450 research outputs found

    FlaME: Flash Molecular Editor - a 2D structure input tool for the web

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>So far, there have been no Flash-based web tools available for chemical structure input. The authors herein present a feasibility study, aiming at the development of a compact and easy-to-use 2D structure editor, using Adobe's Flash technology and its programming language, ActionScript. As a reference model application from the Java world, we selected the Java Molecular Editor (JME). In this feasibility study, we made an attempt to realize a subset of JME's functionality in the Flash Molecular Editor (FlaME) utility. These basic capabilities are: structure input, editing and depiction of single molecules, data import and export in molfile format.</p> <p>Implementation</p> <p>The result of molecular diagram sketching in FlaME is accessible in V2000 molfile format. By integrating the molecular editor into a web page, its communication with the HTML elements on this page is established using the two JavaScript functions, <it>getMol() </it>and <it>setMol()</it>. In addition, structures can be copied to the <it>system clipboard</it>.</p> <p>Conclusion</p> <p>A first attempt was made to create a compact single-file application for 2D molecular structure input/editing on the web, based on Flash technology. With the application examples presented in this article, it could be demonstrated that the Flash methods are principally well-suited to provide the requisite communication between the Flash object (application) and the HTML elements on a web page, using JavaScript functions.</p

    A Survey of Information Visualization Books

    Get PDF
    Information visualization is a rapidly evolving field with a growing volume of scientific literature and texts continually published.To keep abreast of the latest developments in the domain, survey papers and state-of-the-art reviews provide valuable tools formanaging the large quantity of scientific literature. Recently a survey of survey papers (SoS) was published to keep track ofthe quantity of refereed survey papers in information visualization conferences and journals. However no such resources existto inform readers of the large volume of books being published on the subject, leaving the possibility of valuable knowledgebeing overlooked. We present the first literature survey of information visualization books that addresses this challenge bysurveying the large volume of books on the topic of information visualization and visual analytics. This unique survey addressessome special challenges associated with collections of books (as opposed to research papers) including searching, browsingand cost. This paper features a novel two-level classification based on both books and chapter topics examined in each book,enabling the reader to quickly identify to what depth a topic of interest is covered within a particular book. Readers can usethis survey to identify the most relevant book for their needs amongst a quickly expanding collection. In indexing the landscapeof information visualization books, this survey provides a valuable resource to both experienced researchers and newcomers inthe data visualization discipline

    Combining appearance and context for multi-domain sketch recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 99-102).As our interaction with computing shifts away from the traditional desktop model (e.g., towards smartphones, tablets, touch-enabled displays), the technology that drives this interaction needs to evolve as well. Wouldn't it be great if we could talk, write, and draw to a computer just like we do with each other? This thesis addresses the drawing aspect of that vision: enabling computers to understand the meaning and semantics of free-hand diagrams. We present a novel framework for sketch recognition that seamlessly combines a rich representation of local visual appearance with a probabilistic graphical model for capturing higher level relationships. This joint model makes our system less sensitive to noise and drawing variations, improving accuracy and robustness. The result is a recognizer that is better able to handle the wide range of drawing styles found in messy freehand sketches. To preserve the fluid process of sketching on paper, our interface allows users to draw diagrams just as they would on paper, using the same notations and conventions. For the isolated symbol recognition task our method exceeds state-of-the-art performance in three domains: handwritten digits, PowerPoint shapes, and electrical circuit symbols. For the complete diagram recognition task it was able to achieve excellent performance on both chemistry and circuit diagrams, improving on the best previous results. Furthermore, in an on-line study our new interface was on average over twice as fast as the existing CAD-based method for authoring chemical diagrams, even for novice users who had little or no experience using a tablet. This is one of the first direct comparisons that shows a sketch recognition interface significantly outperforming a professional industry-standard CAD-based tool.by Tom Yu Ouyang.Ph.D

    SUPPORTING FUNCTIONALITY-BASED DESIGN IN COMPUTER-AIDED DESIGN SYSTEMS

    Get PDF
    Designs are conceptualized in terms of the functions they need to accomplish. The need for a new product design arises as a result of the identification of a new functionality to be accomplished by the product. That is, design is functionality driven. However, existing CAD tools are not equipped to capture functionality or reason in such a fashion to support design for product functionality. This research proposes a new design formalism to enable functionality-driven design of mechanically engineered products. This procedure provides a methodology that allows a designer to model product functionality and to carry out conceptual design with the aid of a computer. It also serves as a bridging tool between the conceptual design phase and detailed design phase of a product. Thus, the primary objective of this research is to develop a methodology that will support the following activities in CAD systems: functionality modeling, functionality data structuring, and form conceptualization.The functionality modeling methodology developed in this work includes the use of operands, operators, and coupling bonds to describe product functionality in CAD systems. The Universal Modeling Language (an object-oriented programming technique) is used to model product functionality in computer systems. The tools developed in this research provide a means of modeling and propagating product functionality information to downstream design activities. The propagation of functionality as a constraint is achieved using Extensible Markup Language (XML) data files. These tools also provide a mechanism for verifying and enforcing constraints on solid CAD models. The functionality definition interface is implemented with a customized Microsoft Visio graphics engine.The tools developed in this research provide a means of modeling and propagating product functionality information to downstream design activities. It also provides a mechanism for verifying and enforcing constraints on solid CAD models. The functionality definition interface is implemented with a customized Microsoft Visio graphics engine

    Sketch recognition of digital ink diagrams : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Figures are either re-used with permission, or abstracted with permission from the source article.Sketch recognition of digital ink diagrams is the process of automatically identifying hand-drawn elements in a diagram. This research focuses on the simultaneous grouping and recognition of shapes in digital ink diagrams. In order to recognise a shape, we need to group strokes belonging to a shape, however, strokes cannot be grouped until the shape is identiïŹed. Therefore, we treat grouping and recognition as a simultaneous task. Our grouping technique uses spatial proximity to hypothesise shape candidates. Many of the hypothesised shape candidates are invalid, therefore we need a way to reject them. We present a novel rejection technique based on novelty detection. The rejection method uses proximity measures to validate a shape candidate. In addition, we investigate on improving the accuracy of the current shape recogniser by adding extra features. We also present a novel connector recognition system that localises connector heads around recognised shapes. We perform a full comparative study on two datasets. The results show that our approach is signiïŹcantly more accurate in ïŹnding shapes and faster on process diagram compared to Stahovich et al. (2014), which the results show the superiority of our approach in terms of computation time and accuracy. Furthermore, we evaluate our system on two public datasets and compare our results with other approaches reported in the literature that have used these dataset. The results show that our approach is more accurate in ïŹnding and recognising the shapes in the FC dataset (by ïŹnding and recognising 91.7% of the shapes) compared to the reported results in the literature

    Pen-based Methods For Recognition and Animation of Handwritten Physics Solutions

    Get PDF
    There has been considerable interest in constructing pen-based intelligent tutoring systems due to the natural interaction metaphor and low cognitive load afforded by pen-based interaction. We believe that pen-based intelligent tutoring systems can be further enhanced by integrating animation techniques. In this work, we explore methods for recognizing and animating sketched physics diagrams. Our methodologies enable an Intelligent Tutoring System (ITS) to understand the scenario and requirements posed by a given problem statement and to couple this knowledge with a computational model of the student\u27s handwritten solution. These pieces of information are used to construct meaningful animations and feedback mechanisms that can highlight errors in student solutions. We have constructed a prototype ITS that can recognize mathematics and diagrams in a handwritten solution and infer implicit relationships among diagram elements, mathematics and annotations such as arrows and dotted lines. We use natural language processing to identify the domain of a given problem, and use this information to select one or more of four domain-specific physics simulators to animate the user\u27s sketched diagram. We enable students to use their answers to guide animation behavior and also describe a novel algorithm for checking recognized student solutions. We provide examples of scenarios that can be modeled using our prototype system and discuss the strengths and weaknesses of our current prototype. Additionally, we present the findings of a user study that aimed to identify animation requirements for physics tutoring systems. We describe a taxonomy for categorizing different types of animations for physics problems and highlight how the taxonomy can be used to define requirements for 50 physics problems chosen from a university textbook. We also present a discussion of 56 handwritten solutions acquired from physics students and describe how suitable animations could be constructed for each of them

    Analysis of Children's Sketches to Improve Recognition Accuracy in Sketch-Based Applications

    Get PDF
    The current education systems in elementary schools are usually using traditional teaching methods such as paper and pencil or drawing on the board. The benefit of paper and pencil is their ease of use. Researchers have tried to bring this ease of use to computer-based educational systems through the use of sketch-recognition. Sketch-recognition allows students to draw naturally while at the same time receiving automated assistance and feedback from the computer. There are many sketch-based educational systems for children. However, current sketch-based educational systems use the same sketch recognizer for both adults and children. The problem of this approach is that the recognizers are trained by using sample data drawn by adults, even though the drawing patterns of children and adults are markedly different. We propose that if we make a separate recognizer for children, we can increase the recognition accuracy of shapes drawn by children. By creating a separate recognizer for children, we improved the recognition accuracy of children’s drawings from 81.25% (using the adults’ threshold) to 83.75% (using adjusted threshold for children). Additionally, we were able to automatically distinguish children’s drawings from adults’ drawings. We correctly identified the drawer’s age (age 3, 4, 7, or adult) with 78.3%. When distinguishing toddlers (age 3 and 4) from matures (age 7 and adult), we got a precision of 95.2% using 10-fold cross validation. When we removed adults and distinguished between toddlers and 7 year olds, we got a precision of 90.2%. Distinguishing between 3, 4, and 7 year olds, we got a precision of 86.8%. Furthermore, we revealed that there is a potential gender difference since our recognizer was more accurately able to recognize the drawings of female children (91.4%) than the male children (85.4%). Finally, this paper introduces a sketch-based teaching assistant tool for children, EasySketch, which teaches children how to draw digits and characters. Children can learn how to draw digits and characters by instructions and feedback

    Visualisation of Large-Scale Call-Centre Data

    Get PDF
    The contact centre industry employs 4% of the entire United King-dom and United States’ working population and generates gigabytes of operational data that require analysis, to provide insight and to improve efficiency. This thesis is the result of a collaboration with QPC Limited who provide data collection and analysis products for call centres. They provided a large data-set featuring almost 5 million calls to be analysed. This thesis utilises novel visualisation techniques to create tools for the exploration of the large, complex call centre data-set and to facilitate unique observations into the data.A survey of information visualisation books is presented, provid-ing a thorough background of the field. Following this, a feature-rich application that visualises large call centre data sets using scatterplots that support millions of points is presented. The application utilises both the CPU and GPU acceleration for processing and filtering and is exhibited with millions of call events.This is expanded upon with the use of glyphs to depict agent behaviour in a call centre. A technique is developed to cluster over-lapping glyphs into a single parent glyph dependant on zoom level and a customizable distance metric. This hierarchical glyph repre-sents the mean value of all child agent glyphs, removing overlap and reducing visual clutter. A novel technique for visualising individually tailored glyphs using a Graphics Processing Unit is also presented, and demonstrated rendering over 100,000 glyphs at interactive frame rates. An open-source code example is provided for reproducibility.Finally, a novel interaction and layout method is introduced for improving the scalability of chord diagrams to visualise call transfers. An exploration of sketch-based methods for showing multiple links and direction is made, and a sketch-based brushing technique for filtering is proposed. Feedback from domain experts in the call centre industry is reported for all applications developed

    Interactive Knowledge Construction in the Collaborative Building of an Encyclopedia

    Get PDF
    International audienceOne of the major challenges of Applied Artificial Intelligence is to provide environments where high level human activities like learning, constructing theories or performing experiments, are enhanced by Artificial Intelligence technologies. This paper starts with the description of an ambitious project: EnCOrE2. The specific real world EnCOrE scenario, significantly representing a much wider class of potential applicative contexts, is dedicated to the building of an Encyclopedia of Organic Chemistry in the context of Virtual Communities of experts and students. Its description is followed by a brief survey of some major AI questions and propositions in relation with the problems raised by the EnCOrE project. The third part of the paper starts with some definitions of a set of “primitives” for rational actions, and then integrates them in a unified conceptual framework for the interactive construction of knowledge. To end with, we sketch out protocols aimed at guiding both the collaborative construction process and the collaborative learning process in the EnCOrE project.The current major result is the emerging conceptual model supporting interaction between human agents and AI tools integrated in Grid services within a socio-constructivist approach, consisting of cycles of deductions, inductions and abductions upon facts (the shared reality) and concepts (their subjective interpretation) submitted to negotiations, and finally converging to a socially validated consensus
    • 

    corecore