15) and (4.16), respectively, and let β =

max{αξ, 1/ξ} < 1. For all stationary policies ν, (J∗, Q∗) is the unique fixed point of the mapping Lν

given by Eqs. (4.10)-(4.11), and we have

‖Lν(J,Q)− Lν(J ′, Q′)‖ζ ≤ β‖(J,Q)− (J ′, Q′)‖ζ (4.17)

for all pairs (J,Q) and (J ′, Q′).

Proof: At the beginning of the proof of Prop. 2.2 we showed that (J∗, Q∗) is a fixed point of Lν for all ν.

The uniqueness of the fixed point will be implied by Eq. (4.17), which we now prove. Let (J̃ , Q̃) = Lν(J,Q)

and (J̃ ′, Q̃′) = Lν(J ′, Q′). By Prop. 2.1, we have

‖Q̃− Q̃′‖∞ ≤ αmax{‖J − J ′‖∞ , ‖Q−Q′‖∞}

= αmax
{
ξ · ‖J − J

′‖∞
ξ

, ‖Q−Q′‖∞
}

≤ αmax
{
ξ · ‖J − J

′‖∞
ξ

, ξ · ‖Q−Q′‖∞
}

= αξ · ‖(J,Q)− (J ′, Q′)‖ζ ,

(4.18)

20

where we used ξ > 1 to derive the second inequality. We also have

‖J̃ − J̃ ′‖∞ ≤ ‖Q−Q′‖∞,

which implies that
‖J̃ − J̃ ′‖∞

ξ
≤ 1
ξ
· ‖Q−Q′‖∞

≤ 1
ξ
·max

{‖J − J ′‖∞
ξ

, ‖Q−Q′‖∞
}

=
1
ξ
· ‖(J,Q)− (J ′, Q′)‖ζ .

(4.19)

Equations (4.18) and (4.19) imply the desired property (4.17):

‖(J̃ , Q̃)− (J̃ ′, Q̃′)‖ζ = max

{
‖J̃ − J̃ ′‖∞

ξ
, ‖Q̃− Q̃′‖∞

}

≤ max{αξ, 1/ξ} · ‖(J,Q)− (J ′, Q′)‖ζ

= β ‖(J,Q)− (J ′, Q′)‖ζ .
Q.E.D.

We now specify conditions on the variables involved in the algorithm (4.13)-(4.14). Our conditions

parallel the assumptions given in [Tsi94] (Assumptions 1-3), which are standard for asynchronous stochastic

approximation. We use the shorthand “w.p.1” for “with probability 1.” The first condition is a mild, natural

requirement for the delays.

Condition 4.1: For any ` and j, limk→∞ τ `j,k =∞ w.p.1.

The next condition is mainly about the noise terms w`,k. Let (Ω,F , P) be the common probability

space on which all the random variables involved in the algorithm are defined, and let {Fk, k ≥ 0} be an

increasing sequence of subfields of F .

Condition 4.2:

(a) x0 is F0-measurable.

(b) For every ` corresponding to a component of Q and every k, w`,k is Fk+1-measurable.

(c) For every j, `, and k, γ`,k, τ `j,k and ν̄`,Ik are Fk-measurable.

(d) For every ` corresponding to a component of Q and every k,

E
[
w`,k | Fk

]
= 0.

(e) There exist (deterministic) constants A and B such that for every ` corresponding to a component of

Q and every k,

E
[
w2
`,k | Fk

]
≤ A+Bmax

j
max
τ≤k
|xj,τ |2.

21

The next condition deals with the stepsize variables.

Condition 4.3:

(a) For every `,
∑

k≥0

γ`,k =∞, w.p.1.

(b) There exists some (deterministic) constant C such that for every ` corresponding to a component of Q,

∑

k≥0

γ2
`,k ≤ C, w.p.1.

Condition 4.3(a) implies that all components of J and Q are updated infinitely often, which is also part

of the assumptions of Prop. 3.1. A simple way to choose stepsize sequences {γ`,k} that satisfy Condition 4.3

is to define them using a positive scalar sequence {γk} which diminishes to 0 at a suitable rate [e.g., O(1/k)]:

For all ` ∈ Rk, let γ`,k have a common value γk, and select all state-control pairs (i, u) “comparably often” in

the sense that the fraction of times (i, u) is selected for iteration is nonzero in the limit (see Borkar [Bor08]).

There are two insignificant differences between the preceding conditions and the assumptions in [Tsi94]

(Assumptions 1-3). First, Condition 4.2(c) is imposed on the random variables ν̄`,Ik , which do not appear in

[Tsi94]. Second, Conditions 4.2(d) and 4.2(e) are imposed on the noise terms w`,k, which are involved in the

updates of components of Q only [for components of J , there is no noise (w`,k = 0) in the updates and these

conditions are trivially satisfied]. For the same reason, Condition 4.3(b), a standard condition for bounding

asymptotically the error due to noise, is also imposed on the components of Q only [in [Tsi94], Condition

4.3(b) is imposed on all components of x].

We now verify that by its definition, the algorithm (4.13)-(4.14) satisfies Condition 4.2. Let Fk = σ(Ik).

Then Conditions 4.2(a)-(c) are satisfied by the definition of the algorithm; in particular, note that ν̄`,Ik is by

definition Fk-measurable [cf. Eq. (4.12)]. We verify Conditions 4.2(d)-(e), similar to the standard Q-learning

case given in [Tsi94]. Let ` ∈ Rk and (j`,k, v`,k) be the corresponding successor state-control pair. From the

way j`,k is generated, it is seen that

E
[
g(i, u, j`,k) | Fk

]
=

n∑

j=1

pij(u)g(i, u, j).

From the way
(
j`,k, v`,k

)
is generated and the definition of ν̄`,Ik [cf. Eq. (4.12)], we have

E
[
min

{
J

(`)
k (j`,k), Q(`)

k (j`,k, v`,k)
} ∣∣ Fk

]
=

n∑

j=1

pij(u)
∑

v∈U(j)

ν̄`,Ik(v | j) min
{
J

(`)
k (j) , Q(`)

k (j, v)
}
.

22

Taking conditional expectation in Eq. (4.14) and using the preceding two equations, we obtain

E
[
w`,k | Fk

]
=

n∑

j=1

pij(u)


g(i, u, j) + α

∑

v∈U(j)

ν̄`,Ik(v | j) min
{
J

(`)
k (j) , Q(`)

k (j, v)
}



−
(
F
J

(`)
k
,ν̄`,Ik

Q
(`)
k

)
(i, u)

= 0,

so Condition 4.2(d) is satisfied. It can also be seen that we may write w`,k = Z1 + Z2 with

Z1 = g(i, u, j`,k)− E
[
g(i, u, j`,k) | Fk

]
,

Z2 = αmin
{
J

(`)
k (j`,k) , Q(`)

k (j`,k, v`,k)
}
− E

[
αmin

{
J

(`)
k (j`,k) , Q(`)

k (j`,k, v`,k)
} ∣∣ Fk

]
,

where the first expectation is over j`,k and the second is over (j`,k, v`,k). Since the number of state-control

pairs is finite, the variance of g(i, u, j`,k) can be bounded by a constant C for all (i, u): E
[
Z2

1 | Fk
]
≤ C. †

The conditional variance of min
{
J

(`)
k (j`,k), Q(`)

k (j`,k, v`,k)
}

, conditioned on Fk, is bounded by the square of

the largest absolute value that this random variable can possibly take, so

E
[
Z2

2 | Fk
]
≤ α2 max

j
max
τ≤k
|xj,τ |2.

Thus, using also the Cauchy-Schwarz inequality, we have

E
[
w2
`,k | Fk

]
≤ C + α2 max

j
max
τ≤k
|xj,τ |2 + 2

√
C · α2 max

j
max
τ≤k
|xj,τ |2

≤ A+Bmax
j

max
τ≤k
|xj,τ |2, ∀ k, ` ∈ Rk,

for some deterministic constants A and B, so Condition 4.2(e) is satisfied.

Proposition 4.2: Under Conditions 4.1 and 4.3, any sequence {xk} with xk = (Jk, Qk) gener-

ated by the model-free optimistic policy iteration algorithm (4.13)-(4.14) [or equivalently, (4.8)-(4.9)]

converges to x∗ = (J∗, Q∗) with probability 1.

Proof: We have shown that Condition 4.2 is satisfied by the algorithm (4.13)-(4.14), so under the assump-

tion of the proposition, we have that all Conditions 4.1-4.3 hold. We apply the analysis of [Tsi94], and in

particular, the proofs of Theorems 1 and 3 of that reference. The two theorems imply the boundedness of

{xk} and the convergence of {xk} to x∗ with probability 1, respectively, for iterates of the form

x`,k+1 = (1− γ`,k)x`,k + γ`,k
(
L`
(
x

(`)
k

)
+ w`,k

)
,

† If instead of a scalar, g(i, u, j) is also treated as random, then one may impose a finite variance condition on it.

23

where L is a contraction mapping with fixed point x∗, under assumptions that parallel Conditions 4.1-4.3

with minor differences, which we address below [in our algorithm, there are multiple contraction mappings Lν

that share the same fixed point, and the condition 4.3(b) is satisfied only for ` corresponding to components

of Q].

First, for a contraction mapping L with modulus β and with respect to a weighted sup-norm ‖ · ‖ζ , L
enters in the proofs of Theorems 1 and 3 of [Tsi94], only via the two inequalities:

‖L(x)‖ζ ≤ β‖x‖ζ +D, ∀x, (4.20)

where D is some constant, and

‖L(x)− x∗‖ζ ≤ β‖x− x∗‖ζ , ∀x. (4.21)

Implications of these inequalities are used to bound L`(x
(`)
k) in the iterates x`,k+1 for each sample path from

a set of probability one.

Second, in the proofs of Theorems 1 and 3 of [Tsi94], the effect of the noise {w`,k} on {x`,k} for each

component ` is analyzed in two lemmas, Lemmas 1 and 2, under Conditions 4.2(b)-(e) and 4.3 for that

particular component. It is only in those two places that Condition 4.3(b) for a component is used. The rest

of the analysis for Theorems 1 and 3 relies only indirectly on Condition 4.3(b) through the two lemmas.

In our case, the inequalities (4.20) and (4.21) are satisfied by all Lν̄`,Ik for the same ‖ · ‖ζ , β,D, and

x∗ = (J∗, Q∗), as established in Prop. 4.1. Moreover, when ` corresponds to a component of J , while the

stepsizes γ`,k are not restricted by Condition 4.3(b), because the noise terms w`,k, k ≥ 0 are always zero,

Lemmas 1 and 2 of [Tsi94] trivially hold without Condition 4.3(b) for such `. It then follows that Lemmas

1 and 2 hold for all components ` of x in our case. We can thus apply the proofs of the two theorems of

[Tsi94] with L`
(
x

(`)
k

)
replaced by L

ν̄`,Ik
`

(
x

(`)
k

)
to establish the convergence to x∗ with probability 1 for the

sequence {xk} generated by the algorithm (4.13)-(4.14). Q.E.D.

5. ERROR BOUNDS FOR APPROXIMATE IMPLEMENTATIONS

In this section, we discuss the effect of approximations on the algorithm of Section 2. In particular, we

consider performing the iteration Qk+1 = F
mk
Jk,νk

Qk [cf. Eq. (2.8)] approximately, possibly using simulation

and function approximation. In such an algorithm, we generate a sequence {Qk} such that

∥∥Qk+1 − Fmk
Jk,νk

Qk
∥∥
∞ ≤ δ, (5.1)

for some δ > 0 and a sequence of positive integers {mk}. We then update Jk according to

Jk+1(i) = min
u∈U(i)

Qk+1(i, u), ∀ i, (5.2)

24

and let the randomized policy νk+1 be arbitrary as before.

The analysis also holds when mk may be equal to ∞, in which case Eq. (5.1) is replaced by

‖Qk+1 −QJk,νk
‖∞ ≤ δ.

The computation of Qk+1 can be done in a number of ways, some of which are discussed in the next section.

In this section, we derive an error bound in the following proposition.

Proposition 5.1: Assume that for some δ ≥ 0 and each k ≥ 0, there exists a positive integer mk

such that Eq. (5.1) holds. Let µk+1 be a policy such that µk+1(i) attains the minimum in Eq. (5.2)

for all i. Then, for any stationary policy µ that is a limit point of {µk}, we have

‖Jµ − J∗‖∞ ≤
2δ

(1− α)2
. (5.3)

The bound (5.3) is identical to what is generally viewed as the standard bound for the performance of

approximate policy iteration ([BeT96], Prop. 6.2). We prove this bound through three lemmas.

Lemma 5.1: For all ν, J , J̃ , Q, Q̃, and m ≥ 1, we have

∥∥FmJ,νQ− FmJ̃,νQ̃
∥∥
∞ ≤ αmax

{
‖J − J̃‖∞, ‖Q− Q̃‖∞

}
.

Proof: Follows by repeated application of Prop. 2.1. Q.E.D.

Lemma 5.2: Given (J, ν) and δ ≥ 0, let Q, Q̂, and m ≥ 1 be such that

‖Q̂− FmJ,νQ‖∞ ≤ δ,

and let Ĵ be defined by

Ĵ(i) = min
u∈U(i)

Q̂(i, u), ∀ i.

25

Then,

‖Ĵ − J∗‖∞ ≤ ‖Q̂−Q∗‖∞ ≤ αmax
{
‖J − J∗‖∞, ‖Q−Q∗‖∞

}
+ δ.

Proof: Using the triangle inequality, the fact Q∗ = FmJ∗,νQ
∗, and Lemma 5.1, we have

‖Q̂−Q∗‖∞ − ‖Q̂− FmJ,νQ‖∞ ≤ ‖FmJ,νQ−Q∗‖∞ ≤ αmax
{
‖J − J∗‖∞, ‖Q−Q∗‖∞

}
,

which together with the assumption ‖Q̂−FmJ,νQ‖∞ ≤ δ, implies the right-hand side of the desired inequality.

The left-hand side follows from the generic inequality (2.13). Q.E.D.

For any policy µ, we denote by Tµ the mapping defined by

(TµJ)(i) =
n∑

j=1

pij
(
µ(i)

)(
g
(
i, µ(i), j

)
+ αJ(j)

)
, ∀ i.

Lemma 5.3: Given Q, let µ be a policy such that µ(i) attains the minimum of Q(i, u) over u ∈ U(i),

for all i. Then,

‖TµJ∗ − J∗‖∞ ≤ 2‖Q−Q∗‖∞.

Proof: Let β = ‖Q−Q∗‖∞, and let µ∗ be an optimal policy. We have for all i,

∣∣Q
(
i, µ(i)

)
−Q∗

(
i, µ(i)

)∣∣ ≤ β,
∣∣Q
(
i, µ∗(i)

)
−Q∗

(
i, µ∗(i)

)∣∣ ≤ β.

Note that

Q∗
(
i, µ(i)

)
= (TµJ∗)(i), Q∗

(
i, µ∗(i)

)
= (Tµ∗J∗)(i) = J∗(i),

and by the definition of µ,

Q
(
i, µ(i)

)
≤ Q

(
i, µ∗(i)

)
.

Combining these relations, we have for all i,

(TµJ∗)(i)− J∗(i) ≤ (TµJ∗)(i)−Q
(
i, µ(i)

)
+Q

(
i, µ∗(i)

)
− J∗(i) ≤ β + β = 2β,

from which the desired inequality follows. Q.E.D.

26

Proof of Prop. 5.1: Let

βk = max
{
‖Jk − J∗‖∞, ‖Qk −Q∗‖∞

}
.

By applying Lemma 5.2 with J = Jk, Ĵ = Jk+1, Q = Qk, Q̂ = Qk+1, we have

‖Jk+1 − J∗‖∞ ≤ ‖Qk+1 −Q∗‖∞ ≤ αmax
{
‖Jk − J∗‖∞, ‖Qk −Q∗‖∞

}
+ δ = αβk + δ. (5.4)

By taking the maximum of the two leftmost terms, this relation also implies that

βk+1 ≤ αβk + δ,

and by iteration

βk+1 ≤ αk+1β0 + (αk + αk−1 + · · ·+ 1)δ. (5.5)

From Eq. (5.4) and Lemma 5.3,

‖Tµk+1J
∗ − J∗‖∞ ≤ 2

(
αβk + δ

)
.

Taking limit along a subsequence of µk that converges to a stationary policy µ, we obtain

‖TµJ∗ − J∗‖∞ ≤ 2 lim sup
k→∞

(
αβk + δ

)
≤ 2δ

1− α,

where the second inequality follows from Eq. (5.5). We also have

‖T kµJ∗ − J∗‖∞ ≤ ‖T kµJ∗ − T k−1
µ J∗‖∞ + ‖T k−1

µ J∗ − T k−2
µ J∗‖∞ + · · ·+ ‖TµJ∗ − J∗‖∞

≤ (αk−1 + αk−2 + · · ·+ 1)‖TµJ∗ − J∗‖∞.

Combining the last two relations, taking limit as k →∞, and using the fact T kµJ∗ → Jµ, we obtain

‖Jµ − J∗‖∞ ≤
2δ

(1− α)2
.

Q.E.D.

6. APPROXIMATION ALGORITHMS

In this section, we provide some details on how to combine the approximation scheme of Section 5 with Q-

factor approximations and simulation-based methods that use low-dimensional calculations. In particular,

we discuss algorithms for constructing approximations Qk+1 to QJk,νk
or to Fmk

Jk,νk
Qk [cf. Eq. (5.1)], which

can be combined with the updating rule of Eq. (5.2),

Jk+1(i) = min
u∈U(i)

Qk+1(i, u), ∀ i, (6.1)

and with some method to select νk+1. These algorithms can also be viewed as approximation counterparts of

specific cases of the lookup-table-based stochastic policy iteration Algorithm I, given in Section 4. The error

27

bound of Prop. 5.1 holds for such schemes (although the constant δ is generally unknown). We first focus

on the algorithm of Tsitsiklis and Van Roy [TsV99], which can be used for solving approximately optimal

stopping problems. This algorithm obtains a Q-factor vector Q̂ that approximates a fixed point QJ,ν , in

place of the “policy evaluation” step (2.8) of the algorithm, and belongs to the class of projected equation

methods (see e.g., [Ber07], [BeY09]).

For a given J and ν, we view QJ,ν(i, u) as the Q-factor of the optimal stopping problem described in

Section 2, which corresponds to the action of not stopping at pair (i, u). We approximate QJ,ν(i, u) using a

linear approximation architecture of the form

Q̂(i, u) = φ(i, u)′r, ∀ (i, u). (6.2)

Here, φ(i, u)′ is a row vector of s features whose inner product Q̂(i, u) with a column vector of weights r ∈ <s

provides a Q-factor approximation for (i, u). We may view φ(i, u) as forming an n×s matrix whose columns

are basis functions for a subspace within which Q-factor vectors are approximated. We do not discuss the

important issue of selection of φ(i, u), but we note the possibility of its optimal choice within some restricted

class by using gradient and random search algorithms (see Menache, Mannor, and Shimkin [MMS06], and

Yu and Bertsekas [YuB09] for recent work on this subject).

For the typical policy evaluation cycle, we have an estimate of optimal cost

J(i) = min
u∈U(i)

φ(i, u)′r0, ∀ i,

where r0 is the weight vector obtained at the end of the preceding policy evaluation cycle (J may be arbitrarily

chosen for the first cycle). We select a randomized policy ν, and we generate a single infinitely long simulated

trajectory
{

(i0, u0), (i1, u1), . . .
}

corresponding to an unstopped system, i.e., using transition probabilities

from (it, ut) to (it+1, ut+1) given by

pitit+1(ut)ν(ut+1 | it+1).

Following the transition
(
(it, ut), (it+1, ut+1)

)
, we update rt by

rt+1 = rt − γtφ(it, ut)qt, (6.3)

where qt is the temporal difference

qt = φ(it, ut)′rt − g(it, ut, it+1)− αmin
{
J(it+1), φ(it+1, ut+1)′rt

}
, (6.4)

and γt is a positive stepsize that diminishes to 0.

For convergence the stepsize γt must satisfy some conditions that are standard for stochastic approxi-

mation-type algorithms [e.g., γt = O(1/t); see [TsV99]]. Assuming that these and some other technical

28

conditions are satisfied [such as a full-rank assumption for the matrix formed by φ(i, u)], Tsitsiklis and

Van Roy [TsV99] show the convergence of {rt} to a vector r∗ such that φ(i, u)′r∗ is the solution of a

projected equation that is characteristic of the TD methodology. They also provide a bound on the error

φ(i, u)′r∗ −QJ,ν(i, u); see also Van Roy [Van09].

The preceding algorithm describes how to obtain an approximation Q̂k to QJk,νk
. Combined with

the update rule (6.1), it yields an approximate policy iteration method, where exploration is encoded in

the choice of νk (which can be selected arbitrarily). The convergence properties of this method may be

quite complicated, not only because Q̂k is just an approximation to QJk,νk
, but also because when Q-factor

approximations of the form (6.2) are used, policy oscillations may occur, a phenomenon described in Section

6.4 of [BeT96] (see also [Ber10], Section 6.3).

We note a related scaled version of the algorithm (6.3), proposed by Choi and Van Roy [ChV06]:

rt+1 = rt − γtD−1
t φ(it, ut)qt, (6.5)

where Dt is a positive definite scaling matrix. For our purposes, to keep overhead per iteration low, it is

important that Dt is chosen to be diagonal, and [ChV96] suggests suitable simulation-based choices. We

also note alternative iterative optimal stopping algorithms given by Yu and Bertsekas [YuB07], which have

faster convergence properties, but require more overhead per iteration because they require a sum of past

temporal differences in the right-hand side of Eq. (6.5).

The preceding algorithms require an infinitely long trajectory
{

(i0, u0), (i1, u1), . . .
}

for convergence.

In the context of our policy iteration algorithm, however, it may be important to use finitely long and

even short trajectories between updates of Jk and νk. This is consistent with the ideas of optimistic policy

iteration (explained for example in [BeT96], [SuB98], [Ber07], [Ber10]; for recent experimental studies, see

Jung and Polani [JuP07], and Busoniu et al. [BED09]). It is also suggested by the value iteration nature of

the lookup table version of the algorithm when νk involves a substantial amount of exploration, as explained

in Section 2. Some experimentation with optimistic methods should be helpful in clarifying the associated

issues.

7. CONCLUSIONS

We have developed a policy iteration algorithm for Q-learning in discounted MDP. In its lookup table form,

the algorithm admits interesting asynchronous and optimistic implementations, with sound convergence

properties. In its compact representation/approximate form, the algorithm addresses in a new way the

critical issue of exploration in the context of simulation-based approximations using TD methods.

29

8. REFERENCES

[ABB02] Abounadi, J., Bertsekas, D. P., and Borkar, V., “Stochastic Approximation for Non-Expansive Maps:

Application to Q-Learning Algorithms,” SIAM J. on Control and Optimization, Vol. 41, pp. 1-22.

[BED09] Busoniu, L., Ernst, D., De Schutter, B., and Babuska, R., 2009. “Online Least-Squares Policy Iteration for

Reinforcement Learning Control,” unpublished report, Delft Univ. of Technology, Delft, NL.

[BeI96] Bertsekas, D. P., and Ioffe, S., 1996. “Temporal Differences-Based Policy Iteration and Applications in Neuro-

Dynamic Programming,” Lab. for Info. and Decision Systems Report LIDS-P-2349, MIT, Cambridge, MA.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed Computation: Numerical Methods,

Prentice-Hall, Englewood Cliffs, N. J; republished by Athena Scientific, Belmont, MA, 1997.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena Scientific, Belmont, MA.

[Ber82] Bertsekas, D. P., 1982. “Distributed Dynamic Programming,” IEEE Trans. Automatic Control, Vol. AC-27,

pp. 610-616.

[Ber83] Bertsekas, D. P., 1983. “Asynchronous Distributed Computation of Fixed Points,” Math. Programming, Vol.

27, pp. 107-120.

[Ber05] Bertsekas, D. P., 2005. Dynamic Programming and Optimal Control, 3rd Edition, Vol. I, Athena Scientific,

Belmont, MA.

[Ber07] Bertsekas, D. P., 2007. Dynamic Programming and Optimal Control, 3rd Edition, Vol. II, Athena Scientific,

Belmont, MA.

[Ber10] Bertsekas, D. P., 2010. Approximate Dynamic Programming, on-line at

http://web.mit.edu/dimitrib/www/dpchapter.html.

[Bor98] Borkar, V. S., 1998. “Asynchronous Stochastic Approximations,” SIAM J. on Control and Optimization, Vol.

36, pp. 840-851; correction note in ibid., Vol. 38, pp. 662-663.

[Bor08] Borkar, V. S., 2008. Stochastic Approximation: A Dynamical Systems Viewpoint, Cambridge Univ. Press,

N. Y.

[Boy02] Boyan, J. A., 2002. “Technical Update: Least-Squares Temporal Difference Learning,” Machine Learning,

Vol. 49, pp. 1-15.

[BrB96] Bradtke, S. J., and Barto, A. G., 1996. “Linear Least-Squares Algorithms for Temporal Difference Learning,”

Machine Learning, Vol. 22, pp. 33-57.

[CFH07] Chang, H. S., Fu, M. C., Hu, J., Marcus, S. I., 2007. Simulation-Based Algorithms for Markov Decision

Processes, Springer, N. Y.

[Cao07] Cao, X. R., 2007. Stochastic Learning and Optimization: A Sensitivity-Based Approach, Springer, N. Y.

30

[ChV06] Choi, D. S., and Van Roy, B., 2006. “A Generalized Kalman Filter for Fixed Point Approximation and

Efficient Temporal-Difference Learning,” Discrete Event Dynamic Systems: Theory and Applications, Vol. 16, pp.

207-239.

[Gor95] Gordon, G. J., 1995. “Stable Function Approximation in Dynamic Programming,” in Machine Learning:

Proceedings of the Twelfth International Conference, Morgan Kaufmann, San Francisco, CA.

[Gos03] Gosavi, A., 2003. Simulation-Based Optimization Parametric Optimization Techniques and Reinforcement

Learning, Springer-Verlag, N. Y.

[JJS94] Jaakkola, T., Jordan, M. I., and Singh, S. P., 1994. “On the Convergence of Stochastic Iterative Dynamic

Programming Algorithms,” Neural Computation, Vol. 6, pp. 1185-1201.

[JSJ95] Jaakkola, T., Singh, S. P., and Jordan, M. I., 1995. “Reinforcement Learning Algorithm for Partially

Observable Markov Decision Problems,” Advances in Neural Information Processing Systems, Vol. 7, pp. 345-352.

[JuP07] Jung, T., and Polani, D., 2007. “Kernelizing LSPE(λ),” in Proc. 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning, Honolulu, Hawaii. pp. 338-345.

[MMS06] Menache, I., Mannor, S., and Shimkin, N., 2005. “Basis Function Adaptation in Temporal Difference

Reinforcement Learning,” Ann. Oper. Res., Vol. 134, pp. 215-238.

[MSB08] Maei, H. R., Szepesvari, C., Bhatnagar, S., Silver, D., Precup, D., and Sutton, R. S., 2009. “Convergent

Temporal-Difference Learning with Arbitrary Smooth Function Approximation,” Proc. NIPS.

[Mey07] Meyn, S., 2007. Control Techniques for Complex Networks, Cambridge University Press, N. Y.

[Pow07] Powell, W. B., 2007. Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley,

N. Y.

[Put94] Puterman, M. L., 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming, J. Wiley,

N. Y.

[SMP09] Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvari, C., and Wiewiora, E., 2009.

“Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation,” Proc. of

ICML.

[SSM08] Sutton, R. S., Szepesvari, C., and Maei, H. R., 2008. “A Convergent O(n) Algorithm for Off-Policy Temporal-

Difference Learning with Linear Function Approximation,” Proc. of NIPS 21.

[SuB98] Sutton, R. S., and Barto, A. G., 1998. Reinforcement Learning, MIT Press, Cambridge, MA.

[Sut88] Sutton, R. S., 1988. “Learning to Predict by the Methods of Temporal Differences,” Machine Learning, Vol.

3, pp. 9-44.

[TBA86] Tsitsiklis, J. N., Bertsekas, D. P., and Athans, M., 1986. “Distributed Asynchronous Deterministic and

Stochastic Gradient Optimization Algorithms,” IEEE Trans. on Aut. Control, Vol. AC-31, pp. 803-812.

31

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “Feature-Based Methods for Large-Scale Dynamic Programming,”

Machine Learning, Vol. 22, pp. 59-94.

[TsV99] Tsitsiklis, J. N., and Van Roy, B., 1999. “Optimal Stopping of Markov Processes: Hilbert Space Theory,

Approximation Algorithms, and an Application to Pricing Financial Derivatives,” IEEE Transactions on Automatic

Control, Vol. 44, pp. 1840-1851.

[Tsi94] Tsitsiklis, J. N., 1994. “Asynchronous Stochastic Approximation and Q-Learning,” Machine Learning, Vol.

16, pp. 185-202.

[Tsi02] Tsitsiklis, J. N., 2002. “On the Convergence of Optimistic Policy Iteration,” J. of Machine Learning Research,

Vol. 3, pp. 59-72.

[Van09] Van Roy, B., 2009. “On Regression-Based Stopping Times,” Discrete Event Dynamic Systems, to appear.

[Wat89] Watkins, C. J. C. H., Learning from Delayed Rewards, Ph.D. Thesis, Cambridge Univ., England.

[WiB93] Williams, R. J., and Baird, L. C., 1993. “Analysis of Some Incremental Variants of Policy Iteration: First

Steps Toward Understanding Actor-Critic Learning Systems,” Report NU-CCS-93-11, College of Computer Science,

Northeastern University, Boston, MA.

[YuB07] Yu, H., and Bertsekas, D. P., 2007. “A Least Squares Q-Learning Algorithm for Optimal Stopping Problems,”

Lab. for Information and Decision Systems Report 2731, MIT; also in Proc. European Control Conference 2007, Kos,

Greece.

[YuB09] Yu, H., and Bertsekas, D. P., 2009. “Basis Function Adaptation Methods for Cost Approximation in MDP,”

Proc. of 2009 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning, Nashville,

Tenn.

32

