

SUPPORTING FUNCTIONALITY-BASED DESIGN IN

COMPUTER-AIDED DESIGN SYSTEMS

by

Obinna Stan Muogboh

Bachelor of ENGR, in Electronics Engineering, University of Nigeria, 1996

Master of Science, in Industrial Engineering, University of Pittsburgh, 2000

Submitted to the Graduate Faculty of

School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2003

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This dissertation was presented

by

Obinna Stan Muogboh

It was defended on

February 4th, 2003

and approved by

Dr. Bopaya Bidanda, Professor, Department of Industrial Engineering

Dr. Mary Besterfield-Sacre, Assistant Professor, Department of Industrial Engineering

Dr. Michael Lovell, Associate Professor, Department of Mechanical Engineering

Dr. Dipo Onipede, Assistant Professor, Department of Mechanical Engineering

Dissertation Director: Dr. Bartholomew O. Nnaji, Professor, Department of Industrial
Engineering

 ii

ABSTRACT

SUPPORTING FUNCTIONALITY-BASED DESIGN IN
COMPUTER-AIDED DESIGN SYSTEMS

Obinna Stan Muogboh, PhD

University of Pittsburgh, 2003

Designs are conceptualized in terms of the functions they need to accomplish. The need

for a new product design arises as a result of the identification of a new functionality to be

accomplished by the product. That is, design is functionality driven. However, existing CAD

tools are not equipped to capture functionality or reason in such a fashion to support design for

product functionality. This research proposes a new design formalism to enable functionality-

driven design of mechanically engineered products. This procedure provides a methodology that

allows a designer to model product functionality and to carry out conceptual design with the aid

of a computer. It also serves as a bridging tool between the conceptual design phase and detailed

design phase of a product. Thus, the primary objective of this research is to develop a

methodology that will support the following activities in CAD systems: functionality modeling,

functionality data structuring, and form conceptualization.

The functionality modeling methodology developed in this work includes the use of

operands, operators, and coupling bonds to describe product functionality in CAD systems. The

Universal Modeling Language (an object-oriented programming technique) is used to model

product functionality in computer systems.

 iii

The tools developed in this research provide a means of modeling and propagating

product functionality information to downstream design activities. The propagation of

functionality as a constraint is achieved using Extensible Markup Language (XML) data files.

These tools also provide a mechanism for verifying and enforcing constraints on solid CAD

models. The functionality definition interface is implemented with a customized Microsoft Visio

graphics engine.

The tools developed in this research provide a means of modeling and propagating

product functionality information to downstream design activities. It also provides a mechanism

for verifying and enforcing constraints on solid CAD models. The functionality definition

interface is implemented with a customized Microsoft Visio graphics engine.

DESCRIPTORS

CAD Computer-Aided Conceptual Design

Computer-Aided Design Conceptualization

Coupling Bond Design

Functional Marker Functional Model

Functionality-based Design Functionality Constraint

Functionality Modeling Functionality Primitive

Operand Operator

Product Function XML

 iv

ACKNOWLEDGEMENTS

I received a lot of support from many people during the course of this research. I owe

special gratitude to my academic advisor, Prof. Bart. O. Nnaji, for his advice, inspiration, and

support in this work. My deep gratitude goes to the entire faculty and staff of the Department of

Industrial Engineering at the University of Pittsburgh, for the support and kindness they have

shown me over the years. I thank Drs. Mary Besterfield-Sacre, Bopaya Bidanda, Dipo Onipede,

and Mike Lovell, for accepting to serve in my dissertation committee, and for providing

invaluable advice and constructive criticism to this work.

I appreciate the efforts of all the team members of Pegasus e-Designer project, whose

constructive criticism and discussions lend a great impetus to the success of this project. My

heartfelt thanks go to all the Automation and Robotics laboratory members for their support and

suggestions in this work. I acknowledge the help of Kyoung Kim in providing useful suggestions

and assistance with the formatting of this report. The numerous discussions with him

contributed to the success of this work. I also acknowledge the help of Pamela Ajoku in proof

reading parts of this dissertation.

I am very grateful to my wife, Roseline Muogboh, for all the love, support, kindness, and

for proof reading some of my work. And for their continued understanding, prayers, and support

through this study, I thank my entire family, and friends. Finally, for His divine guidance and

blessings, I am grateful to the Almighty God.

 v

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGEMENTS ... v

LIST OF TABLES ... xi

LIST OF FIGURES ... xiv

1.0 INTRODUCTION... 1

1.1 Problem Statement .. 4

1.2 Research Objective ... 6

1.3 Contributions... 7

1.4 Methodology... 8

1.4.1 Information Flow in Functionality-enabled CAD System... 8

1.4.2 Functionality Modeling Process .. 11

1.5 Research Organization .. 14

2.0 TECHNICAL BACKGROUND.. 18

2.1 Design of Mechanically Engineered Products.. 18

2.1.1 Design Process ... 20

2.1.2 Feature-Based Design .. 27

2.2 Functionality-based Design .. 28

2.2.1 Functionality Modeling and Verification... 28

 vi

2.2.2 Input-Output Model (Black-box Model) ... 36

2.2.3 Functionality Decomposition... 37

2.2.4 Functionality-based Product Design Conceptualization.. 39

2.3 Spatial Relationship in Product Design .. 44

2.4 Design Constraints .. 48

3.0 PROPOSED FUNCTIONALITY-BASED DESIGN MODEL... 52

3.1 Modeling Scope .. 55

3.2 Major Challenges .. 56

3.3 Functionality Operations... 58

3.3.1 Basic Functionality Operations (BOPN).. 62

3.3.2 Compound Functionality Operations (COPN)... 63

3.3.3 Generic Functionality Model ... 64

4.0 FUNCTIONALITY OPERANDS.. 68

4.1 Material Operand: Solid Operands ... 72

4.1.1 Functional Position Marker.. 75

4.1.2 Degree of Freedom: Kinematic Constraints .. 80

4.1.3 Physical Constraint Set .. 82

4.1.4 Material Type... 84

4.1.5 Mass Properties.. 87

4.1.6 Topology.. 87

4.2 Energy Operand – Mechanical Energy Operand .. 90

4.2.1 FORCE Operand.. 92

4.2.2 TORQUE Operand... 98

 vii

5.0 FUNCTIONALITY RELATIONS AND STATES.. 103

5.1 Functionality Relations ... 103

5.1.1 Coupling Bond (CB) .. 108

5.1.2 Representation of Functionality Relations... 112

5.1.3 Derivation of Functionality Relations.. 114

5.2 Functionality States... 121

5.3 Functionality Modeling Repository .. 127

6.0 IMPLEMENTATION AND TESTING.. 132

6.1 Functionality Object Model .. 132

6.1.1 Functionality Operation ... 137

6.1.2 Operand Set.. 138

6.1.3 Sub-Functionality Set... 141

6.1.4 Form... 141

6.1.5 Coupling Bond (CB) Set.. 142

6.1.6 States .. 142

6.2 Computer Implementation .. 142

6.2.1 Functionality-Based Design Procedure.. 144

6.2.2 Functionality-Based Design (FbD) Architecture ... 148

6.2.3 XML Functionality Data Format ... 151

6.2.4 Graphic User Interface and General Capability... 159

6.3 Testing and Validation.. 178

6.3.1 Functionality-based Design (FbD) Procedure ... 179

6.3.2 Functionality Modeling of an Automotive Space-Frame Sub-assembly................... 184

6.3.3 Evaluation of Application of Methodology ... 221

 viii

7.0 CONCLUSION AND FUTURE WORK .. 229

7.1 Conclusion .. 229

7.2 Future Work .. 231

7.2.1 Integration with CAD System.. 232

7.2.2 Extension to Commercial Product Level ... 234

APPENDIX A.. 237

A.1 Definition of Aluminum Alloy .. 237

A.2 Test Condition 1... 238

A.3 Test Condition 2... 239

A.4 Test Condition 3... 240

A.5 Result of Design 1, Test condition 1.. 241

A.6 Result of Design 1, Test condition 2.. 242

A.7 Result of Design 1, Test condition 3.. 243

A.8 Result of Design 2, Test condition 1.. 244

A.9 Result of Design 2, Test condition 2.. 245

A.10 Result of Design 2, Test condition 3.. 246

APPENDIX B .. 247

B.1 Transformation Operation .. 247

B.2 Transmission Operation ... 249

B.3 Joint Operation ... 252

B.4 Load bearing Operation.. 255

B.5 Energy Converter Operation .. 257

B.6 Frictional Operation ... 258

B.7 Offset Operation... 260

 ix

B.8 Channel Operation.. 262

B.9 Block Operation ... 264

BIBLIOGRAPHY... 268

 x

LIST OF TABLES

Table 1 Definition of a functional prototype (proposed by Tomiyama et al [24]) 33

Table 2 Mathematical description of the transmission operation shown in Figure 19 70

Table 3 Mathematical description of the transformation operation shown in Figure 20.............. 70

Table 4 Inter-operand relationship matrix. ... 114

Table 5 Listing of functionality operation states .. 126

Table 6 Functionality models of commonly used mechanical product functionality................. 130

Table 7 Summary of the master shapes in the basic functionality stencil 163

Table 8 Summary of the master shapes in the solid operand stencil .. 166

Table 9 Summary of the master shapes in the energy operand stencil 170

Table 10 Inter-functional feature constraints representing geometric constraint set 183

Table 11 Task - functional features QFD for the car frame.. 187

Table 12 Functionality attributes of cross-beam solid operand .. 196

Table 13 Functionality attributes of tee-beam solid operand.. 197

Table 14 Functionality attributes of F1 force-energy operand .. 198

Table 15 Functionality attributes of F4 force-energy operand .. 198

Table 16 Functionality attributes of F2 force-energy operand .. 199

Table 17 Functionality attributes of F3 force-energy operand .. 199

Table 18 Functionality attributes of F5 force-energy operand .. 200

 xi

Table 19 Functionality attributes of F6 force-energy operand .. 200

Table 20 Coupling bond elements .. 206

Table 21 Joint operation: crossbeam-teebeam coupling bond (x12).. 208

Table 22 Load bearing: crossbeam-F1 coupling bond (x13) .. 212

Table 23 Load bearing: crossbeam-F2 coupling bond (x14) .. 213

Table 24 Load bearing: crossbeam-F3 coupling bond (x15) .. 213

Table 25 Load bearing: crossbeam-F4 coupling bond (x16) .. 214

Table 26 Load bearing: teebeam-F5 coupling bond (x27).. 214

Table 27 Load bearing: teebeam-F6 coupling bond (x28).. 215

Table 28 Equilibrium constraint: global coupling (F1, F2, F3, F4, F5, F6) 217

Table 29 ANSYS test result showing maximum normal stress in space-frame 227

Table 30 FbD capability versus Existing Commercial CAD Systems 228

Table 31 "Aluminum alloy" properties... 237

Table 32 "Aluminum alloy" stress limits... 237

Table 33 Model : parts .. 238

Table 34 Contact conditions ... 238

Table 35 Structural loading... 238

Table 36 Structural supports ... 238

Table 37 Model : parts .. 239

Table 38 Contact conditions ... 239

Table 39 Structural loading... 239

Table 40 Structural supports ... 239

Table 41 Model : parts .. 240

 xii

Table 42 Contact conditions ... 240

Table 43 Structural loading... 240

Table 44 Structural supports ... 240

Table 45 Structural results .. 241

Table 46 Structural results .. 242

Table 47 Structural results .. 243

Table 48 Structural results .. 244

Table 49 Structural results .. 245

Table 50 Structural results .. 246

Table 51 Force to torque transformation functionality operation... 249

Table 52 Solid transmission functionality operation example.. 251

 xiii

LIST OF FIGURES

Figure 1 Relationship between product development cycle and design commitment in term of

cost and changeability... 5

Figure 2 Functionality information flow diagram for the evolution of design in FbD................... 9

Figure 3 Sample transmission design .. 12

Figure 4 Product design phases... 15

Figure 5 Conceptual design unit interactions with the rest of the designer system...................... 16

Figure 6 Classification of design .. 22

Figure 7 Design process.. 23

Figure 8 Feedback control loop depicting the design process .. 24

Figure 9 Design as the mapping from functional space to physical space 25

Figure 10 Input-output model of system... 36

Figure 11 Product function decomposition... 38

Figure 12 Physical effect: earth's gravitational pull on object, O.. 43

Figure 13 Six types of spatial relationships: (a) against, (b) parallel-offset, (c) include -angle, (d)

parax-offset, (e) aligned, (f) incline-offset.. 46

Figure 14 An example of assembly by spatial relationships... 47

Figure 15 Mechanical product sample – dumb-bell ... 53

Figure 16 Energy conversion functionality... 56

Figure 17 Load bearing as an example of mechanical functionality ... 60

 xiv

Figure 18 Functionality operands ... 68

Figure 19 Transmission functionality operation illustrating the interaction between FORCE and

MEDIUM operands: transmission of force from point "A" to plate "B"............................. 69

Figure 20 FORCE to TORQUE transformation operation functionality...................................... 71

Figure 21 Material operand structure illustrating a detailed attribute modeling of a solid material

... 74

Figure 22 Operand coupling at the functional points, A1 and A2... 76

Figure 23 Wire-frame representation of a simple solid material operand 77

Figure 24 Wire-frame representation of multipoint solid material operand with four functional

points A, B, C, and M ... 77

Figure 25 The markers on functional coupling features ... 78

Figure 26 Inter-functional feature constraints representing geometric constraint set................... 80

Figure 27 Aligned spatial relation specification example... 82

Figure 28 Material properties... 86

Figure 29 Boundary modeling in product conceptualization with functional points only 88

Figure 30 Boundary modeling in product conceptualization illustrating use of functional points

(M1, M2, and M4), functional region (M3), and reference functional point (Mref)................ 89

Figure 31 Mechanical energy converter ... 90

Figure 32 Mechanical energy operands .. 92

Figure 33 FORCE operand model ... 95

Figure 34 Rotational energy in a rotating shaft ... 98

Figure 35 Direction of torque is given by the right hand rule ... 100

Figure 36 TORQUE operand model .. 102

Figure 37 Functionality operator linking four operands .. 103

Figure 38 Solid operands in sliding contact... 104

 xv

Figure 39 Operator-operand-attribute relation for sliding contact example 105

Figure 40 A compound functionality showing inter-primitive interaction................................. 107

Figure 41 A compound functionality showing inter-primitive interaction between the coupling

operands .. 107

Figure 42 Functionality operand coupling bond... 108

Figure 43 Two solid blocks in sliding contact .. 111

Figure 44 Coupling bond for the two solid blocks in sliding contact... 112

Figure 45 Functionality primitive A .. 119

Figure 46 Brake rotor states.. 122

Figure 47 A pulley system .. 123

Figure 48 A three-operand functionality operation .. 125

Figure 49 Example of compound functionality in a cart .. 131

Figure 50 Product functionality decomposition... 133

Figure 51 Functionality class diagram.. 136

Figure 52 Functionality-based design flow chart.. 145

Figure 53 Mapping from design task to functional requirement .. 146

Figure 54 Mapping from functional requirement to functionality model................................... 147

Figure 55 Functionality-based design flow diagram for the evolution of design 149

Figure 56 Sample transmission design ... 150

Figure 57 Functionality modeling interface using Microsoft Visio... 161

Figure 58 Functionality operation start-up definition dialog box... 162

Figure 59 Modeling of functional line in Visio .. 165

Figure 60 Modeling of functional arc in Visio ... 166

Figure 61 Functional point user form ... 168

 xvi

Figure 62 Functional line user form.. 168

Figure 63 Functional arc user form... 169

Figure 64 Solid operand definition user form... 169

Figure 65 Force operand definition user form .. 171

Figure 66 Torque operand definition user form.. 172

Figure 67 Coupling bond definition user form ... 173

Figure 68 Quantitative functional relations definition user form ... 175

Figure 69 Spatial relations definition interface... 176

Figure 70 Quantitative constraints definition user form... 177

Figure 71 Functionality modeling flow diagram .. 181

Figure 72 Space-frame of a car... 184

Figure 73 Solid operand features of the frame.. 188

Figure 74 Solid operands: SOLID{A, B, X} and SOLID{C}.. 189

Figure 75 Resultant loading forces on the frame structure ... 192

Figure 76 Car frame operand interaction graph.. 205

Figure 77 Application of constraints on functional markers A, B, and C 209

Figure 78 Application of constraint on joint location... 210

Figure 79 Conceptual form set for joint operation (l = 1, 2, 3) .. 210

Figure 80 Dialog box showing the start-up screen of the Visio interface 218

Figure 81 Screen capture of a wireframe model of the crossbeam solid operand 218

Figure 82 Screen capture of the space-frame operand interaction graph.................................... 219

Figure 83 Screen capture of a wireframe model of the coupled solid operands......................... 220

Figure 84 CAD model of test design .. 226

 xvii

Figure 85 Loading condition for test condition 1 ... 238

Figure 86 Loading condition for test condition 2 ... 239

Figure 87 Loading condition for test condition 3 ... 240

Figure 88 Normal stress distributions for design 1, test condition 1 .. 241

Figure 89 Normal stress distributions for design 1, test condition 2 .. 242

Figure 90 Normal stress distributions for design 1, test condition 3 .. 243

Figure 91 Normal stress distributions for design 2, test condition 1 .. 244

Figure 92 Normal stress distributions for design 2, test condition 2 .. 245

Figure 93 Normal stress distributions for design 2, test condition 3 .. 246

Figure 94 Transform operation ... 247

Figure 95 FORCE to TORQUE transformation functionality operation.................................... 248

Figure 96 Transmission operation functionality ... 250

Figure 97 Solid transmission functionality example .. 251

Figure 98 Joint functionality operation... 252

Figure 99 Load bearing functionality operation ... 255

Figure 100 Energy converter functionality operation.. 257

Figure 101 Frictional functionality operation ... 258

Figure 102 Offset functionality operation... 261

Figure 103 Channel functionality operation ... 263

Figure 104 Block functionality operation ... 265

 xviii

1.0 INTRODUCTION

In the past two decades, the application of computers in the design of mechanical

products has seen tremendous improvements ranging from the use of advanced graphic engines

for solid modeling to automatic imposition of geometric constraints. [1, 2, 3] This evolution,

however, has focused on improving the tools for the processes involved in the detailed design

phase of product design. Little advancement has been made to allow computer-aided design

(CAD) systems to capture and model product functionality during conceptualization. Such

acquisition would have made it possible to impose functionality as a design constraint that may

be used during the detailed design and analysis phase of the product.

In this research, a new functionality modeling formalism is proposed to enable

functionality-based design of mechanically engineered products. This procedure provides a

framework that allows a designer to model product functionality and carry out conceptual design

with the aid of a computer. It also serves as a bridge between the conceptual design phase and

detailed design phase of a product. It is envisaged that this new design procedure will improve

the creativity and productivity of the designer.

Existing design tools are not equipped to capture design intent (functionality) at a high

level. Hence, they cannot impose functionality as a product design constraint during the rest of

the design phase. This inadequacy implies that the designers still have to apply both experience

and extensive design tests to ensure that the original design intents (functionality) are maintained

throughout the design process. A truly integrated CAD system would require that such tests be

performed by the CAD system in a transparent manner. Transparency implies that test for

conformity to functionality is performed concurrently during the design process in the same

1

CAD environment. The development of such integrated system will drastically reduce the

product development time and the associated costs. It will also improve the efficiency and

productivity of the engineering design process.

Current CAD packages have no means of checking designs in a transparent manner to

ensure that the product functionality is maintained throughout the design phase. The implication

of this is that most designers will at the end of their “design” phase; export their design to

independent analysis systems, where such systems exist, to test for each individual product

functionality. For example, the design of a load-bearing beam subject to high temperatures, a

designer would at the end of the design process, employ Finite Element Analysis (FEA)

packages to perform analysis on the stress response of the beam. In addition, a separate analysis

will be performed for the thermal response. A failure in thermal analysis and pass in the stress

analysis will result in a design change to meet the thermal need. This change, however, may

result in a violation of the stress requirement (after another analysis), and hence, another change

in design. This iteration continues until a suitable compromise is reached. A suitable translation

of the product functionality as a design constraint and subsequent imposition of such constraint

to down stream design activities will eliminate this time consuming sequential design-analysis

process.

Engineering design is a mapping of a specified product onto a (description of a)

realizable physical structure – the designed artifact. [8] The desired function of the artifact is what

it is supposed to do. The physical structure is the actual physical parts out of which it is made,

and the part-whole relationship among them. Typically, the need for a new design arises as a

result of identification of a new functionality to be accomplished by the product. Designs are

conceptualized in terms of the functions they need to accomplish. That is, design is

2

functionality driven. Although, designs are functionality driven, modern CAD tools are not

equipped to capture and reason in such a fashion to design for product functionality. Because of

this, designers usually carry out the most important phase of design -- conceptual design,

without the aid of any CAD tool. This is usually done by reasoning about the concepts involved

in the particular application to arrive at a design concept.

The benefits of concurrent engineering [4, 5, 6] has directed recent research effort in the

design of CAD/CAM systems towards a seamless computer integration of various processes

involved in product realization. Such integration is hampered by lack of suitable representation

and modeling techniques for the various design issues. This inadequacy (which was emphasized

in a recent NSF sponsored workshop on e-Product Design and Realization) [7] is pronounced in

the representation of product functionality. Consequently, no CAD tool exists to effectively aid

the conceptualization of products and subsequent propagation to the conventional CAD systems

for detailed design activities. With the available CAD systems, it is difficult to link geometric

solid models (from detailed design phase) with the conceptual models developed during the

early design phases as they are based on different representation schemes. This lack of

continuity implies that the conceptual and detailed design phases are treated as isolated units that

inherit all the disadvantages of the traditional over-the-wall product development process.

Another inadequacy of available CAD packages is the lack of a flexible design

environment that supports the re-use of past design experiences and knowledge. Past design

experiences are stored as product solid models and features with no direct provision to capture

the function of the product. With the high shortage and rising cost of domain experts, such a

system is of great importance. A knowledge-based CAD system (using the tool proposed in this

3

work) will overcome this problem by providing the expert knowledge in a virtual form through

the use of artificial intelligence (AI) techniques.

This work is focused on developing a suitable way of representing and propagating

product function as a design constraint. A suitable representation of Design for Functionality

(DFF) will ensure that a design constraint defined early in the design process (usually during

conceptual design phase) is visible and enforced throughout the entire design process. This task

will require the development of a generic procedure for propagating functionality description to

downstream design activities. This propagation is accomplished in this work by representing

functionality in an Extensible Markup Language (XML) file format that is tagged to the CAD

data and file.

1.1 Problem Statement

Design is the process of constructing a description of an artifact that satisfies a functional

specification, meets certain performance criteria and resource limitations, is realizable in a given

target technology, and satisfies criteria such as testability, manufacturability, reusability, etc.[8]

Decisions made early in the design process have a significant impact on other aspects of a

product’s life cycle. A study conducted by Lotter [9] indicates that about 75% of the entire cost

of a product is committed during the design phase. This commitment also extends to design

changeability (ability to change or influence the final product design) as illustrated in Figure 1.

[10]. Conceptual design goes a long way in defining the nature and amount of work required

during the detailed design phase and other subsequent activities such as manufacturing. A

poorly conceived design cannot be compensated for by good detailed design, since the design

4

direction and possibly scope has already been laid down during the conceptual stage. This is to

say that detailed design phase merely works within the scope defined during the conceptual

stage.

CRITICAL
DECISIONS

“LOCKED IN”

Product Development Cycle (Time)

-- COST, PERFORMANCE, and QUALITY GET LOCKED IN EARLY --

Design
Changeability
and
Committed Cost

Figure 1 Relationship between product development cycle and design commitment in term
of cost and changeability

Unfortunately, product requirement and constraints such as safety, reliability,

manufacturability, and assemblability are imprecise and vague during the conceptual design.

Usually, the designer only knows the need / function of the product. Hence, the need to utilize

the functionality requirement effectively and efficiently during product conception is of

paramount importance. However, existing commercial CAD systems are not equipped to

support and use this essential information – functionality – during the design of a product.

5

6

Reasoning about product functionality are largely done in the designer’s head with very limited

or no aid of computing tools.

Product functionality modeling (representation, propagation, and satisfaction) is a very

challenging problem that involves the amalgamation of various engineering fields such as

kinematics, artificial intelligence, feature and geometric reasoning, constraint reasoning, and

domain specific knowledge such as material properties. The design of a physical system

involves additionally reasoning about the artifact’s behavior, both internal and external. The

external behavior of a system is what it does from the viewpoint of an outside observer. Internal

behavior is based on observing what the parts of the system do. With increasing complexity in

mechanical designs and the need for design reuse and CAD/CAM integration, there is a need for

a system that will adequately model and propagate product functionality during the conceptual

design phase of a product.

This research will develop product functionality model that are suitable for computer

implementation. The model will enable CAD systems to support functionality-based design at

both the early and detailed stages of design. Hence, definition, representation, propagation, and

satisfaction of functionality as a design constraint is made possible.

1.2 Research Objective

Representation of product functionality as a constraint will assure that functionality

defined early in the design process is visible and enforced throughout the entire design process.

The primary objective of this research is to develop, for a mechanically engineered product, a

functionality modeling methodology that will enable functionality-based design (FbD) activities

in CAD systems. The specific tasks to be accomplished in this research include:

• Functionality modeling: The work to be done under this research task consists of the

development of a scheme for representing, propagating, and enforcing the product

functionality as a design constraint. This will enable CAD systems to capture the

functionality-related information during the conceptual design phase.

• Computer data structure development: This includes the development of a computable

modeling data structure for representation and propagation of product functionality in a

transparent manner.

1.3 Contributions

A functionality modeling methodology together with associated computer tools is

developed to allow for the development of computer tools to link design functions with the

structural (physical) embodiment used to realize the functions. Hence, a seamless integration

between specification, conceptualization, and detailed design process can be facilitated.

The following are the expected or anticipated contributions of this work in the field of

Computer-Aided Design (CAD) of mechanical products.

• Provision of a functionality modeling methodology that supports the definition and

representation of product functionality as design constraints.

7

• Provision of a means for propagating product functionality developed during the early

design stage to the detailed design stage. This provision is made possible by the

description of the functionality information as an extensible markup language (XML)

data file with functionality constraints and CAD form linkage embedded as tags.

• Introduction of the concepts of operands, operators, and coupling bonds in the modeling

of product functionality.

• Development of a framework to support the functionality-based design (FbD) of

mechanical products.

• Provision of a bridge between the conceptual and detailed design stages of design.

1.4 Methodology

1.4.1 Information Flow in Functionality-enabled CAD System

The information flow of a functionality-based designer system is shown in Figure 2.

This work will focus on the functionality modeling interface section of the designer system.

Functionality Modeling Interface (FMI) Module

The functionality-based design (FbD) aids in the conceptualization of product design to

solve the design problem using functionality modeling approach. In this research, product

conceptualization will be accomplished through a functionality-driven approach.

The functionality-modeling interface (FMI) in an FbD system takes design needs and

converts them into functionality-structured representation and constraint. The accomplishment

of this task provides a structured functional data that makes it possible to use computer tools to

8

reason and perform the following two key design operations central to functionality-driven

design. These tasks are (1) functionality model generation operation, and (2) functionality-based

constraint verification. To enable the FMI accomplish these tasks, three functionality engines

are to be developed in this research: functionality definition engine, functionality representation

engine, and functionality constraint engine.

Specifications

Problem PreferencesConstraints

Functional
Definition
Engine

Functionality
knowledge

base

Functionality
Model

(Representation
Engine)

Functionality
constraint

formulation
engine

Form
generation

Form
knowledge

base

Analysis tools
(Concept evaluation)

Creative
graphics

(GUI)

Detailed
design

(solid modeler)

Design
verification

Functionality Modeling
Interface (FMI)

Post FMI Design

Figure 2 Functionality information flow diagram for the evolution of design in FbD

The functionality definition engine serves as an interface to the designer. It accepts the

definition of the user needs in a human friendly manner and transforms them into a function-

oriented problem definition.

9

 The functionality representation engine converts the functionality-oriented problem

definition into a functionality-based data structure as described in Section 3. This representation

serves as our design objective and is a standard against which all design proposals will be

evaluated. In a supply chain management structure, such functionality model may now serve as

a design order for suppliers to compete on. For an in-house design operation, such model may

now be used in the conceptualization of design parameters (DP) to satisfy the functionality

constraints.

 The functionality constraint engine extracts functionality constraints from the

functionality representation. This constraint is used to evaluate design proposals to ensure that

they satisfy the original functional requirement. It is also possible to extend this scheme to be

used for decision-making in selecting designs of competing proposals from bidders.

Post FMI Design Stage

The form generator is used as an aid to the design by providing tools that will enhance

the creativity of the designer. With the use of knowledge base tools, the system could use the

functionality model together with the vast expert knowledge in its knowledge base system [*] to

infer the possible forms the artifact can assume. The concepts generated by this module are sent

to the detailed design module. The form generator is part of the future extension of this work.

In the detailed design module, the concepts from the form generator are developed into a

detailed design, with all the design parameters fully specified in this module. Hence, this

* The implementation of a supporting knowledge base for functionality-based design is not the focus of this
research. Hence, it is not implemented in this work. However, the implementation of the design repository
discussed in Section 5.3 could form the basis for the functionality-based knowledge system. Each industry could
also customize its design repository to include domain-specific product functionality information.

10

module completes the design process by providing a detailed description of an artifact that can

satisfy the functionality proposed in functionality builder module. A verification engine within

the detailed design module is used to verify that the detailed design satisfy the original function.

This module provides an interface to analysis tools, which are used to evaluate the detailed

design to verify if they satisfy the functionality constraints. This technique can aid in the

evaluation of goodness of a design. The functions of the detailed design and verification have

traditionally been provided by commercial CAD systems. An integration of the functionality

model developed in this research to existing CAD systems will significantly enhance design

process. This research will provide an XML data structure to support such future integration.

1.4.2 Functionality Modeling Process

This is a very crucial part of this research. Two issues are critical to the success of

functionality-based design: functionality definition, functionality constraint extraction and

functionality propagation. The operation of the functionality modeling process will be illustrated

using the design of a transmission mechanism (shown in Figure 3(a)) as an example.

11

Transmission Shaft

Direction of rotation

Direction of
resisting load

A B

Functional element

(a) (b)

Figure 3 Sample transmission design

Definition: The functionality definition module is responsible for accepting designer’s

specifications (problem definition) and transforming them into a functionality model compatible

format. For example, in the case of shaft design, it will typically receive information stating that

a means of transmitting rotational motion is needed. Once the primary function of transmission

is selected, the knowledge base [×] that supports transmission will be invoked and instantiated. At

this point, functional relationships are also defined. These relationships will prescribe the kind

of motion, degrees of freedom, expected forces on the product, and other interacting entities

(components). In addition, any unique feature or designer’s preferences required by the design

is also defined at this stage.

 Constraint Extraction: Having defined the functionality structure all the implied

functionality constraints from the functionality model are extracted. For example, in the shaft

design, some of the implied constraints are: material constraints (solid, elastic limit, and tensile

× The implementation of a supporting knowledge base for functionality-based design is not the focus of this
research. Hence, it is not implemented in this work. However, the implementation of the design repository
discussed in Section 5.3 could form the basis for the functionality-based knowledge system. Each industry could
also customize its design repository to include domain-specific product functionality information.

12

strength), degree of freedom (DoF), clearance, tolerance, motion trajectory, and maximum

length. These are the constraints that any design proposal must satisfy in order to be functionally

acceptable. The advantage of this technique is that these constraints are made available from the

start of the design process.

Propagation The functionality information from the functionality model is made

available in such a way that: (1) They may be used to retrieve acceptable design structures from

the knowledge base during the form generation stage by presenting a template for matching

functions to stored knowledge; (2) They may also be used in the transformation of functionality

representation to a creative graphic (wireframe) representation to aid the creativity of the

designer (this concept is illustrated in Figure 3(b) for the shaft example); and (3) The

functionality information in the form of constraints are integrated with evolving CAD model and

propagated to and from the detailed design phase.

The above research will culminate in the development of an object-oriented data

structure for the representation and propagation of functionality as design constraints. This data

structure (and corresponding model) will serve as an interface during the functional requirement

definition phase. It will be used to capture the designer’s intent as functionality constraint

during the conceptual design phase. The definition of functionality as constraint will make it

possible to evaluate and enforce functionality as design constraint just as it is currently being

done for other product issues such as manufacture, assembly, and geometry reported in most

design literatures. [11]

13

1.5 Research Organization

Three distinct phases are identifiable in the sequence of operations involved in product

design (see Figure 4). During the requirement specification phase, the general information on

the desired product is specified, albeit in imprecise manner (because of the limited knowledge of

the product). In phase 2, the conceptual design phase, the product that will meet the needs

specified in phase 1 is conceived. Phase 3, the detailed design phase, defines the detailed

geometric features, tolerances, and material properties of the conceived product.

This research focuses on developing a practical modeling technique for product

functionality and its use as a tool in the design of mechanically engineered products. The

modeling of product function will enable us to define it as a design constraint in computer-aided

conceptual design (CACD). Consequently, we will come up with generic representation scheme

for functionality that will enable the propagation and enforcement of functionality constraint

throughout the product design and possibly manufacturing (through CAM) phases of a product

lifecycle.

14

Product Requirement Specification

Conceptual Design

Detailed Design

Figure 4 Product design phases

A computer implementation of the functionality model is developed to test and validate

the principles developed in this research. This tool is responsible for accepting functional

specifications from the user and then translating those functional specifications to functionality

design constraint that are applied throughout the remainder of the design process. It is also

responsible for the transformation from functional specification to functionality model, as

depicted in Figure 5.

15

A
dd

 to
 K

no
w

le
dg

e-
ba

se

Conceptual
Design

Conceptual
DesignGeneral Spec.

Functionality constraint

Conceptual form

Knowledge-
base

Knowledge-
base

Detailed
Design
Phase

Detailed
Design
Phase

New Design Knowledge

Final Product
Design

Figure 5 Conceptual design unit interactions with the rest of the designer system

The functionality constraints together with the initial product form (conceptual form) are

generated as the output of the conceptual design phase (see Figure 5). In the detailed design

phase, the system merely varies the design parameters generated during the conceptual design

phase to come up with an optimal or near optimal design. This subsequent variation ensures that

other design issues such as manufacturing and assembly requirements are taken into

consideration. The conceptual design phase has an input from the system knowledge base, [+]

which represents previous design experiences and some expert knowledge built into the system.

This knowledge base could be domain specific. The presence of a knowledge base simplifies

+ The implementation of a supporting knowledge base for functionality-based design is not the focus of this
research. Hence, it is not implemented in this work. However, the implementation of the design repository
discussed in Section 5.3 could form the basis for the functionality-based knowledge system. Each industry could
also customize its design repository to include domain-specific product functionality information.

16

the conceptual design process by tapping from previous design experience and expert

knowledge.

This thesis is composed of seven chapters. Chapter 2 looks at the previous work in

functional modeling and constraint-based modeling and provides some technical background on

relevant concepts related to this research. Chapter 3 is on functionality modeling methodology

implemented in this work. It provides an overview of the modeling approach developed in this

work. It introduces the concepts of functionality operation, operands, operators, and

relationships. Representation of the various components of functionality is also discussed.

Chapter 4 focuses on the application of functionality operands in the functionality models.

Chapter 5 is on functionality relations. It covers functionality operators, functionality states, the

use of coupling bonds, and the functionality design repository. Chapter 6 is on the computer

implementation, testing, and validation of the functionality model. Data structures of the

functionality model are also discussed. Chapter 7 is on the conclusion and future extensions of

this research.

17

2.0 TECHNICAL BACKGROUND

2.1 Design of Mechanically Engineered Products

Engineering design is very important because it determines the ultimate outcome of

engineering activities, including manufacturing of goods, improvement in quality of life, and

provision of defense needs. The design of mechanically engineered products is a very

challenging task because of the nature of the products and the design process. A given design

artifact (product of design) may perform different functions depending on the context of

application. Thus, product function is very subjective, depending largely on the context of

application (i.e. design intent). This unique characteristic has made it very challenging to

develop a procedure that directly relates design to functionality. The lack of a generally

accepted systematic procedure for the design of mechanically engineered products has further

complicated the existing problem. This often leads to cases where a single design specification

may result in several designs for the same product specification. This in itself is not a problem,

as it introduces variety in the product selection. However, the problem is that there is no

scientific or systematic procedure for the evaluation of such design proposals. Thus, the

evaluation process again is very subjective, and the outcome depends on personal experience

and preferences of the design evaluators. For example, a company that solicits for design

proposals from its supplier’s has no sound engineering or scientific procedure for selecting the

best design that meets its engineering goals.

The design process can be thought as the detailing of shape as the designer’s idea

evolves. [12] Thus, CAD software as a design aid is just a tool to facilitate this detailing process.

18

Although some research has been done to support product conceptualization, [13, 14] existing

methods for supporting the geometric aspects of design have little impact at the conceptual

design stage for the following reasons: [15]

• CAD systems have concentrated on the capture and representation of geometric shape, as

opposed to providing support for conception;

• Systems which attempt to provide conceptual design support are based on little or no

relations to function; and

• CAD systems require a detail of representation, which is too restrictive for conceptual

design.

Two major challenges of Computer-aided Conceptual Design (CACD) are: [15] (i) how to

allow a concept representations evolve as detail accumulates in the design process; (ii) even if it

were possible to commit early on to a certain abstract shape, complete information needed to

display the object may be absent.

The use of CAD/CAM tools for design work has significantly improved designer's

productivity and the quality of designs. [16] The full potential of computers in design has not

been fully utilized in conceptual design process, because most of the available CAD tools focus

on the downstream activity of detailed design or assembly design. Detailed design is carried out

after the design concept and geometry are well established. CAD/CAM tools help the designer

in drafting work, FEM analysis, NC cutter path analysis, etc. However, the key design activity is

the conceptual design stage, where the designer works with the functional requirements of a part.

The functional requirements need to be decomposed, and at a certain stage, the functionality has

to be mapped to the geometry or form. The designer may update the functional decomposition,

update the mapped geometry, and proceed through iterations until the concept is well defined.

19

The above problem is associated with the creative nature [17] of design (involving diverse

problem-solving techniques and many kinds of knowledge) and hence subjective to the

designer’s previous experience and preferences. Hence, the more experienced a designer is, the

more likely he/she is to find an acceptable design solution within a short period. The questions

that interest us are: Can the creativity of the designer be improved with modern computer tools?

Can the vast experience and information accumulated in over a century of design be captured,

stored, and made available to the designer using computer tools? Design decisions made at the

initial or upstream stage of engineering affect all subsequent outcomes. In the following

sections, basic design procedures relevant to this research are presented. Some of the techniques

to be used in this research work are also described.

2.1.1 Design Process

Design has been defined as the process of constructing a description of an artifact that

satisfies a functional specification, meets certain performance criteria and resource limitations, is

realizable in a given target technology, and satisfies criteria such as testability,

manufacturability, reusability, etc. [8] This definition clearly highlights the key features of

design as:

• It must satisfy the functional specification. That is it must be able to accomplish the

need for which it was designed. This definition, however, presupposes the existence of a

well-defined functional specification. Existing CAD technologies are ill equipped to

accept product functionality as part of the design specification. In fact, the inputs of

20

most CAD systems are well-conceived artifacts, albeit in designers’ brain, with the CAD

only acting as an information recorder.

• The design output is a description of the mechanical artifact that may now be converted

to a physical artifact through a manufacturing operation.

• Existence of design constraints such as resource limitations, and other technological and

social constraints during a design process. For example, any conceived artifact must be

subject to acceptable physical laws such as Newton’s law, F = ma.

The design process may be classified into three categories: [18] generative, adaptive, or

variant design. This is illustrated in Figure 6. In generative design, new design tasks and

problems are realized by original design incorporating new solution principles. These can be

realized either by selecting and combining known principles and technology, or by inventing

completely new technology. Generative designs usually proceed through all design phases;

depend on physical and process fundamentals; and require a careful technical and economic

analysis of the task. In adaptive design one keeps to known and established solution principles

and adapts the embodiment to changing requirements. It may be necessary to undertake original

designs of individual assemblies or components. In this type of design the emphasis is on

geometrical, analytical (strength, stiffness etc), production and material issues. In variant

design, the sizes and arrangements of parts and assemblies are varied within the limits set by

previously designed product structures (e.g. size ranges and modular products). Variant design

requires original design effort only once. It includes designs in which only the dimensions of

individual parts are changed to meet a specific order.

21

Design Novelty

VariantAdaptiveGenerative

Figure 6 Classification of design

Design involves four distinct aspects of engineering and scientific endeavor: the

problem definition from a “fuzzy” array of facts and myths into a coherent statement of the

question; the creative process (concept generation) of devising a proposed physical embodiment

of solutions; the analytical process (concept evaluation) of determining whether the proposed

solution is correct or rational; and the ultimate check (design verification) of the fidelity of the

design product to the original perceived needs. The sequence of events involved in the design of

a product is illustrated in Figure 7.

It is sometimes difficult to judge whether or not the problem definition does correctly

represent the perceived needs until the final output of the design process in the form of products,

processes, or systems is compared with the perceived needs. This process is usually carried out

through design verification procedures such as physical prototyping or computer techniques

such as simulation or virtual prototyping. The major challenge of computer verification

techniques is that the functional requirements are usually not clearly defined in such a way to

22

allow for automated computer verification operation. This research provides a tool to allow

product functionality to be modeled in such a way that automated function verification might be

enhanced.

The second step of the design process is the creative process of synthesizing a design

solution in the form of physical embodiment. The creative ideas and the synthesis process

depend on the specific knowledge possessed by the designer, and on his or her ability to

integrate knowledge.

Design Verification

Embodiment Design

Concept Evaluation Concept Generation

Problem Definition

Design
Knowledge

Engineering
Need

Figure 7 Design process

23

Design creativity is complemented by analytical process. This aspect is illustrated by

Suh [62] as shown in Figure 8, which depicts the design process as a feedback control loop. It

shows how the creative process must be checked through analysis and corrected for differences

between the perceived problem definition and the proposed solution. In the figure, Y is the

desired outcome and X the input. The gain of the feedback loop should be as large as possible to

converge to a correct solution quickly; that is, the ability to judge the quality of the outcome of

the creative process improves the creative process itself. In the figure, the former is depicted by

the function H and the latter by G. The relationship between X, Y, H, and G is given by:

1
1

1 >>=≈
+

= − GHforH
GH
G

GH
G

X
Y

Equation 1

When G x H is much larger than unity, the gain is equal to 1/H. If we cannot analyze a

design solution, then we cannot rapidly generate the “best” design since we cannot distinguish a

good design from a bad design. In the absence of a criterion for selecting a good design, we

cannot make good design decisions. The “analysis” of design implies making correct decisions

as well as evaluating the details of specific features.

Figure 8 Feedback control loop depicting the design process

24

Design involves a continuous interplay between what we want to achieve and how we

want to achieve it. The objective of design is stated in the functional domain, whereas the

physical solution is generated in the physical domain. The design process involves relating the

functional requirements (FR) of the functional domain to the design parameters (DP) of the

physical domain. This is illustrated in Figure 9 (adapted from Suh [62]), where DPs in the

physical domain are chosen to satisfy FRs in the functional domain.

Figure 9 Design as the mapping from functional space to physical space

Hence, design may be described as the creation of synthesized solutions in the form of

products, processes or systems that satisfy perceived needs through the mapping between the

FRs in the functional domain and the DPs of the physical domain, through the proper selection

of DPs that satisfy FRs. This mapping process is nonunique; therefore, more than one design

25

may ensue from the generation of the DPs that satisfy the FRs; in other words, the actual

outcome depends on a designer’s individual creative process.

The design process begins with the establishment of FRs in the functional domain to

satisfy a given set of needs, and ends with the creation of an entity that satisfies these FRs. The

determination of a good set of FRs from diffused and often poorly defined perceived needs is an

important step in the design process. The final design cannot be better than the set of FRs that it

was created to satisfy. A problem may be ill conceived, resulting in the formulation of a wrong

set of functional requirements and consequently, a wrong set of design parameters. Hence, it is

very important that FRs are clearly and concisely defined to represent the correct design problem

or need. One of the objectives of this research is to come up with a methodology for the

description of FRs (through functionality modeling) that will facilitate the use of computers in

the mapping process of FRs to DPs.

In generative product design (evolution), the need for a product design arises because of

identification of a need to be accomplished by the product. In variant (or adaptive) design,

however, the need for new design or re-design process arises because of the identification of a

modification or improvement that need to be made to the product. In this work, discussion on

design evolution is largely focused on generative designs. To perform variant design however,

one only need to identify the functional elements associated with the existing design and then

performs the functionality modeling for the product. The integration of the functionality-

modeling tool to existing CAD systems will greatly enhance the ease with which one can

perform variant or adaptive designs.

26

2.1.2 Feature-Based Design

Feature-based design is a technique that permits a designer to express geometric design

intent while creating the geometry of the product. It requires and permits the designer to think

beyond mere shape and to state explicitly what portions of part are important and why. There is

no universally accepted definition for features. Various researchers have defined feature

differently. Some have given general definitions like “a subset of geometry on an engineering

part which has a special design or manufacturing characteristic”, [19] “generic shapes with

which engineers associate certain properties or attributes and knowledge useful in reasoning

about the product”, [20] or “a set of geometric entities (surfaces, edges and vertices) together

with specifications of the bounding relationship between them and which imply an engineering

function on an object”. [21]. Using feature concepts in the product model offers several

convenient properties as follows: [22]

• Recurring characteristics of products can be modeled as feature types, and used as a

repository of reusable product knowledge that may be related to a particular shape or

geometric pattern.

• Specific products can be modeled through their constituent features, providing a more

natural basis of interaction with the designer than mere geometric models.

• Manufacturing knowledge can be associated with features, and accessed to determine the

producibility of a designed object or for planning its actual manufacture.

In design by features, the part is constructed directly from pre-defined features. [22] The

part is represented by the features and the relationships among them. Parts are designed by

27

adding, manipulating and subtracting generic features stored in a database and the user (i.e. the

part designer) is provided with a library of features to work with. The user may be allowed to

modify existing features in the library or create new features and add it to the library. A major

advantage of this approach is its ability to capture and propagate the designer's intentions for use

by downstream applications. The functionality model developed in this work offers the

advantage of extending current feature modeling techniques by associating each feature with

specific engineering functionalities (which may be context dependent).

In feature extraction on the other hand, the part is constructed using geometric entities

(lines, curves etc.) on conventional CAD geometric modelers. The features are then identified,

i.e. recognized from the geometric model using some geometric reasoning techniques. The main

attraction of this approach is design freedom and the possibility of using current CAD modelers.

2.2 Functionality-based Design

2.2.1 Functionality Modeling and Verification

There is no clear and uniform definition of function. Functions are intuitive concepts

depending on intentions of designers or users. Rodenacker [23] defined function as a relationship

between input and output of energy, material, and information and this representation is widely

accepted in design research. This definition is limited in application e.g. when there is no

energy flow involved. An alternative definition is provided by Tomiyada et al.; [24] function is “a

description of behavior abstracted by human through recognition of the behavior in order to

utilize the behavior.”

A list of classifications of technical artifacts based on criteria such as function, working

means, complexity, production, and product was drawn up by Hubka. [25] It is, however, difficult

28

to agree on a generally acceptable system of classification – the tasks, applications and forms are

much too varied and complex. Hubka suggested that technical systems should be treated as

systems connected to the environment by means of inputs and outputs. A system can be divided

into sub-systems and what belongs to a particular system is determined by the system boundary.

The inputs and outputs cross the system boundary. With this approach, it is possible to define

appropriate systems at every stage of abstraction, analysis or classification. While this

description may be appropriate for general description and to some extent functional description

of a system, a designer obviously will need a working knowledge of the systems internals in

order to come up with a good design concept.

Many researchers have approached the functionality representation problem by providing

taxonomy of possible product functionality. [26]. Grabowski et al. [27] divided product function

model into three layered function models with different abstractions: the logical model, the

status model and the relation model. Their functional classification is based of the function

taxonomy provided by Pahl. [18] The logical model is used to represent a high level topology and

connectivity of sub functions, with the aid of Boolean operators: AND, OR, and NOT. The

status model assumes every sub-function / module has some working states, which are numeric

coded in the status model. Unlike the logic model, this model describes the relation of more than

one sub functions. Relation model defines the mathematical or physical relations between

several physical variables including relations between input and output within a component.

The Grabowski’s group claim that each function model can completely describe a mechatronic

product with its related abstraction level, and can fluently be converted into another model. This

claim is very restrictive as each model only represents a particular view of the product. Instead

of this conversion attempt, the models could play a more complementary role to one another.

29

Another limitation of this function classification is that they are defined at an abstract level, in

such a way that it is not easy to apply in basic design activities that require more concrete special

functions, which vary with application tasks and are usually realized in form of components.

Some researchers have tried to map functionality to form through the use of function-

form matrix scheme [16, 27]. A data structure of function-form matrices was employed by

Mukherjee et al. [16] to provide a relationship between a functional decomposition and the

sketching abstraction of the parts. They carried out this process using a hierarchical

decomposition of functions into sub-functions through the process of functional representation

to the point of initiating the physical design of the part. Their representation takes into account

the fact that form-function relationships are usually many-many in nature. There are however,

some serious limitations in this approach because of lack of suitable functionality representation

and reasoning schemes.

The use of graphs in the description of relationships among interacting entities has been

used in the field of CAD and artificial intelligence. Al-Hakim et al. [28] used graph theory to

represent a product and define the relationships between its components. They employed the

graph-theory concepts of the “tree” and the “forest” to represent a functional design artifact and

idle condition, respectively. In their approach, components of a product being designed are

represented as vertices of a graph while the edges of a graph represent the relationship between

the components (vertices). The number of vertices of a graph representing a product in an idle

status may be different from the graph representing the same product during operation. They

used this approach to consider expected mechanical failures and other constraints at the

conceptual design stage resulting from the flow of energy between the components of a product.

30

31

It is however difficult to extend this approach to model generic product functionalities at both

the conceptual and detailed design phases of design.

Object-oriented principles of encapsulation and inheritance have been used by Gorti and

Sriram [15] to localize knowledge representation of product design and process. They described

a symbolic evolution approach, symbol-form mapping. In geometry representation, they used an

object-oriented paradigm to provide a solution. They also proposed a structure information

model and primitives for an integrated representation of the design product and process. [29]

Their symbolic evolution approach has two main components: a structured model that defines

some primitive constructs and their interaction; and a reasoning approach that operates on the

representation. The primary objects are context and artifact. A context consists of the design

tasks (goal), the user specifications, the decisions that have been made, and the artifacts that are

created as part of the design process. The artifact is comprised of function, form, and behavior.

Design relationships provide the overall functional and spatial coherence for the design. They

were concerned primarily with four broad classes of relationships: functional relationships,

composition, aggregation, and spatial relationships. The basic object model of the symbolic

evolution is required to provide for explicit representation of these relationships. Gorti's

symbol-form mapping framework relies heavily on explicit representation of relationships. This

implies that the utility of their approach is limited to that class of design, which deals with

assembled systems, where disaggregated knowledge is coordinated together with a common

process. In general, the current implementation of the symbol-form mapping framework is

geared towards conceptual design. The current approach to dealing with iteration in design is

somewhat limited. The extent of innovativeness the framework permits is largely limited by the

representation of behavior in the system.

Hierarchical decomposition approach has been employed in the modeling of product

design functionality. [30, 16] Cole [30] employed a hierarchical decomposition of the primary

system functions into sub-functions, at ever-increasing levels of detail. They used functional

identification diagrams (FID) to define the structure, components, and functions of the system.

The FIDs portray the system as a hierarchical structuring of the system functions. Mukherjee et

al. [16] in their work noted that the identification of a set of functions for the part is the first step

in part design. They also carried out this process using a hierarchical decomposition of functions

into sub-functions through the process of functional representation to the point of initiating the

physical design of the part. While the functional decomposition process follows a sequence of

higher level functions being decomposed to intermediate and lower level sub-functions, their

generic representation of a function is given as follows:

[<v><n><m><d><o>]locn<keywords>

where,

 v, n, m, d, and o are sets and

v represents verbs,

n represents nouns,

m represents a magnitude attribute such as 10 N of force,

d represents a direction attribute, and

o is another set of nouns representing objects on which the function applies.

locn distinguishes between more than one similar functions,

keywords is an additional set of specialized words used to enhance the

functional representation.

32

These models, however, are very restrictive and do not provide a flexible and practical

way to model functionality relationships and constraints that support implementations and

propagation to downstream design activities.

Tomiyama et al. [24] proposed the use of function-behavior-state (FBS) modeling to deal

with function in conceptual design. They represented a function by two concepts; i.e. its symbol

represented in the form of to do something and its semantics represented by the relationship

between function and behavior (which they called F-B relationship). In their work, Tomiyama’s

group assumed that the representation of function includes human intention, whereas, the

representation of behavior of an entity can be determined objectively by its relations to other

entities based on physical principles. They called attributes and relations of an entity a state of

an entity. For representing functions, they construct a knowledge base of functions by collecting

prototypes of functions from existing design results. Table 1 shows the scheme of functional

prototypes. Name of a function is described in the form of "to verb objectives." Decomposition

describes feasible candidates for detailing this function in the form of networks of sub-functions.

Table 1 Definition of a functional prototype (proposed by Tomiyama et al [24])

Item Contents
Name verb + objectives
Decomposition networks of sub-functions
F-B Relationship networks of views

Although there has been a lot of work on design evaluation, for example, the weighted

objective method [31] and value engineering, [32] relatively little work has been carried out on

design verification. [33] Design evaluation focuses on evaluating different alternatives against

33

specified criteria, whereas verification involves checking that the design proposal satisfies

functional and other specifications. There are two families of methods for design verification.

First, attributes of interest can be directly calculated or estimated by means of domain-specific

algorithms or formulae. These methods have limited application, as they require a well-defined

problem space. Second, verification can be achieved by simulation. Developing a structural

model of the device and allowing this to change state from specified initial conditions simulates

the behavior of a system or device.

In the industry, several design verification approaches are used. The most common

approach is to use CAE software to simulate the behavior of a design and then to manually

check this against the desired performance targets. One extension to this technique involves

automatic optimization of design variables (within a specified range) for a given working

environment, e.g. MSC CAE and iSIGHT software. Some advanced user automated design

verification systems that use Product Data Management (PDM) systems include iMAN, and

expert systems such as ICAD. The PDM and expert system approaches are domain and problem

specific.

Deng et al. [33] proposed a functional design verification model based on their previous

work [34, 35, 36, 37] on Function-Environment-Behavior-Structure (FEBS) design model. Design

verification is achieved by identifying input and output design variables, developing a variable

dependency graph, propagating constraints over the variable dependency graph and checking the

values of the design variables against the functional requirements. The propagated constraints

are determined by first deriving algebraic expressions for each output variable. The algebraic

expressions are then substituted for the output variables in the expression of the constraint-to-be-

propagated. This technique results in some constraints not being able to propagate to input

34

variables, designers are therefore required to either verify them in a manner similar for

constraints on input variables or use heuristic methods for constraint solution. Their approach is

limited because the behavior must be known or specified by the designer. That is it assumes the

existence of a working design concept. In addition, this model is based on the fact that product

models are treated as in-output systems. This assumption, however, places some restrictions on

systems that cannot be described with this input/output model.

Another major challenge faced by researchers in this field is taxonomy. The National

Institute of Standards and Technology (NIST) design repository [38, 39, 40, 41] and other research

groups [18, 26, 27, 42, 43, 44] have tried to approach this problem by developing an extensive library of

possible product functions. There are still unresolved issues on how to achieve a computational

model of this taxonomy that can serve as an aid in product design. The NIST design repository

is based on the description of function using functional basis. The models are based on the use

of flows to describe functions as inputs and outputs. This assumption places a restriction on the

type of functions that can be modeled with this approach to those systems with identifiable

inputs and outputs (thus, assuming a casual relationship between entities). Unfortunately, input-

output models cannot be used for functions where no clear casual relationship is identifiable.

Moreover, the model developed has no transparent and flexible means of modeling and

propagating functionality as constraint on basic design elements to detailed design. This research

will address this problem by providing a scheme for mapping the functionality description into

mathematical relationships and constraints.

35

2.2.2 Input-Output Model (Black-box Model)

The input-output (or black-box) model views mechanical systems as composed of

different levels of abstractions with inputs and outputs described in terms of energy and

material. Energy and matter have been described as basic concepts of the input-output model of

an engineering artifact. [18] This is illustrated in Figure 13. Force is the means by which the

motion of an artifact (matter) is changed. Ultimately, this process is explained in terms of

energy. Thus, in engineered systems, energy is a fundamental element, the flow or

transformation of which, can result in the accomplishment of a functional requirement.

Whenever a change or flow is involved, time is introduced as a fundamental quantity. By

reference to time, the interplay of energy and matter can adequately describe the state of a

system.

Energy

Material
BLACK BOX

Energy

Material

Figure 10 Input-output model of system

In technical sphere, the previous description is usually linked to concrete physical or

technical representations. For example, the manifest forms such as mechanical, electrical,

optical energy etc is used to describe energy. For matter, it is usual to substitute material with

properties as weight, color, condition etc.

36

Analysis of technical systems makes it clear that all of them involve technical processes

in which energy and material are channeled and/or converted. This model considers these

conversions as flows, and the prevailing one the main flow. A second type of flow usually

accompanies the main flow, and quite frequently all two come into play. Thus, there can be no

flow of material without an accompanying flow of energy, however small.

While the input-output model is very useful in understanding and modeling design

functionality, it has limitation by considering functional entities as flows and by the assumption

of causal relationship. Hence, the input-output model, excludes systems that have no obvious or

identifiable input and output flows, with no identifiable motion when in operation. Examples of

such systems with no identifiable input / output flows include a computer chassis and an electric

power outlet cover. The functionality model proposed in this research extends this basic model

of functionality entities to support all classes of mechanically engineered products. The basic

entities are not considered only as time dependant elements – flows. Rather, they are considered

simply as basic entities involved in the realization of mechanical functions.

2.2.3 Functionality Decomposition

The physical realization of product functionality is hierarchical in nature. As illustrated

in Figure 14, product functionality can normally be described with an overall functionality by

bringing together separate entities of sub-functionalities and basic components consisting of

energy and material. Each sub-functionality accomplishes a specific function that contributes

towards the accomplishment of the overall function. If an overall task has been adequately

defined – that is, if the attributes and required behavior of all the quantities involved and their

37

actual or required properties are known – then it is possible to specify the overall function. An

overall function can often be divided into identifiable sub-functions corresponding to sub-tasks.

The relationship between sub-functions and overall function is very often governed by certain

constraints such as functional and physical relationships.

Main function

Sub-function 1 Sub-function nSub-function 2 Basic Function
element 1

Basic Function
element m

Sub-function
1

Sub-function
n

Basic
Function

element 1

Basic
Function

element m

.

. . .

.

C
om

pl
ex

ity

Figure 11 Product function decomposition

The meaningful and compatible combination of sub-functions into an overall function

produces a function structure, which may be varied to satisfy the overall function. To that end,

it is useful to make a block diagram in which the processes and sub-systems inside a given block

(black box) are at first ignored.

38

Functions are usually defined by statements consisting of a verb and a noun, for example

“increase pressure”, “transfer torque” and “reduce speed”. They are derived from the interaction

of energy and material. It is useful to distinguish between main and auxiliary functions. While

main functions are those sub-functions that serve the overall objective directly, auxiliary

functions are those that contribute to it indirectly. They have a supportive or complementary

character and are often determined by the nature of the solution.

A logical analysis of functional relationship starts with the search for the essential ones

that must appear in a system if the overall problem is to be solved. There may be some

conditional elements in sub-functional satisfaction (if-then condition). Logical relationships

must also be established between the entities of a particular function / sub-function. In most

cases, there are several entities whose relationships can be treated like propositions in binary

logic. For example, a simple AND-function may be illustrated by a clutch system; a trigger

force must be sent and clutch engaged before the torque can be transmitted.

2.2.4 Functionality-based Product Design Conceptualization

Conceptual design involves the process of obtaining a pool of feasible concepts from

which the most promising one is selected. This is the process of creation, the most difficult and

least understood step in the design process. [45] So far, no existing method is available to guide

designers directly and precisely to invent devices, products, systems, or processes.

An approach for mapping an evolving symbolic description of design into a geometric

description was developed by Gorti and Sriram. [15] They identified symbol-form mapping as

the crucial issue to be addressed in developing Computer-Aided Conceptual Design (CACD)

39

framework. That is, the process by which a logical description of an engineered system is

mapped into physical description during the conceptual design phase. They argued that the

design process has two aspects – a symbol aspect, which leads to a logical product description,

and a geometric aspect, which leads to a physical description. The distinct elements of the

symbol-form mapping are: (a) deriving spatial relationships between objects as a consequence of

the functional relationships; (b) instantiating alternative feasible solutions subject to these

relationships; and (c) presenting the evolving descriptions of geometry. They called this part of

the design a function-symbol mapping. At this stage, the specific functional requirements

coupled with the design context leads to: (a) a selection of components; (b) establishment of

functional relationships between components; and (c) establishing important parametric

constraints. In order to physically realize the design, they noted that the logical description must

somehow be mapped into a geometric description. This mapping is often iterative – the

geometry may lead to further refining the logical description. Another stress is the importance

of localized knowledge in relationship mapping. They focused on developing a domain-

independent methodology to support form conception, by localizing domain-dependent aspects

of the symbol-form mapping.

A computer tool called function-behavior-state (FBS) modeler was proposed by

Umeda’s group [46] to support conceptual design. To accomplish this, they used the functional

decomposition and physical features in knowledge base of the modeler. The key objectives of

the FBS are:

• To distinguish subjective parts of a design object (function symbols and F-B

relationships) and the objective parts (behaviors and states);

40

• To represent a function as an association of subjective concepts (function symbols) and

objective concepts (behaviors) rather than just either of them; in other words, function

relates subjective concepts and objective concepts; and

• To represent a design object hierarchically to support a modeling process that details

functional and behavioral descriptions concurrently.

Wang and Nnaji [47] proposed the use of “modus” to model product functionality and

form conceptualization. They defined modus as the basic design operation unit that embodies

functionality instead of feature or basic geometric elements such as lines, circles, etc. This

approach has a great limitation in modeling product functionality as a constraint and propagation

of functionality to downstream design activities.

Mukherjee et al. [16] proposed the use of representation methodology, sketching

abstraction, as the schema for a CAD tool to support conceptual design of parts. The principle

of the sketching abstraction is to use wireframe-based data structure to represent the

functionally essential parts of the geometry, using features and workpiece face information. The

remaining geometry is abstracted using a linkage system. The sketching abstraction is annotated

with a set of primitives. They developed a grammar to extract canonical pairwise relationships

between the functionally essential parts of the geometry. These relationships form the functional

signature of the part. Sketching abstractions have a close relationship with the part

functionality. They developed a group technology (GT) based coding schema for representing

functions and to enhance the retrieval of parts for the part library. Through the process of

decomposition, the designer can select the most appropriate set of features from a library of

features. The geometry is related to the functionality using data structures called function-form

41

matrices. The remaining geometry of the part is abstracted using a set of linkages to create the

sketching abstraction.

Establishing a function structure facilitates the discovery of solutions because it

simplifies the general search for them and because solutions to sub-functions can be elaborated

separately. A graphical display of this decomposition may also stimulate the creativity of the

designer. Most mechanical product functions are realized by selection of appropriate physical

processes. Hence, in conceptual design, physical processes and working principles are selected

to accomplish mechanical functions. A physical process (realized by the selected physical effects

and the determined geometric and material characteristics) results in a working relationship that

fulfils the function in accordance with the task.

Physical Effects

Physical effects are described quantitatively by means of the physical laws governing the

physical quantities involved. For example, in Figure 12, the earth’s gravitational force (Fg) on

an object of mass (m) is described by: Fg = m . g, where g is the earth’s gravitational force

constant. Several physical effects may have to be combined in order to fulfill a sub-function.

For example, the operation of a bi-metallic strip is the result of a combination of two effects,

namely thermal expansion and elasticity. A physical effect chosen for a particular sub-function,

however, must be compatible with the physical effects of other, related sub-functions.

42

Ground

h

O

F = m . g

Figure 12 Physical effect: earth's gravitational pull on object, O

Geometric and Material Characteristics

The place where the physical process actually takes effect is the working location (active

location). A function is fulfilled by the physical effect, which is realized by the working

geometry, i.e. the arrangement of working surfaces (or working spaces) and by the choice of

working motions. In addition, we need a general idea of the type of material with which the

working surfaces are to be produced, for example, whether it is solid, liquid or gaseous; rigid or

flexible; elastic or plastic. A general idea of the final embodiment is often insufficient; the main

material properties must be specified before the functional interrelationship can be formulated

adequately.

43

Only the combination of the physical effect with functional entities (geometry and

material characteristics) allows the principle of the solution to emerge. This interrelationship is

called the working principle, and it is the first concrete step in the implementation of the solution

- conceptualization. The combination of several working principles results in the working

structure of a solution. It is through this combination of working principles that the solution

principle for fulfilling the overall task can be recognized. The working structure derived from

the function structure thus represents how the solution will work at the fundamental principle

level.

2.3 Spatial Relationship in Product Design

Spatial relationships were proposed by Popplestone et al. [48,49,50,51] to express the relative

positions of parts in a product's final state by specifying spatial relationships between features. A

mathematical model is applied to transform a system of spatial relationships into equations,

which are solved to determine the location of components in a product. Liu and Nnaji expanded

the concept, and not only inferred the assembly position of parts but also captured designers'

intent. [52, 53] There are six major types of spatial relationships (illustrated in Figure 10) defined

as follows:

• Against: the mating surfaces touch at some point. The against relationship is the most

basic spatial relationships and applies to any parts assembly. Any combination of two

features can possess this property.

44

• Parallel-offset: the parallel relation holds between planar faces, cylindrical and spherical

features. In the case of two parallel planar faces, the outward normals are pointing in the

same direction. This relationship exists without physical contact of two features with an

offset distance.

• Parax-offset: this relationship is similar to parallel-offset but the outward normals of the

parallel planar faces are in opposite directions.

• Aligned: two features are aligned if their centerlines are collinear.

• Incline-offset: the inclination relation holds for an angle between two planar faces. The

offset describes the distance from a planar face of a part to the intersection line of two

faces which makes the include angle.

• Include-angle: this is similar to incline-offset, but having an include angle between two

planar faces in their positive normal direction. The rotation is clockwise with respect to a

normal of a picking face. The rotational axis has to be parallel to the normals of above

two planar faces.

Each spatial relationship can be interpreted as a constraint imposed on the degrees of

freedom between relative mating or interacting features. Given a set of combination of spatial

relationships, the resultant degrees of freedom can be inferred by a rule-based reduction system.

An example is adopted from [52] to illustrate the concept as shown in Figure 11.

45

Figure 13 Six types of spatial relationships: (a) against, (b) parallel-offset, (c) include -

angle, (d) parax-offset, (e) aligned, (f) incline-offset

46

Figure 14 An example of assembly by spatial relationships

47

2.4 Design Constraints

Representation of constraints is a major challenge facing the design engineers. Due to the

vital nature of constraints in design, their representation has received considerable attention in

the design research community. Many researchers [54,55,56,57] believe that engineering design is a

constraint-oriented process. Some researchers argue that design process involves the

recognition, formulation and satisfaction of constraints. [58] Stauffer and Slaughterbeck-Hyde [59]

defined constraints as a piece of information that limits design variables to a specific set of

permissible values. Van Hentenryck and Saraswat [60] considered a constraint to be a restriction

on a space of possibilities. In summary, a constraint may be considered as either the bound on a

single design parameter or the relation among a set of design parameters. Although the

characteristics of constraints within the domain mapping process have been studied, no explicit

representation scheme is available for modeling design constraints.

Criteria and design knowledge include the preferences and constraints for evaluating

design concepts. Consequently, constraints must be expressed explicitly with a systematic and

consistent representation scheme. The constraints can then be examined and manipulated by

engineers or computers with several advantages; [61] constraints can be checked for accuracy,

sufficiency and completeness of decisions.

Suh [62] discussed input constraints and system constraints in axiomatic design. Input

constraints are those given in design specifications, usually expressed as bounds on size, weight,

materials, and cost. System constraints are imposed by the system in which the design solution

must function.

48

Feature based design methods use geometric constraints to model the geometric

relationship within a feature or among different features. [63] Although constraint modeling of

features and geometry is well supported by the feature-based design methodology, it only

models the results of a decision, not the constraints that govern the decision. Representation of

constraints that affect design decisions is of great importance because a good decision should be

based upon explicit and complete information.

A single constraint can be expressed in different formats: domains, equalities,

inequalities, or rules. A domain represents the bound of a design parameter, while equalities,

inequalities and rules describe the relations among design parameters. [61]

A set of constraints may be represented as: (1) the constraint network. (2) the constraint-

variable incidence matrix, and (3) the adjacency matrix. A constraint network is a collection of

constraints that are interconnected by virtue of sharing variables. [64] Constraint networks are

useful for constraint propagation and monitoring violations. The purpose of a constraint

variable incidence matrix is to study the relationships between constraints and variables. [65,66]

In the matrix, rows represent constraints and columns represent variables.

Three types of constraint-based design methods identified in the literature are: constraint

monitoring, constraint satisfaction, and constrained optimization. Constraint monitoring uses

constraints passively to check whether a decision satisfies all constraints. Constraint satisfaction

uses constraints actively to derive some values of variables based on given input values of other

variables. Constrained optimization, on the other hand, aims at finding the best solution from the

alternatives to optimize the objective functions subject to constraints.

Many researchers insist that constraint monitoring is more appropriate for concurrent

engineering. [67] Bowen et al. [68] pointed out that a constraint satisfaction system tends to

49

automate the design process. Constraint monitoring takes advantage of the engineer's knowledge

and intelligence. In constraint monitoring, the engineer assigns values to variables, one after

another. The algorithm propagates the values through the constraint network. If an assignment

violates any constraint, the engineer has to provide a different value. To use constraints actively,

constraint satisfaction methods derive the values of some variables based on the given values of

other variables. To solve the constraint satisfaction problem in embodiment design, Thornton

and Johnson [69] constructed a constraint violation function based on a set of non-linear and

mixed equality and inequality constraints. If all constraints are satisfied, the value of this

function is zero. If any constraint is violated, the function has a positive value.

Some constraints, such as rules, cannot be expressed mathematically. One solution for

considering both is to use the Constraint Logic Programming (CLP) paradigm. [70] Constraint

Logic Programming is a merger of two declarative paradigms: constraint solving and logic

programming. [71] Lakmazaheri and Rasdorf [70] used Constraint Logic Programming (CLP)

successfully to perform the analysis and synthesis tasks in truss structure design.

Although the methods discussed in this chapter have tried to model product functionality,

there are limitations to the various approaches. These limitations include:

� A restriction to functions that are can be modeled as input and output flows.

� The function models have generally been based on high-level approach providing little

link to actual design elements or product parameters.

� The models are too restrictive and not generic to support the design of variety of

products.

50

� There is a lack of suitable propagation mechanism from conceptual design to

downstream product development steps.

The functionality-based design (FbD) methodology discussed in this thesis will address

these issues.

51

3.0 PROPOSED FUNCTIONALITY-BASED DESIGN MODEL

As earlier stated in Chapter 1, the objective of this research is to develop a scheme for

mapping product functionality into mathematical relationships and constraints. This mapping

process is known as functionality modeling. The concept of functionality operation, operand,

operator, relationship, coupling bonds, and constraints modeling is developed in this work to aid

functionality-based product conceptualization and propagation to detailed design and analysis

phases of product realization. This approach allows for the description of a mechanical device

such that functionality-based design can be supported. Specifically, in order to realize the above

objective, the following tasks were accomplished:

� Functionality modeling to enable CAD systems to capture the designer’s intent during

the conceptual design phase. This involves the development of a scheme for

representing, propagating, and enforcing the product functionality as design constraints.

� Functionality data structure development to allow for the description of product

functionality in a transparent manner.

� Functionality relationship and mapping to develop the set of functionality relationships

and mapping operations that enables the description and propagation of product

functionalities to downstream design activities.

� Description of functionality model for commonly used mechanical functionalities as a

means of support for design repository of reusable product knowledge.

� Development of computational tools to implement the above concepts in a CAD system.

The computational tools developed in this research include:

52

o Functionality definition interface and tool kits;

o Functionality object model; and

o Functionality data representation in XML.

The concerns of functionality modeling are best illustrated with an example. Given the

product (dumb-bell) in Figure 15, how can we describe the function of components P1, P2, and

P3 in such a way that it captures all the functionality related issues in the design and operation of

the product? Also of interest is the question of how we describe the functionality relationship of

components P1, P2, and P3 in the product a way that any proposed design can automatically be

evaluated against such descriptions. In addition, how such descriptions should be propagated to

downstream design activities is of interest. What formalism allows for such description to be

entered in a computer to become part of design data? Once a possible functionality model is

defined, the physical structure of P1, P2 and P3 could be varied subject to the proposed

functionality constraints.

P1P2

P3

rf1 rf1

ff2

ff1

P 2
P 3

P 1

(a) Component Description (b) Assembled Sample Product

Figure 15 Mechanical product sample – dumb-bell

(Note: Dumb-bells are used as weights in fitness exercises. Hence, the
functionality of a dumb-bell is to provide the necessary load used to train the body
muscles.)

53

Functional modeling has to ensure that two important model views are taken into

considerations. Hsu et al. identified the two model views as computer-oriented and human-

oriented models.(72) The computer-oriented models ensure that computational reasoning and

manipulations can be done in a very efficient manner. Examples of computer-oriented models

are structured languages, graphs, and mathematical models. Human-oriented model on the other

hand, provides conducive modeling techniques that aid the creativity of human designers.

Examples of human-oriented models are images and natural languages.

In general, constraints are restrictions on the design space (form or physical

configuration). The inclusion of design constraints reduces the available choice of design to

satisfy the design objective. The more constraints a problem has, the less solution space is

available. Therefore, constraints must be expressed explicitly with a systematic and consistent

representation scheme. The geometry and functionality of a product are represented in terms of

engineering constraints in a constraint based modeling system. Constraint definition and

representation mechanism are hence required to model these engineering constraints that are

imposed on the product design. The representation of product functionality as a design

constraint ensures that the possible design space (or choices) is restricted to only design

configurations that will satisfy the original product functionality.

The strategy proposed for the functionality-based product model is described here. The

reason for the approach is also presented along with the justifications for the proposed

methodology.

54

3.1 Modeling Scope

The work developed in this research is limited to the class of designs that deal

exclusively with mechanical devices governed by well-understood mathematical laws of physics

such as Newton’s laws of motion. A mechanical device is a piece of equipment, mechanical in

nature, designed to serve a special purpose or perform a special function. [73] It generally consists

of mechanical members connected by joints. These members are so formed and connected that

they transmit constrained motions by moving upon each other as mechanisms, or they transmit

forces without any relative motion as structures. By limiting to this class of products, it is

believed that a solid foundation that result from this research might then be extended to other

classes of engineering systems. Previous researchers [25] have attempted to generalize this

approach to all classes of products. The assumption by some of these groups is the existence of

a universal design theory that will apply to all classes of products – mechanical, electrical,

chemical, and even biological. This assumption is however still being debated. However, by

focusing on a sub-set of products that are well understood, the chance of success is greatly

increased by limiting the work to a level that is manageable to produce results that have practical

application in the design of mechanical systems.

Another major limitation or assumption in this work is that materials are restricted to

idealized solids – rigid bodies – while energy consideration and modeling is restricted to

mechanical energies comprising of force and torque. The material restriction implies that fluids

(gases and liquids) and highly deformable bodies are not implemented in the functionality

model. The system however provides a classification and makes room for possible extension

that might include these material categories in future. To accommodate other energy sources in

this work, a functionality primitive – energy converter – is used to transform other energy

55

sources to mechanical form before being applied to the system. This assumption is not too

restrictive as the major source of energy in mechanical systems is mechanical energy

(force/torque). Another implication of the energy restriction is that functionality objects can be

built to act as energy converters and used in a plug-an-play fashion in a fully deployed system.

This is illustrated in Figure 16.

Input Energy Output Energy
ENERGY

CONVERTER

Other Energy Source Mechanical Energy Source

Other Energy Source Mechanical Energy Source

Figure 16 Energy conversion functionality

3.2 Major Challenges

Product functionality modeling is a very challenging problem that involves the

amalgamation of various engineering fields such as kinematics, artificial intelligence, feature

and geometric reasoning, constraint reasoning, and domain specific knowledge such as material

properties. The major challenges involved in this research are highlighted below:

� Mapping between function and structure: the connection between function and structure

could be indirect in an artifact.

56

� Context dependency of product function: a product that performs function “a” under

condition “x”, may also perform function “b” under condition “y”.

� Non-functional constraints: additional non-functional constraints (such as the physical

processes e.g. energy storage in a compressed spring; and interactions e.g. friction on

rubbing surfaces) are difficult to capture.

� Adequate modeling structures: the existing product modeling techniques are inadequate for

dealing with capturing functionality requirements during the conceptual design.

� Design phase interoperability: lack of integration between conceptual design and detailed

design phases in existing CAD packages.

As pointed out earlier in the Chapter 2, many researchers have tried to model

functionality. The models proposed by these researchers have been very restrictive, and lack

the robustness necessary to support functionality-driven design. The key factors that have

contributed to these inadequacies are:

• Most of the models have only considered a particular aspect of functionality. Functionality

is a very broad and encompassing subject that is context dependent. For example, a model

that tries to view functionality as inputs and outputs will only result in a description of a

particular view of functionality. In this research, a model that tries to accommodate

different views/descriptions of functionality is proposed.

• Another major problem encountered by most researchers that have tried to generate form

from function is the lack of a good functionality model that will aid the creativity of the

designer. In this work, a functionality representation model that supports the creativity of

57

the designer is described. This is accomplished by making sure that two important model

aspects are represented: computer-oriented model and human-oriented model. For

creativity to be simulated, the human model includes both text description and graphical

representations.

• One thing that is lacking in most of the previous work is the representation of the

functionality model as a design constraint that allows a design to be tested transparently

against those constraints.

• A major problem faced by previous research models is the inability to support incremental

design procedures. That is, the ability to start conceptual design with scanty information

as is usually the case in practice. At the beginning of a design, complete product

information is usually not available and is only provided or developed during the course of

design process.

3.3 Functionality Operations

Engineering design process involves the mapping of specified product tasks unto a

description of a realizable physical structure. This specified task of the design is what its

physical realization is supposed to do. The physical structure is the actual physical parts out of

which it is made, and the part-whole relationship among them. Consequently, the functionality

of an entity (or a product) is the general task it performs. The entity may be either a physical

artifact (e.g. the brake drum of a car wheel assembly) or an invisible object (e.g. the use of

electro-magnetic forces to relocate a ferro-magnetic object). An important attribute of

functionality is the existence of an identifiable task that needs to be performed.

58

Typically, the need for a new design arises as a result of identification of a new

functionality to be accomplished by the product. Designs are conceptualized in terms of the

functions they need to accomplish. That is, design is functionality driven. The physical

realization of product functionality is hierarchical in nature. That is product functionality can

normally be described with an overall functionality by bringing together separate entities of sub-

functions and functional entities. Each sub-function, accomplishes a specific function that

contributes towards the accomplishment of the overall function. The sub-functions are in turn

sub-divided into sub-functions and functional entities.

A functionality operation is defined as the realization of a given task. Where a task is

the desired functionality of the entity. Thus, an operation defines relationships and imposes

constraints on functionality elements (operands and attributes). The key element in the

definition of a functionality operation is the existence of an object or entity configuration that

performs the given task. Hence, the functionality operation is the solution outcome of the

functionality-modeling objective. For example, consider the task of providing support to a beam

structure by columns as shown in Figure 17. The functionality and corresponding operations are

as follows:

� Functionality: support of a beam.

� Functionality operation: representation of the act of providing support to the beam.

59

LOAD

Columns: load
bearing function

Base

Figure 17 Load bearing as an example of mechanical functionality

In this work, mechanical functionality is considered as being composed of two

components: the operator and the operand. These two entities are defined as follows:

� An operand is a distinct element involved in the realization of a given functionality.

Operands constitute the building block of mechanical functionalities. They are

entities that come together to accomplish any mechanical task. For example (1)

Transmission of force (operands: force and transmission medium) (2) Transform of

force to torque (operands: force, torque, and transmission medium)

� An operator is the established relationship between operands in the performance of a

functionality operation.

The use of the term “flow” to model product functionality was proposed by previous

researchers. [18, 23, 74] Many researchers [26, 27, 40, 43] on product functionality modeling have

adopted this definition. The definition of product functionality in terms of flow however, places

60

some restriction on the functions that can be modeled. The two major limitations are

highlighted below:

• It assumes causality, which is cause and effect relationship, requiring the definition of

mechanical elements as flows with inputs and outputs. This assumption limits the possibility

of functionality modeling to the class of functions with identifiable inputs and outputs.

• The definition of functional flow includes a class for signals. However, signal is a

perception and hence not considered a basic mechanical operand. A signal may be derived

by a combination of other basic functional elements (see example in Section 4.0).

The basic mechanical elements are modeled in this work by excluding signals and the

flow restriction on the nature of mechanical elements. The result of this is renamed operand.

The term “operand” is borrowed from computer engineering where it is used to represent data

component of a computer instruction code. It represents the portion of the computer instruction

that constitutes that actual values and parameters used in execution of an instruction. Similarly,

in the modeling of functionality, operand is used to represent the mechanical entity that is used

to accomplish a general mechanical task. The term operand is used in this work because it

captures the nature of the mechanical elements as the resources that are employed to achieve a

particular function. The operand may also be the result or output of a mechanical function. The

set of operands that are sufficient to describe the selected class [*] of mechanical functionality is

the focus of this research.

* Scope of this research as described in Section 4.1 is limited to mechanical devices using non-deformable materials
(excluding gases and liquids).

61

An important recognition from the above definitions is that mechanical functionality

operation is realized by prescribing relationships at the linkage of operands. This prescription is

achieved by the operator of the mechanical functionality operation that needs to be performed.

The operands are the entities the operator relates together for the actualization of a given task. A

more detailed description of the functionality operand is presented in Section 4.4 while that of

the operator is presented in Section 4.5.

A functionality model is composed of an aggregate of functionality operations.

Functionality operation is classified according to the level of interaction complexity of its

components. Each functionality operation could be either basic or compound in nature. A basic

functionality operation is defined as a mechanical operation in which a functionality operator

relates only a set of operands together with their corresponding attributes. On the other hand, a

compound functionality operation corresponds to functionalities that are more complex by

relating set of operands with other sub-functionality operations.

3.3.1 Basic Functionality Operations (BOPN)

Acts on only operands (with their corresponding attributes). They represent basic

mechanical functions. Basic functionality operation yields a special class of mechanical

functionality operations that is referred to as primitive. A subsequent combination of primitives

yields functionalities that are more complex. Symbolically, we define a basic functionality

operation as:

62

xBOPN: {<opand 1 : attrib 1>, <opand 2 : attrib 2>, … <opand k : attrib k>}

 where,

 xBOPN = basic functionality operator

<opand i> = functionality operand i, i = 1, 2, .., k

{attrib i } = attributes of operand i

A more detailed description of this representation and the corresponding example is

provided in Chapter 4 of this thesis.

3.3.2 Compound Functionality Operations (COPN)

A subsequent combination of the functionality primitives and definition of their unique

relationships and interactions yields a more complex functionality object that may be used to

construct any mechanical function. Acts on both operands and operations. Compound

functionality operation yields a special class of mechanical functionality operations that is

referred to as functionality compound operations. Symbolically, we define a compound

functionality operation as:

xCOPN: {OPN1:[copand 1], OPN2:[copand 2], … OPNk:[copand k], <opand 1 :
attrib 1>, <opand 2 : attrib 2>, … <opand t : attrib t>}

 Where,

 xCOPN = compound functionality operator

 OPNi = functionality operator i, where i = 1, 2, …, k

[copand i] = coupling operand set i corresponding to OPNi

<opand j> = functionality operand j, j = 1, 2, .., k

{attrib j } = attributes of operand j

63

Using a more concise representation, a compound functionality operation can also be

represented as:

xCOPN: {<OPN> | <OPAND>}

 Where,

 xCOPN = compound functionality operator

 <OPN> = set of lower functionality operations

<OPAND> = set of functionality operand

3.3.3 Generic Functionality Model

A generic functionality model will make it possible to impose functionality as a set of

design constraints and preferences that may be used during the detailed design and analysis

phase of the product. In this research, new design representation formalism is developed to

enable functionality-based design of mechanical products. This methodology provides a

framework that will allow a designer to carry out conceptual design with the aid of a computer.

It also serves as an interface tool between the conceptual design phase and the detailed design

phase of a product.

In this research, the generic functionality model is presented as a scheme for mapping the

functionality description into mathematical relationships and constraints. This provides a means

for representing, propagating, and enforcing product functionality as design constraints. This

functionality representation links product functions with the structural (physical) embodiment

used to realize the functions. This representation also offers support for recurring product

64

functionalities to be modeled as a functionality primitive, and used as a repository of reusable

product knowledge that may be related to a particular form or geometric pattern. A subsequent

combination of the functionality primitives and definition of their unique relationships and

interactions yields a more complex functionality operation that may be used to construct any

mechanical function.

Given a set of functionality objects (oij), with their corresponding attributes (aijk), we

define a generic functionality model of a functionality operation (a modeling representation for

both xBOPN and xCOPN) is defined by a ternary relation, Γi, given by Equation 2

Γi = {(r, s, f) | r ∈Ri, s ∈ Si, and f ∈ Fi}

Equation 2

Where,
• i = functionality operation index

• Ri = a functionality operator, defines a set of relationships between

functionality objects

• Si = a set of functionality states, defines state each object can assume.

• Fi = function-form mapping set, defines mappings between relationships and

physical forms.

Given a set of functionality objects, Oi in a functionality operation i, the functionality

operator defines the relationship between these functionality objects, it can be represented

mathematically as shown in Equation 3. A functionality object (oiq) is either an operand or an

interacting functionality operation (operand: material | energy and operation: lower level

functionality operation). A relation can assume any of the following forms: spatial; physical

65

aspect / processes; technological constraints; user preferences. A more detailed discussion on

functionality relationships is presented in Section 4.5

Ri = {rijk(oij, oik) | oij ∈ Oi, and oik ∈ Oi}

Equation 3
Where,

 oiq = {aiqs | aiqs ∈ Aiq} = object q in functionality operation i

 Aiq = attribute set for functionality object oiq

rijk = relation, mapped relationships between objects j and k.

 j, k, q = functionality object indices

i = functionality operation index

Similarly, the state of a functionality object is defined by considering the various

possible values its time-varying attributes might assume. For instance, the possible states of a

load-bearing structure could range from NO_LOAD to MAX_LOAD condition. Hence, the state

of a functionality object, q can be represented mathematically by a state set, Si as shown in

Equation 4.

Si = {siq | siq ∈S }

Equation 4

Where i is the functionality operation index and siq is the state of objects q in

functionality operation i. Hence, objects may have more than one functionality state. The

functionality object state is given by Equation 5.

66

 siq = {(aiqs, viqs) | aiqs ∈ Aiq, viqs ∈ V[aiqs] }

Equation 5
Where

Aiq = attribute set for functionality object oiq

V[aiqs] = set of possible values (range) of attribute aiqs

Finally, the functionality-form mapping, Fi defines the mapping between the

functionality relationship between the functionality model and the physical structure used to

accomplish the given task. This linkage is included in the functionality model to provide

support from form conceptualization, propagations to detailed design tools, and design

verification. With this inclusion, each functionality description is attached to the physical form /

structure as the design evolves. A mathematical representation of this mapping is defined by

Equation 6.

Fi = {(rijk, fijkl) | rijk ∈ Ri, fijkl ∈ FF}

Equation 6
Where,

rijk (relation): mapped relationships between objects j and k.

fijkl (form): conceptual forms mapped to relation rijk .

FF = set of functionality forms

i = functionality operation index

j, k = functionality object indices

l = form index

A more in-depth discussion of the various components of the functionality model is

presented in chapters four and five. A case study using FbD is discussed in chapter six.

67

4.0 FUNCTIONALITY OPERANDS

An operand is a distinct element involved in the realization of a given functionality.

Operands constitute the building block of mechanical functionalities. They are entities that

come together to accomplish any mechanical task. An operand is the mechanical product

functionality equivalent of “data” in computer systems. Operands are classified into two broad

categories: material and energy operands. A material operand is any physical entity that has

some mass and volume. An energy operand on the other hand is the functionality component

that effects some work outcome. This classification is illustrated in Figure 18.

Mechanical; Thermal; Electrical;
Magnetic; Radioactive; Hydraulic;

Pneumatic; etc

ENERGY

Solid; Liquid; Gas

MATERIAL

OPERAND

Figure 18 Functionality operands

The existence of an operand alone however, will not yield any meaningful functionality.

The operator defines its context of operation by defining the governing relationships. An

68

important recognition from the above definitions is that mechanical functionality operation is

realized by prescribing relationships at the linkage of operands. This prescription is achieved by

the operator of the mechanical function operation that needs to be performed. The operands are

entities the operator relates together for the actualization of a given task. For example, consider

the functionality operation – transmission of force from one point (A) to another point (B)

through a medium (see Figure 19). The operands in this case are: the force and the transmission

medium (note: that the medium is a solid bar). The existence of force and medium does not

provide any meaning or intelligence as to the purpose of these operands. The presence of a

transmission operator, however, defines the context and the relationship between the operands –

force and medium. A mathematical description of the operation as a primitive (basic)

functionality can be represented as shown in Table 2.

 B

A
FORCE

MEDIUM

Figure 19 Transmission functionality operation illustrating the interaction between

FORCE and MEDIUM operands: transmission of force from point "A" to plate "B"

69

Table 2 Mathematical description of the transmission operation shown in Figure 19

transmissionBOPN: {<FORCE : attrib FORCE>, <MEDIUM : attrib MEDIUM>}
where,

Functionality item Description
transmissionBOPN

transmission basic functionality operator
<FORCE> FORCE energy operand
<MEDIUM> MEDIUM material operand
{attrib FORCE } attribute set of FORCE operand
{attrib MEDIUM } attribute set of MEDIUM operand

A detailed functionality model for the transmission example is given in Section 6.32. In

the detailed model description, the operator defines the relationship between the attributes of the

two operands. For example, how is the magnitude of force related to the deformation or strain in

the medium (assuming a solid medium)?

Another example of a functionality operation is the transformation of FORCE to

TORQUE (operands: force, torque, & transmission medium). This example is illustrated in

Figure 20 and modeled in Table 3.

Table 3 Mathematical description of the transformation operation shown in Figure 20

transformBOPN: {<FORCE : attrib FORCE> <TORQUE : attrib TORQUE>
<MEDIUM : attrib MEDIUM>}
where,
Functionality item

Description
transformBOPN

transformation basic functionality operator
<FORCE> FORCE energy operand
<TORQUE> TORQUE energy operand
<MEDIUM> MEDIUM material operand
{attrib FORCE } attribute set of FORCE operand
{attrib TORQUE } attribute set of TORQUE operand
{attrib MEDIUM } attribute set of MEDIUM operand

70

The term flow has been used by some researchers to describe some aspects of the

operand. The term operand is used in this work because it captures the nature of the mechanical

elements as the resources that are employed to achieve a particular function. The operand may

also be the result or output of a mechanical function. The set of operands that are sufficient to

describe the selected class [*] of mechanical functionality is the focus of this research.

TORQUE
MEDIUM - SOLID

FORCE

turning
direction

Figure 20 FORCE to TORQUE transformation operation functionality

Functionality operand is restricted to a selected set of materials and energy entities (see

Figure 18). This is a modification to the sub-set of flows defined by some previous researchers

in the field of functional modeling. [18, 26, 27, 38, 39, 40, 41, 43] The selected subset is sufficient to

describe the class of mechanical systems considered in this research. Each operand has its own

set of attributes that are used in defining functionality relationships and constraints. An

important departure from the work of previous researchers [18, 38, 39, 40, 41, 43] is the lack of a

* Scope of this research as described in Section 4.1 is limited to mechanical devices using non-deformable materials
(excluding gases and liquids).

71

primitive operand for the signals. This is because signal is a perception and hence not

considered a basic mechanical operand. A signal may be derived by a combination of other

primitive operations. For example, in a voltmeter, a regulated displacement of a pointer attached

to the magnetic coil over a graduated scale may be observed or interpreted as a measurement

signal of the potential difference between two points in an electrical system. Szykman’s team

considered signal as mostly composed of auditory, olfactory, tactile, taste, and visual signals,

which is outside the realm of mechanical systems consideration of this work. These signals are

related to human sensory system and do not easily translate into physical mechanical design

elements.

The following subsections presents a more detailed description of each of the

functionality operands employed in this work.

4.1 Material Operand: Solid Operands

A material operand is any physical entity that has some mass and volume. Although

there are three classes of materials: solids, gases, and liquids; this research is restricted to solids

with the assumption that they exhibit the properties of an idealized mechanical body known as

rigid body. This restriction is to scope the model development to demonstrate the principles

developed here which may then be extended to cover other types of materials.

In this context, a solid material operand is defined as any object with mass having a

definite shape and volume. The definition of solid material operands in this work is restricted to

“Rigid Bodies”, which includes any class of engineering material (metals, alloys, ceramics,

polymers, composites, etc) in its solid phase. The rigid body assumption allows us to neglect

72

highly deformable bodies in the development of solid material operand model. Figure 21

illustrates the structure of a solid material operand. The principal components of the solid

operand are: functional features, physical property, degree of freedom, mass property, and

material type.

From Figure 21, it should be noted that a solid operand is modeled by: SOLID {FM,

DoF, PyC, MP, MT}, where FM is the set of functional positional markers; DoF is the required

degree of freedom of operand; PyC is the set of physical constraints on the operands; MP is the

set of mass properties on the operands; and MT is the material type constraint. Hence, the

attributes of a solid operand is completely defined by FM, DoF, PyC, MP, and MT. However,

at the beginning of the design process (conceptualization) and functional definition, some of

these information may not be known and hence incomplete. The model is however defined by

noting the unspecified (unknown) attributes and neglecting them (or using default values) for

any intermediate reasoning or computation. As design progresses, these attributes are defined.

73

SOLID
MATERIAL
OPERAND

Physical Property
Attribute

Physical Property
Attribute

Functional
Features

(Markers/Points)

Functional
Features

(Markers/Points)

Mass Properties
Mass Properties

Intra-feature
constraints

Strength

Density

Elasticity

Surface

Electro-thermal

optical

Dimension

Tolerance

Location

Orientation

Material Type
Material Type

Elas. Limit

Y. Modulus

Coeff. Of Friction
(static + dynamic)

Smoothnes

Conductivity

Resistivity

Optic. Prop

Inter-feature
constraints

Spatial
Relations

Dimensional
Relations

Volume, Area,
Mass, etc

Degree of
Freedom

Degree of
Freedom

fix; lin; rot; plane;
circle; sphere;
surface; etc.

Figure 21 Material operand structure illustrating a detailed attribute modeling of a solid

material

74

4.1.1 Functional Position Marker

Two related operands in a functionality operation do not make contact over their whole

surface but only functional regions/point of each operand are in contact. Hence, functional

points/regions (markers) are geometric points, locations, or regions on solid operands, which are

needed to relatively position the operands according to their coupling relations in the whole

functionality operation or structure. They are primarily related to operand’s topology and

geometry. Each functional position marker must have:

� Intra-functional marker constraints: which describes the geometric shape and size,

location, orientation, tolerance, and dimension of the functional marker.

� Inter-functional marker constraints: which describes the dependencies between

functional marker within a solid operand, for example, position of functional point,

orientation, feature adjacency, etc.

In the assigning process of operand relationships, the functional points/regions are

defined and extracted from the operands. For example, assigning a planar surface of one part

against a planar surface of the other part, these two planar surfaces are the functional

points/regions of interest in the operands coupled pair. In this fashion, the interpretation of

functional markers/points will be mostly lower-level kinds of geometric entities. One reason for

that is to easily extract functional points universally from operands, parts or pre-defined features,

which are usually diverse because they are intent-oriented. From this point of view, the

functional region/point of a material operand could be a point, a planar face, a centerline of a

75

cylinder or an edge of a face boundary, etc. Therefore, the functional markers/points are

determined by the types of operand relationships being specified and the operand types (entities)

being selected (see Figure 22). In Figure 22, the functional point involved in coupling the two

material operands (P1 and P2) are points A1 and A2.

A1

P2

P1

A2 P2

P1

A1

A2 coupling

(a) Before coupling (b) After coupling

Figure 22 Operand coupling at the functional points, A1 and A2

Solid Material operands can be idealized by modeling them as a wire-frame structure

(Figure 23) with the regions of particular interest denoted as points on the wire-frame model.

When more than two regions (points) are needed as functional point, additional lines may be

extended from the existing ones to the new regions of interest. Figure 24 illustrates the concept

where four functional points, A, B, C, and M, are identified on the solid operand. The only

major constraint imposed on the functional points by the parent solid material operand is that

they are part of the same operand and maintain constant spatial relation between one another. To

maintain a given relative position between functional points, a dimensional constraint (DC) is

imposed on the functional points relative to a reference point known as datum point (M).

76

 A B

Figure 23 Wire-frame representation of a simple solid material operand

C

B

M

A

Figure 24 Wire-frame representation of multipoint solid material operand with four

functional points A, B, C, and M

In this work, to model functional points in solid material operands, the concept of

markers is used to describe the position and spatial relations in the functionality model.

Markers

The term “marker” is adopted from Kramer [75] and Liu [22] with some modification to

support modeling of functionality operands. A marker consists of a point (x, y, z) on the operand

and two unit vectors (u, v), which emanate from this point. These markers are used to describe

the geometric constraints of the spatial relationships between their functional marker/features

and coupling operands. Examples of markers for the coupling features are shown in Figure 25. It

is noted that these two unit vectors (u, v) are defined to be orthogonal in Kramer, [75] however

that is not necessary in our application as long as these two vectors are not the same. These

77

markers are generated automatically by the system according to the operand function

marker/feature pair. The system chooses or infers from existing functional features on the

operands to form the marker.

v

u

 p(x, y, z) u

v

 p(x, y, z)

Planar face Marker description:
- p , u and v lie on planar face
- u × v is parallel to face normal vector

(a)

Centerline Marker description:
- p lies on centerline
- u × v is aligned with centerline

(b)

Figure 25 The markers on functional coupling features

A functional marker/feature is defined with markers using the following notation:

M1: a point p1(x1, y1, z1) and a unit vector set (u1, v1).

M2: a point p2(x2, y2, z2) and a unit vector set (u2, v2).

wi : a unit vector which is obtained by ui × vi.

line(p, w): a line through p and parallel to vector w.

plane(p, w): a plane through p and normal to vector w.

surface_point({m: m∈M}): the surface fitting (interpolation) through the set of markers, M.

surface_offset(constr M): a revolved surface formed on marker set M.

intersect_line(M1, M2, w1 × w2): the intersection line of plane(p1, w1) and plane(p2, w2), and

w1 × w2 is the vector of this line.

78

From the above definitions, the basic set of functional marker/features of an operand

includes the following: a point, a line (including intersect line), and a surface (including a plane

as the simple case).

Inter-Functional Marker Constraints

These are geometric constraints that describe the dependencies between functional

markers within a solid operand, for example, position of functional point, orientation, feature

adjacency, etc. The intra-functional feature constraint describes the geometric shape, dimension,

and tolerance of the functional feature. For example, the length of a line, area of a surface, and

positional tolerance of a point. The geometric constraint set can then be defined as: (see Figure

26)

• on_line(M1, M2, w2): p1 lies on the line(p2, w2).

• on_plane(M1, M2, w2): p1 lies on the plane(p2, w2).

• parallel(M1, M2, w): w1 is parallel to w2 and (w1 • w2) = 1.

• parallel(M1, M2, -w): w1 is parallel to w2 and (w1 • w2) = -1.

• angle_w(M1, M2, θ): the angle between w1 and w2 is θ.

• dist(M1, M2, d): the distance from p1 to the projective point on plane(p2 , w2) is d.

• dist(L1, L2, d): the perpendicular distance between line L1 and line L2 is d.

79

on_line(M1 , M2 , w2) on_plane(M1 , M2 , w2)

u2

v2

p2

w2

M2

plane(p2 , w2)

M1
u1

v1

p1

w1

M1

u1

v1

p1

u2

v2

p2

w2

M2

parallel(M1 , M2 , w) parallel(M1 , M2 , -w)

u2

v2

p2

w2

M2
w1

M1

u1

v1

p1

angle_w(M1 , M2 , θ)

dist(M1 , M2 , d)

w1

M1

u1

v1

p1

u2

v2
p2

w2

M2

θ

u2

v2

p2

w2

M2

plane(p2 , w2)

M1
u1

v1

p1

d
p1'

u2

v2

p2

w2 M2

M1
u1

v1

p1

line(p2 , w2)

dist(L1 , L2 , d)

w1

M1

u1

v1

p1

u2

v2

p2

w2
M2

L1
L2

d

Figure 26 Inter-functional feature constraints representing geometric constraint set

4.1.2 Degree of Freedom: Kinematic Constraints

The degree of freedom of a solid material operand defines the allowable motions the

operand may undertake in the realization of a functionality operation. In kinematics, a free rigid

body has six degrees of freedom. However, the degrees of freedom of an assembled component

80

are reduced after spatial relationships are imposed. In other words, a spatial relationship can be

seen as a constraint used for confining kinematic degrees of freedom of related components. The

types of degrees of freedom which can result from spatial relationships are as follows: [53, 76]

• lin_n: linear translation along n axis.

• rot_n: rotation about n axis.

• cir_n: translating along a circle with n axis.

• plane_n, cyl_n, sph: translating along a planar, cylindrical and spherical surface

respectively.

• roll_lin_n: rolling along a corner.

The degrees of freedom of a solid operand are expressed as {degrees of freedom of

moving along the functional feature of relative coupling operand: degrees of freedom of moving

the operand with respect to itself}, where the relative coupling operand is fixed. In Figure 10,

the degrees of the freedom which remained after imposing aligned spatial relationship are {lin_z

:: rot_z}. When there is more than one spatial relationship assigned on the component, a rule-

based system is applied to determine the intersection of degrees of freedom. A detailed

description of these degrees of freedom reduction rules can be found in Liu. [53]

81

aligned(F1 , F2)
= on_line(M1 , M2 , w2) ∩ parallel(M1 , M2 , ± w)

w1

M1u1

v1 p1

u2

v2

p2

w2

M2

Figure 27 Aligned spatial relation specification example

4.1.3 Physical Constraint Set

This component of the solid operand includes the desired material physical properties of

the operand. This set in effect defines the physical composition of the solid. A knowledge of

this set of attribute can be used to infer the type of material suitable for the given functionality

task. The magnetic and optical properties of material are not included in this model. These

properties form part of the future extensions to this work. This set of attributes include the

following:

• Strength attribute: measures the stress (load per unit area – N/m2) the operand is able to

withstand under operating condition (includes tensile, compressive, torsion, and bending

stress). The components of stress are: proportionality limit, elastic limit, yield strength,

ultimate strength, and fracture stress. While all the above stress specifications are

component of the strength attribute in a realistic design example, most engineering solids

are expected to operate well within the yield limit.

82

Design deals with allowable stresses, or reduced value of strength. The allowable

normal stress (allσ) and the allowable shear stress (allτ) for ferrous and nonferrous

metals for various types of loading may be represented by: [77]

o Tension: yally SS 60.045.0 ≤≤ σ
o Shear: yall S40.0=τ
o Bending: yally SS 75.060.0 ≤≤ σ
o Bearing: yall S90.0=σ

Where, Sy is the yield strength of the selected material. The above equations may also be

applied to polymers and ceramics if the ultimate strength at the break and fracture

strength, respectively, are substituted for yield strength in the equations above.

Consequently, in this model, the strength attribute refers to the allowable stress limit,

which is well within the yield limit.

• Elasticity attribute:

o Axial and shear strains. Axial strain is the ratio of change in length to original

length (i.e.,
0

0

l
ll −

=ε).

o Poisson’s ratio (ν) relates the transverse strain (avgt ,ε) to the axial strain (avga,ε):

avgaavgt ,, νεε −=

• Ductility: measures the degree of plastic deformation sustained at fracture. Specified by

the percentage elongation (%EL) or (%EL) = %100
0

0 ×






 −

l
ll fr

 ; where lfr is the length

of the operand at fracture and l0 is the length of operand without load. Thus solids are

grouped into two based on their ductility: ductile solids (%EL ≥ 5%) and brittle solids

(%EL<5%).

83

• Density: this is a measure of mass per unit volume (kilograms per cubic meter – kg/m3)

• Surface characteristics: Tribology

o Surface Friction: force resisting relative movement between surfaces in contact.

� Force of static friction (Fs); Force of dynamic friction (Fk); and Rolling

friction (Fr).

o Surface Roughness: Centerline average or arithmetic average surface roughness

Ra is given by: ∑
=

=
N

i
ia z

N
R

1

1 , where zi is the height from reference line and N is

the number of height measurements taken.

o Wear rate (Wr): this is the volume of material lost from one surface, per unit

distance slid.

• Thermal characteristics:

o Thermal conductivity (Kt), unit - watts per meter-Celsius

o Thermal expansion coefficient (a), unit - (oC)-1

o Specific heat capacity (Cp), unit – J/(kg-oC)

• Electrical Properties:

Resistance (R) – Although this is temperature dependant, the temperature effect is

neglected in the functionality model developed in this work.

4.1.4 Material Type

Choosing the solid material is an important step in the design of a product. Being able to

exploit a material’s potential and characteristics is essential to ensuring that the best material is

84

used for a particular solid operand. Therefore knowing the properties of solid materials is

essential. Engineering materials include metals, polymers, composites, ceramics, and wood.

For each class of engineering material, wide ranges of types are available to a designer. For

example, in the metal class, we have iron and its derivatives, aluminum, copper, etc. Even

within a given type of metal, the property still varies depending on the grade of metal and

treatment (e.g. thermal treatment) the metal is subjected to. A broad classification of mechanical

solid material types is as follows:

• Metals:

o Ferrous metals: carbon, alloy, stainless, and tool and die steels.

o Nonferrous metals and alloys: aluminum, magnesium, copper, nickel, titanium,

super-alloys, refractory metals, beryllium, zirconium, etc.

• Plastics (Polymers): thermoplastics, thermosets, and elastomers.

• Ceramics: glass ceramics, glasses, graphite, and diamond

• Composite materials: reinforced plastics, metal-matrix and ceramic-matrix composites,

and honeycomb structures

• Wood: laminated, hard wood, etc.

Each type of material will have its own unique value for the following properties:

ductility, strength, elasticity, conductivity, etc. as shown in Figure 28.

85

Mechanical
Properties

Physical and
Chemical
Propeties

Solid Material

Strength
Ductility
Elasticity
Hardness
Fatigue
Creep

Toughness
Fracture

Density
Melting point
Specific heat

Thermal conductivity
Thermal expansion

Electrical conductivity
Magnetic properties

Oxidation
Corrosion

Figure 28 Material properties

The most suitable type of material for a particular solid material operand must satisfy all

the property set of the operand. Because of the diverse nature of engineering materials, the

functionality model developed in this work only makes provision for inclusion of the name of

the material assigned to a given operand. The specific material properties are not included in

this model and are expected to be obtained from a third party or engineering material reference

library/manuals. Once these properties are obtained, they should be tested against the target

operand material properties as defined in the attribute set of the operand.

86

4.1.5 Mass Properties

� Volume: 3-D Space occupied by solid operand. Computation depends on exact

geometry.

� Mass: Density x Volume: In Newton’s law of inertia, mass is a measure of a body’s

inertia – of its resistance to change in motion.

� Area: Computation depends on exact geometry.

� Moment of inertia (I): Computation depends on exact geometry. This is a rotational

analog of inertia; it depends not only on mass itself but also on the distribution of mass in

relation to the rotation axis. Unit – Kg.m2. Rotational inertia depends on the mass of a

body and on the distribution of mass about the rotation axis, and is given by:

for a body consisting of discrete masses, and by ∑= 2
ii rmI ∫= dmrI 2 for a continuous

distribution of matter.

4.1.6 Topology

During conceptual design, all solid operands assume a functionality bounding geometry

consisting of functional points/regions. The functional points are located on the surface of the

functionality boundary points. Functional points are equivalent to vertices, edges, or axis of

solid components. To define the bounding geometry, the functional points are joined together to

form a surface or wireframe of lines and end-points.

87

In this work, the initial product functionality is modeled using 2-D approach. This

approach allows us to demonstrate the concepts developed here, which can then be extended in

future to cover functionality modeling in 3-D.

Boundary Modeling (BM) Function:

BM functions are used to add, delete, or modify the lower entities of a solid, such as

vertices, edges, and faces, in order to manipulate it directly. Points are first created, then edges

are created by connecting the points, and finally surfaces are defined by the bounding edges.

Because of the tedious nature of this modeling process, its use in this work is restricted to 2-D,

in the X-Y plane.

Mref

M1

M4
M3

M2

Bounding
Edges Dimensional

Constaints

Figure 29 Boundary modeling in product conceptualization with functional points only

88

Mref

M1

M4
M3

M2

Bounding
Edges Dimensional

Constaints

R

Figure 30 Boundary modeling in product conceptualization illustrating use of functional

points (M1, M2, and M4), functional region (M3), and reference functional point (Mref)

The creation of 2-D bounding surface of a solid operand is illustrated in Figure 29 and

Figure 30. In Figure 29, only functional points are used. These functional points translate to

actual vertices of the bounding surface. These functional points are defined for the solid

operand by defining the dimensional constraints on the points with respect to the reference point

or to other existing functional points. The bounding surface is created by joining all the

functional and reference points to form a closed curve (i.e. surface). Instead of functional

points, a functionally active region might be used to define functionally relevant regions on the

solid operand. For example, in Figure 30, marker M3 is used to represent a circular region of

radius R on the solid operand. Such regions might be used to represent features such as holes,

slots, pockets, or some other features that are functionally essential for the proper working of the

operand. The bounding surfaces and curves are generated by joining the functional points /

regions to form the initial product form as shown in Figure 29 and Figure 30.

89

4.2 Energy Operand – Mechanical Energy Operand

Energy is the functionality operand that effects some work outcome. Energy may be

from mechanical, thermal, electrical, magnetic, acoustic, radioactive, chemical, biological,

optical, hydraulic, or pneumatic source. To demonstrate the concepts developed in this work, it

will be assumed that all the energy that impact mechanical product functionality is present in

mechanical form. For this assumption to hold, all energy sources (other than mechanical

energy) are first applied to an energy converter, which transforms that energy into a mechanical

form. Thus, energy converter (a specialized transform operation) is used as a primitive

operation in this work. (see Figure 31) This assumption makes the system modular and

extensible, each energy converter may easily be included in the system (as a functionality

component) with all the applicable laws and principles that govern the transformation process.

Input Energy Output Energy
ENERGY

CONVERTER

Other Energy Source Mechanical Energy Source

Other Energy Source Mechanical Energy Source

Figure 31 Mechanical energy converter

90

Some researchers [41] have considered energy as being composed of two components:

effort and its corollary. They stated that an effort is any component of energy used to

accomplish an intended purpose, while the corollary is a natural consequence of or

accompaniment of effort. This model however will not support the view of energy as an

operand in which its natural consequence can only be determined by the context under which it

operates. That is, other entities with which it interacts with. These other operands together with

the relevant relationships determine the context of the application. Hence, the definition of

energy operand follows the same pattern used in the material operand, by defining all its

attributes and nature. The effects of the operands (relationships) are considered under a different

section that discusses the modeling of operand interactions.

Mechanical energy is associated with the spatial displacement of a material operand

(machine/component) or the strain energy associated with the loading state of a material

operand. For example, application of force at one end of a linkage in a cam mechanism results

in a functional path being traced out at the other end of the linkage. Or the energy associated

with the rotation of the transmission shaft of a car. Two forms of energy operands are

associated with mechanical energy in the operation of mechanical systems. The operands are

FORCE and TORQUE operands as illustrated in Figure 32. FORCE is classified as a primary

operand as it is the primary energy associated with the functionality of mechanical systems.

Hence, FORCE is the primary mechanical energy source in mechanical system. TORQUE

operand on the other hand is secondary as it is derived from a FORCE operand. Thus the

availability of TORQUE presupposes the existence of a FORCE as the primary source. Hence,

TORQUE could by expressed in terms of the source force. The use of TORQUE as an

91

independent operand is for simplification of some complex interactions involving FORCE,

where rotational effect of force if of primary concern.

MECHANICAL
ENERGY

Torque Operand
(rotational)

Force Operand
(generic)Primary Operand Level

Secondary Operand Level

Figure 32 Mechanical energy operands

4.2.1 FORCE Operand

Force causes change in motion and/or change in the spatial relation of internal

components of an object (material operands) resulting in stress and strain. In mechanical

systems, varieties of forces are always acting on material operands. The individual forces acting

on an object is called interaction forces, because they always involve other objects interacting

with the object in question. For modeling and practical purposes, what matters is the net force

92

on an object, meaning the vector sum of all the interacting forces on an object. The effect of

force relevant to functionality modeling of mechanical devices will be considered in more detail

in Chapter 5, Functionality Relationships.

At present, physicists identify three basic forces – the gravitational force, the

electroweak force, and the color force. Each of these subsumes other forces once considered

distinct. There is still ongoing debate and research on the existence of a common unifying class

for all forces. A more detailed discussion on the subject is presented by Wolfson, et al. [78]

• Gravitational force: This attractive force acts between all matters. The most relevant

form of this force in mechanical devices if the attraction of all matters (material

operands) by earth’s gravitational force in the form of the weight of objects. Thus, all

components of a mechanical product, having mass exhibit this kind of force.

• Electroweak force: This class of force subsumes electromagnetism and the so-called

weak nuclear force. Virtually all the non-gravitational forces we encounter in everyday

life are electromagnetic, including contact forces, friction, tension forces, the forces in

your muscles, and the forces that hold ordinary matter together at the atomic and

molecular level. The weak force is less obvious, but is important in helping determine

which atomic nuclei are stable and which are radioactive.

• Color force: Originally called the nuclear force and referred to as the force between

individual protons and neutrons. However, protons and neutrons are composed of

simpler particles called quarks. The force between the quarks is called the color forces.

93

The unit of force is Newton. The data structure of the FORCE operand used in this work

is as shown in Figure 33. From the figure, it should be noted that a FORCE operand is modeled

by: FORCE {<source | kind> <mag, angle, point> <nature>}, where source defines the

source of force; kind defines the kind of force; nature defines the nature of force, while “mag” is

the magnitude of force; and angle is the rotation from the Cartesian axis, and point is the 3-D

coordinates of the point of application. Hence, the attributes of a FORCE operand is completely

defined by source, kind, mag, angle, point, and nature. However, at the beginning of the

design process (conceptualization) and functional definition, some of this information may not

be known and hence incomplete. The model is however defined by noting the unspecified

(unknown) attributes and neglecting them (or using default values / approximations) for any

intermediate reasoning or computation. As design progress, these attributes are defined.

94

FORCE
Operand

Kind

Attribute
Set

Non-
Contact

Contact

Magnitude

Direction

Point of
Applic.

Nature

Impact

Static

Sustained
(Steady)

Cyclic

Medium

Figure 33 FORCE operand model

a) Kind of Force

Although the three fundamental forces are at the heart of all that happens in the physical

world, in our modeling of FORCE as a functionality operand on a macroscopic scale, we do not

95

consider force at such a fundamental level – with the important exception of gravity. For the

functionality model, force is classified into two: contact force and action-at-a-distance force.

• Contact force: This is a force where one object exerts a force on another through direct

contact. Results from direct contact with another body. For example, the upward force

of a chair on a human body or the friction between two objects. An important

implication of this is the existence of the transmission medium that exacts the force on

the object.

• Non-Contact (Action-at-a-distance force): This is a force where the objects exert the

force through seemingly non-contacting objects. Bodies do not have to be in contact for

these forces to act. Examples of this class of force include gravitational forces, electric

force, and magnetic force.

b) Attribute Set and Vector Representation

This component of the FORCE operand defines the quantitative composition of force. A

knowledge of this set of attribute can be used to infer the impact or effect of the force on other

operands involved in the realization of a given functionality task. Since force is a vector

quantity, its set of attributes includes the following: direction, magnitude, and point of

application.

The projection of a vector on a line is called a component of the vector in the direction of

the line. In the rectangular coordinate system, these projections onto the major axis is called the

rectangular components of the vectors, and are denoted by Ax, Ay, and Az for the vector A. The

96

magnitude of a vector can be written in terms of the vector’s rectangular components. The

magnitude of vector A is given by:

 222|| zyx AAAA ++=

Similarly, the direction can be specified in terms of the rectangular components. The

angle between a force (A) and a line parallel to the x-axis is given by, 









= −

A
Ax1sinθ . The

representation of force operand using the unit vector convention enables the functionality model

of force operand to relate to the conventional design space in Cartesian coordinate system.

Two vectors defined to be equal if they have the same magnitude and the same direction.

This definition is bound to introduce some ambiguity in the modeling of force operand for

conceptual design systems. This ambiguity is resolved by also defining the point of application

(or the spatial relationship) the force operand has with the solid operand. This definition is

presented in Section 3.5, functionality relationships.

c) Nature

Any applied force may be classified with respect to time in the following ways:

• Static force – Force is gradually applied and equilibrium is reached in relatively short

time. The structure experiences no dynamic effects.

• Sustained force – Force, such as the weight of a structure, is constant over a long time.

• Impact force – Force is rapidly applied. An impact force is usually attributed to an

energy imparted to a system.

• Cyclic force – Force can vary and even reverse itself in sign and has a characteristic

period with respect to time.

97

4.2.2 TORQUE Operand

This operand is the energy that results from rotation or torsion of a functionality object –

solid material. In TORQUE energy operand, a component of the force causing rotation is

inclined and at a distance from the axis of rotation. For example, in the design of an automobile,

the designer may be interested in the transmission of a rotational energy through the car axle to

the wheels. On the other hand, in the design of a power screwdriver, a designer may be

interested in the transmission of rotational energy from the electric motor to the head of the

screw/bolt through the spindle. For example, in Figure 18, rotational energy is transmitted

through the shaft to the disc.

Transmission Shaft

Direction of rotation

Direction of
resisting load

Figure 34 Rotational energy in a rotating shaft

Although Newton’s second law, F = ma, governs all motion, a direct application of the

law to every particle in a rotating object would be terribly cumbersome. Instead, an analogous

law that deals with rotational quantities is developed to describe rotational effect of force.

98

Hence, TORQUE, which is a force analogy to rotational motion, is the effectiveness of a force in

bringing about changes in rotational motion. Torque depends on the applied force and on how

far from the rotation of the axis it’s applied. Effectiveness of the force also depends on the

direction in which it’s applied; application at right angles to the line from the rotation axis to the

force application point is most effective.

Based on the above considerations, torque (τ) is defined as the measure of the

effectiveness of a given force in producing a change in rotational motion – as the product of the

distance r from the rotation axis with the component of the force perpendicular to that axis. This

is given as:

τ = r F sin θ,

θ is the angle between the force vector and the vector r from the rotation axis to the force

application point. The unit of torque is N-m. Torque, twisting force, is the rotational analog of

force (or Newton’s second law) with corresponding law of inertia given as:

τ = Iα ,

Where I is the rotational inertia or moment of inertia and α is the angular acceleration.

The direction of torque (and corresponding angular velocity) is defined with the right-

hand-rule : if you curl the fingers of your right hand to follow the rotation, then your right

thumb points in the direction of the torque and angular velocity. This is illustrated in Figure 35.

In vector notation, torque is given by the cross product of the force (F) and the vector r from the

rotation axis of the force application point. Torque is defined by:

99

 τ = r x F

The result of the equation completely defines torque as a vector. The direction is

perpendicular to both vectors F and r. In modeling torque, it should be noted that both F and r

are expressed in the unit vector format in the rectangular coordinate system. Hence, torque τ is

also defined in the unit vector format by τ = τxi + τyj + τzk , where τx, τy, and τz are the x, y, and

z, components of τ respectively. The magnitude of torque is given by |τ| = τ = r F sin θ

F

r

Axis of
rotation

Direction of
rotation

τ

θ

Figure 35 Direction of torque is given by the right hand rule

For modeling purposes, the TORQUE operand has a structure similar to that of FORCE

operand. This structure is shown in Figure 36. Thus, the TORQUE operand model is described

by specifying the torque vector, source of force, axis of rotation, and nature of the torque. The

nature of the torque is directly related to the nature of the force that produces the torque. Hence,

100

the nature of torque may be static, cyclic, steady, impact, or some combination of any of the

four.

From the figure, it should be noted that a TORQUE operand is modeled by: TORQUE

{<source | kind> <mag, angle, axis> <nature> }, where source defines the source of torque;

kind defines the kind of torque; nature defines the nature of torque, while mag is the magnitude

of torque; and angle is the rotation from the Cartesian axis, and axis is the axis of rotation of the

torque. The kind attribute specifies whether the source force is a contact or a non-contact force.

The attributes of a TORQUE operand is completely defined by source, kind, mag, angle, axis,

and nature. However, at the beginning of the design process (conceptualization) and functional

definition, some of these information may not be known and hence incomplete. The model is

however defined by noting the unspecified (unknown) attributes and neglecting them (or using

default values / approximations) for any intermediate reasoning or computation. As design

progress, these attributes are defined.

101

TORQUE
Operand

Source of
Force

Attribute
Set

Action-at-a-
distance

Contact

Magnitude

Direction

Axis of
Rotation

Nature

Cyclic

Static

Sustained
(Steady)

Impact

Medium

Figure 36 TORQUE operand model

102

5.0 FUNCTIONALITY RELATIONS AND STATES

5.1 Functionality Relations

To accomplish a mechanical function, a functionality operation must define functionality

operand relationships and impose constraints on functionality operands, which may result in

some additional implications. The functionality operator accomplishes this. Thus, the operator

provides the needed intelligence that leads to the realization of a given task. A functionality

operator defines the relationship between operands in the performance of a functionality

operation. Hence, the operator defines how the attributes of the functionality operands are

related. This is illustrated in Figure 37.

OOPPEERRAATTOORR

OOPPEERRAANNDD 22

OOPPEERRAANNDD 33 OOPPEERRAANNDD 11

OOPPEERRAANNDD 44

Figure 37 Functionality operator linking four operands

For example, consider a case where two solid material operands are in rubbing contact.

The frictional coefficient and the surface wear rate, are some of the operators that related the

surface attributes of the two solids in sliding contact. The operands are the two solid materials

103

in contact: Operand-A, and Operand-B. The functional regions of interest are the two rubbing

surfaces. The other attributes that are relevant in this interaction are the surface characteristics

(which determines the coefficient of friction, µ) and the mass of the non-fixed operand

(Operand-A). The frictional force (F) between the two-sliding/rubbing surfaces is given by:

F = µ•mg,

where µ is the coefficient of surface friction that relates the two rubbing surfaces, m is

the mass of the movable SOLID operand, and g is the gravitational constant. In this work, the

operators are defined by equations in the form of functionality relationships.

 Operand-A:SOLID

Operand-B:SOLID

Surface:
Functional Region

fixed

force

mg

Plane-X

Figure 38 Solid operands in sliding contact

Other operators include spatial linkage operator, that must specify that the two surfaces

must maintain an against relationship with B fixed and A allowed to have a plane-x DoF.

Hence, the need to consider friction and wear-rate. The operator-operand-attribute listing (in

Figure 39) shows the relevant interactions in the example of Figure 38.

104

Operand Attributes Operators

Operand-A: Position (Internal constraints)

 Surface

 Mass Spatial (against)

Friction coeff. (µ)

Operand-B: Position (Internal constraints)

 Surface
(µ) Friction

Force (static
fric):

Magnitude+
direction

Figure 39 Operator-operand-attribute relation for sliding contact example

One important development in this work is the realization that operands only interact

through their attributes. Hence, the attributes are the contact points between operands. A

functionality relationship can assume any of the following forms: spatial; physical aspect;

technological constraints; or user preferences.

• Physical aspects: the physical processes (e.g. energy storage in a compressed

spring), interactions (e.g. friction on rubbing surfaces), properties or behavior of

something (e.g. plastic deformation or elastic property of materials);

• Spatial relations: location of objects in space (e.g. aligned relationship of two solid

operands);

• Technological constraints: tolerance (e.g. machining tolerance), surface finish, etc;

and

• User preferences: color, texture, etc.

105

It should be noted that complex functionalities could be formed by bringing together

smaller (basic) functions. This combination is realized by defining relationships between their

interacting operands. Sub-functionality operands that are involved in relationship or interaction

with other functionalities are called coupling operands. Sub-functionalities are also referred to

as primitives. They define how functionalities are combined to form compound functionalities.

They are equivalent to mating features in feature-based design. In defining the coupling

relationships, no causal relationship is assumed. Hence, a more generalized interaction can be

described for the coupling operands. Figure 40 depicts a compound functionality that is formed

from three primitives, A, B, and C. To form the compound functionality, primitive A is coupled

to B and C separately. This coupling is represented by the dashed lines. However, coupling is

only possible through functionality operand. This inter-primitive coupling through coupling

operands is illustrated in Figure 41. This figure also illustrates an inter-operand coupling within

each primitive structure. It is through this maze of coupling operations that it is possible to form

more complex mechanical functional structures. This coupling is defined through the inter-

operand coupling matrix relations.

106

Compound Functionality

A

C

B

Figure 40 A compound functionality showing inter-primitive interaction

Compound Functionality

C
OP(c1)

OP(c2)

B

OP(b1)

OP(b2)

OP(b3)

A

OP(a1)

OP(a2) OP(a4)

OP(a3)

Inter-primitive
coupling

coupling
operands

inter-operand
coupling

Figure 41 A compound functionality showing inter-primitive interaction between the

coupling operands

107

5.1.1 Coupling Bond (CB)

Engineering relations are constructed by specifying the functionality constraints and

relationships between operands, after each operand has been defined with its associated attribute.

Functional relationships are built between those attributes (including functional

markers/features) on the operands by attaching some sort of linkage. This linkage defines the

functionality engineering relations between operand and links separate functionalities together.

Since the primary relations of concern at this step are the coupling relations, the concept

of coupling bonds is introduced. A coupling bond (CB) is created once two coupling attributes

on different operands are selected and linked with each other. In addition, the coupling

conditions are attached during this linkage. The structure of coupling bonds is shown in Figure

42.

Coupling Bond

Coupling
ConditionCoupling Pair

Engineering
Constriants

Assigned Functional
RelationsDOFOperand 2Operand 1

Attribute Set 1

Functional
Points

Attribute Set 2

Functional
Points

Parent Functionality (2)Parent Functionality (1)

Figure 42 Functionality operand coupling bond

108

There are two dominant groups in one coupling bond: coupling pair and coupling

conditions. Coupling pair contains two coupling operands involved in the relationship. The

parental relation is used to record their parent functionalities. The functionality hierarchy and

the connectivity graph of the whole product can then be created based on these operand-to-

operand connection relations. From coupling operands, the system traces back what are their

original functionalities and inherits the implied attributes and constraints.

The coupling condition defines the nature of interaction between operands. It includes

the type of assigned functional relationships, required degrees of freedom (DoF) and some other

engineering constraints.

� The functional relationship specifies the required relations that must be maintained

between attributes of the interacting operands in order to satisfy the given

functionality. For instance, in the conversion of FORCE (F) to TORQUE (T), this

relationship is defined by the perpendicular distance (l) between the point of

application of force and the axis of rotation as defined in the following equation: T =

F x l.

� The DoF is the desired degree of freedom to be maintained by the involved operands

in order to remain functionally correct. The possible types of degree of freedom

include:

ª lin_n: linear translation along n axis (e.g. application of FORCE along an

axis).

109

ª rot_n: rotation about n axis (e.g. rotation of a car wheel (SOLID operand)

about an axle).

ª cir_n: translating along a circle with n axis.

ª plane_n, cyl_n, sph: translating along a planar, cylindrical and spherical

surface respectively.

ª roll_lin_n: rolling along a corner.

� Engineering constraints are the constraints imposed on the operand attributes and

relations to remain functionally correct. For instance, in the case of conversion of

FORCE to TORQUE example, if the perpendicular distance is constrained to be

within a certain limit (e.g. 3.80 cm ≤ l ≤ 5.25 cm), this will fall within the

engineering constraint coupling condition. Engineering constraints could also be

applied to attributes of operands. For example, the mass (m) of a solid operand could

be required to fall within a given limit (e.g. 15.25 g ≤ m ≤ 20.00 g). Other issues that

fall within this category are the tolerance allowance, and physical effect/implication

constraints.

The concept of CB is illustrated with the example in Figure 43, showing two blocks in

rubbing contact. The DoF on block B is fixed while block A is allowed to have a plane-X

degree of freedom. The other components of the coupling bond between the two operands

(Block A and Block B) are shown in Figure 44.

110

SOLID: Block A

SOLID: Block B

face A face B
Plane X-Y

F
(additional force)

W = mg

DoF: fix

DoF: plane X-Y

Figure 43 Two solid blocks in sliding contact

111

Coupling Bond:
SOLID contact

example

Coupling
ConditionCoupling Pair

Constraints:
surface :{flatness < 0.0001 mm}
geometric profile:
 {block A: solid block}
 {block B: solid block}
stress limit: { stress < 2000 N/m2}
strain: { strain < .002}
friction: {Fs < 2 N}
wear rate: {max rate < .0001 mm}

Functional Relations:
spatial: {planeA::planeB : against}
friction: {static: Fs = u . (W+F)}
wear rate: {Wr = KA . p . A}
stress: {P/A or (W+F) / A}
strain: { (l - l0) / l0 }

…...

DOF:
Block B: {fixed}

Block A: {plane-X}

Block BBlock A

Attribute Set:
(Block A attrib)

Functional
Points:

(contact planeA)

Attribute Set:
(Block B attrib)

Functional
Points:

(contact planeB)

Parent: NULLParent: NULL

Figure 44 Coupling bond for the two solid blocks in sliding contact

5.1.2 Representation of Functionality Relations

Functionality relations are defined as a set of active interactions between functionality

operands. This interaction is realized using coupling bonds. Given a set of operands (Oi) in a

functionality operation with an index, i. Each member of this operand set is given by:

oiq = {aiqs | aiqs ∈ Aiq}

Where

• i = functionality operation index

• q = functionality operand index

• Aiq = attribute set for functionality operand oiq

112

With the above definition of operand set, functionality relationship is defined by a

functional relationship set (Ri) as given in Equation 7.

Ri = {rijk(oij, oik) | oij ∈ Oi, and oik ∈ Oi}

Equation 7

Where

• Oi = set of operands in functionality operation i.

• rijk = coupling bond between functionality operands j and k.

• j, k = functionality operand indices

Since the coupling bond (rijk) defines the active relationships between the functionality

operands j and k, Ri is effectively a set of coupling bonds. The functionality operands (oiq) are

the interacting functionality operands (including material and energy operands and the coupling

operands in lower level functionality operation [i.e. sub-functionalities]). An operand can

interact with itself in what is defined as a recursive interaction/coupling. This interaction defines

all the internal of self-constraints imposed on the operand. That is rijj and rikk are the constraints

on the attributes of the operand j and k respectively. This extension allows us to provide a

unique means of mapping every relation to downstream design activities.

A matrix called the inter-operand relationship matrix is used to define the possible

interactions between each set of operand. The elements of the operand relationship matrices are

defined by domain experts and stored in the knowledge base of the designer system or at design

time by the designer. Each element rij is a set of relationships that hold for an interaction

113

between items on the ith row and jth column. Each column of the operand relationship matrix is

called an operand vector and it is used to derive the relationships of inter-item coupling in a

functionality operation. The derivation and operation of the operand vector is described below.

Table 4 Inter-operand relationship matrix.

Operand SOLID FORCE TORQUE

SOLID friction, DoF restriction,

force_transmission,

spatial relation

motion (acceleration,

displacement, impulse,

velocity); momentum;

friction; stress; strain.

moment; motion

(acceleration,

displacement, velocity);

momentum; friction;

stress; torsion.

FORCE resultant, orientation,

transmission, effect,

nature.

resultant, orientation,

effect, nature.

TORQUE resultant, orientation,

transmission, effect,

nature.

5.1.3 Derivation of Functionality Relations

Since functionality operations are accomplished through operand coupling, we can

define the set of relationships and constraints for functionality operation by deriving its coupling

relationships. To derive the relationships of the operand couplings, we define the inter-operand

coupling matrix corresponding to the functionality couplings.

X = inter-operand coupling bond matrix

114

In the X matrix, each element in the vector represents a set of valid relationships,

constraints, and implications required in the coupling of an operand to other operands. For

example, assuming we are transforming force to torque, we might define the relationship

between the input force and the output torque as T = F.l, where T = torque, F = force, and l =

perpendicular distance between the force and the axis (as the relationship between T and F).

In computer modeling, the relationship set is represented by a coupling bond matrix,

functionality coupling bond (CB) matrix, Xmxn. This functionality CB matrix is given by:



















=

mnmm

n

n

mxn

xxx

xxx
xxx

X

L

MMMM

L

L

21

22221

11211

Where,

xij = is the coupling bond between operands i and j.

Since a combination/interaction need to be defined between an operand and every other

operand, the number of columns and number of rows in relationship matrix are equal. Hence,

Xmxn is a square matrix of the functionality coupling bonds. It is also symmetric with xjk = xkj,

as they represent the same coupling. This is because no causal relationship is assumed in the

model, hence the operators are associative. The diagonal (x11, x22, …, xjj, … , xNN) are the

functional constraints imposed on the attributes of operands (e.g. maximum strength or

maximum mass) The functional (inter-operand) relationship is between the operands within the

same functionality operation.

115

The coupling bond has three components that constitute the coupling conditions: DoF,

relations, and constraints. The coupling bond is defined by including these three components in

the coupling bond equation as shown in Equation 8.

{ } ijijijijij ydcrx ⊗= ,,

Equation 8

Where

rij = relation between operands i and j.

cij = constraint on relation between operands i and j.

dij = degree of freedom on relation between operands i and j.








=

otherwise

jandioperandsbetweenexistcouplingif
yij

0

1

⊗ is an element multiplication, where given two matrices, [A] and [B};

[A] ⊗ [B] = [aij x bij], ∀ij, aij∈[A], and bij∈ [B].

The entire set of coupling bonds in a functionality operation can then be represented by

the coupling bond matrix as follows:

X = [xij], where i = 1, 2, 3, … , N; and j = 1, 2, 3, … , N

Given as,

R = [rij] and I = [yij]

 subject to, C = [cij], D = [dij]

116

X is called the coupling bond matrix, I the linkage matrix, R the relations matrix, C the

constraint matrix, and D DoF matrix. The coupling bond matrix is modeled by an object

representing the coupling bonds between operands.

In a full matrix notation, X is given by:



















NNNN

N

N

N

N

xxx

xxx
xxx

OP

OP
OP

OPOPOP

L

MOMM

L

L

M

L

21

22221

11211

2

1

21

Where:

OPk (k = 1, 2, .., N) are the functionality operands.

xij (i,j = 1, 2, …, N) are the coupling bounds between operand OPi and operand OPj.

I is a zero-one square linkage matrix representing the valid linkage interactions for the

given coupling operation. The I (linkage matrix) is derived by entering a one for each matrix

element where a valid coupling exists between the operands and a zero is entered otherwise.

The I matrix is symmetric and hence is modeled in a computer by representing the upper triangle

of the matrix by modifying the original definition of I as shown below:

117







 ≥
=

otherwise

jiandjandioperandsbetweenexistcouplingif
I ij

)()(

0

1

Because of the above assumption of symmetry and subsequent modification of I to an

upper triangular zero-one matrix, the coupling bond is also an upper triangular matrix as shown

below.



















NN

N

N

N

N

x

xx
xxx

OP

OP
OP

OPOPOP

L

MOMM

L

L

M

L

00

0 222

11211

2

1

21

R is the operand relations’ matrix defining all the valid cross-operand relationships and

implications between operands in the functionality operation. The entries in R matrix are defined

a priori (and stored in the system database or knowledge base) or as design progress by the

designer with some knowledge on the possible interaction between operands. During coupling,

only the relevant entries are selected from the knowledge-base and added to those defined during

design to form the relations matrix.

The size of the I matrix is determined by the number of interacting operands. For

example, consider the functionality primitive depicted in Figure 45. Since there are 3 interacting

operands, I is a 3x3 square matrix. The other variables in the equation are derived as follows for

the example.

118

Figure 45 Functionality primitive A

Primitive Functionality

OP1

OP3

OP2

The I matrix is derived by entering a one for each matrix element where a valid coupling

exists between the operands and a zero is entered otherwise. That is,







 ≥
=

otherwise

jiandjandioperandsbetweenexistcouplingif
I ij

)()(

0

1

Hence, the I matrix is given by:
















=

100
110
011

I

The R matrix is formed by pulling all the valid relationships in the system involving

operands a1, a2, and a3. Thus, R is given by:

119

 where R















=

33

23

13

32

22

12

31

21

11

R
R
R

R
R
R

R
R
R

R ij is the valid relationships involving operands i and j; i,j = 1,

2, 3.

The C matrix is formed by pulling all the valid constraints in the system involving

operands i and j; i,j = 1, 2, 3. Thus, C is given by:

 Where, C















=

33

23

13

32

22

12

31

21

11

C
C
C

C
C
C

C
C
C

C ij is the valid relationships involving operands i and j; i,j =

1, 2, 3.

The D matrix is formed by pulling all the valid DoF restrictions in the system involving

operands i and j; i,j = 1, 2, 3. Thus, D is given by:

 Where D















=

33

23

13

32

22

12

31

21

11

D
D
D

D
D
D

D
D
D

D ij is the valid relationships involving operands i and j; i,j =

1, 2, 3.

Thus, X matrix is given by:
















⊗
































































=

100
110
011

,..

33

23

13

32

22

12

31

21

11

33

23

13

32

22

12

31

21

11

33

23

13

32

22

12

31

21

11

D
D
D

D
D
D

D
D
D

C
C
C

C
C
C

C
C
C

ts
R
R
R

R
R
R

R
R
R

X

Equation 9

Note: the symbol “⊗” is an element multiplication operator (defined in Equation 8 on Page

116).

120
































































=

33

2322

1211

33

2322

1211

33

2322

1211 0

00
0,

0

00
0..

0

00
0

D
DD

DD

C
CC

CC
ts

R
RR

RR
X

Note that the matrix X in Equation 9 defines a set of coupling bonds that are involved in

the functionality operation. Thus, it gives the set of relationships, constraints, and DoF that must

hold in the inter-operand coupling for the functionality to achieve the specified task.

5.2 Functionality States

In accomplishing a given task, a functionality operation might be expected to transition

from one state to another. A state is an instant manifestation of the functionality object’s

condition in process of achieving the functional objective. This manifestation is described in

terms of the instantaneous values of the operand attributes and the instantaneous coupling

condition present in the functionality operation. As an illustration, the possible states of a brake

rotor are (assuming discrete states) shown in Figure 46. In the example, the brake rotor is

defined by the four distinct states they assume: brake idle; brake idle and wheel in motion; brake

engaged and wheel stationary; and brake engaged and wheel in motion.

121

brake idle

brake engaged &
wheel in motion

brake engaged &
wheel stationary

brake idle & wheel in
motion

Figure 46 Brake rotor states

Functionality states are important because they may be necessary in determining the

exact nature of coupling relations between operands. For instance, consider the pulley system

shown in Figure 47. The functionality of the system is accomplished when the support changes

from NO_LOAD condition to MAX_LOAD condition corresponding to the load resting wholly

on the support beam. This change in state is accomplished by having a spatial change in the

position of the loading component. In the case of MAX_LOAD condition, the functionality

operation has to contend with the stress-strain values imposed on the supporting beam. At the

same time, the tension (tug) in the rope is decreased.

122

Base

di
re

ct
io

n
of

 m
ot

io
n

direction of m
otion

direction of motion

pulley
system

loading
component

support

Figure 47 A pulley system

The state of a system may either be considered as continuous state or discrete state

depending on the nature of the transition path. In this work and in most engineering systems,

discrete approximations is assumed. This is necessary because of the complexity of some

continuous systems. Usually a numerical approximation technique is used for this

approximation. A discrete system generally approaches the continuous state if the discretization

interval (δ) is successively decreased, reaching continuous state at the limit δ → 0 (where δ is

the discretization interval).

The state of a functionality object is defined by considering the various possible values

its time-varying attributes might assume. For instance, the possible states of a load-bearing

123

structure (such as support beam in Figure 47) could range from NO_LOAD to MAX_LOAD

condition. It is important to note that the system state is defined by the instantaneous values of

attributes of its constituent components (operands). Consequently, the functionality state is

defined by considering the states of each individual operand. Hence, the state of a functionality

operand, q can be represented mathematically by a state set, Si as shown in Equation 10.

Si = {siq | siq ∈S}

Equation 10

Where i is the functionality operation index and siq is the state of operand q in

functionality operation i. Hence, operands may have more than one functionality state. The

functionality operand state is given by Equation 11.

 siq = {(aiqs, viqs) | aiqs ∈ Aiq, viqs ∈ V[aiqs] }

Equation 11
Where

Aiq = attribute set for functionality operand oiq

V[aiqs] = set of possible values (range) of attribute aiqs

In this work, attribute states are assumed discrete finite points including only upper and

lower values. Hence, each attribute can have only two states: upper bound and lower bound.

Consequently, for each operand, an array of value sets corresponding to each attribute is defined

during the design process. These states are used as evaluation parameters during the design

analysis and verification phases of product development.

124

In this work, the particular sequence or state transitions are neglected. Emphasis is

placed on a combination of states instead of the path (transition) taken to attain the state or

events that trigger the attainment of such state. Hence, states are modeled separately with

transitions (i.e. causes of change of state) neglected.

Consider a functionality operation consisting of three operands (A, B, and C) each with

only one state variant attribute. See Figure 48. If each operand can assume only two states:

UPPER and LOWER states, the total number of possible states in the functionality operation is

given by:

 Number of states = #SA * #SB * #SC

 Where

 #Si is the number of states in operand i

 Hence,

Number of functionality states = 2 * 2 * 2

 = 8 distinct states

The distinct states are listed in Table 5.

OPA

OPC

OPB

Functionality Operation

Figure 48 A three-operand functionality operation

125

Table 5 Listing of functionality operation states
 Operand A Operand B Operand C

State 1: L L L

State 2: L L U

State 3: L U L

State 4: L U U

State 5: U L L

State 6: U L U

State 7: U U L

State 8: U U U

*L = lower bound state and U = upper bound state

Generally, in a functionality operation with operands having binary state (UPPER and

LOWER limits) attribute value set, the number of possible system states is:

Number of states = 2A1 * 2A2 * … * 2An

 = where, A∏
=

n

i

Ai

1

2
i = attribute i, i is the attribute index.

A more general expression for the number of functionality states in a system with an

arbitrary number of states per attribute is given by:

126

 Number of states = where, i is the attribute index and A∏
=

n

i
AiS

1
i is attribute i , SAi is

the number of states of attribute Ai.

In designing a product, each operand must have at least one or more states defined.

However, in this work, a maximum of two states is allowed for each operand attribute.

5.3 Functionality Modeling Repository

To demonstrate the concept of knowledge reuse, a set of commonly used mechanical

functionalities are described. These mechanical functionalities are referred to as functionality

primitives (primitives for short). The primitives are BASIC mechanical functionalities located

at the lowest level abstraction in the hierarchical decomposition of complex mechanical

functionality operations. Each primitive performs a specific mechanical function that

contributes directly or indirectly (as in the case of sub-functions) towards the realization of the

overall product function.

While feature-based design is widely used in the industry and offers the possibility of

design re-use and creation of design libraries, it presupposes that the designer has already

accomplished the conceptual design phase and has already mapped certain functionality to

features. This assumption makes feature-based design inadequate for conceptual design (as it

assumes that the designer understands the relationship between function and form). To use the

127

tremendous advantage offered by modern computer tools to aid conceptual design, a more

promising approach of functionality-based design (FbD) is proposed.

The advantage of the approach developed in this research is that it offers a convenient

way for design reuse. This is because design intents can be modeled as functionality and stored

in the design libraries for future reuse. In addition, functionality operation may impose relevant

downstream design consideration upfront during the design process. Consequently, some

benefits of concurrent engineering, design for manufacturing / assembly (DFM/A), and design

for X (DFX) may be incorporated during the design conceptualization. For example, based on

the available machining centers or company standards, one can impose a certain level of

tolerance on the dimension of certain classes of operands such as SOLIDs.

The functionality-based design approach intends to achieve a goal similar to that of

feature-based design approach. A set of desirable attributes can be offered by use of

functionality primitive and functionality modeling knowledge reuse. It offers the following

convenient properties:

• Recurring product functionalities can be modeled as a primitive, and used as a repository

of reusable product knowledge that may be related to a particular form or geometric

pattern.

• Specific products can be modeled through their constituent functionality primitives,

providing a more natural basis of interaction with the designer than mere geometric

models by providing a direct relationship between form and function.

128

• Design and operational knowledge can be associated with functionality primitives, and

accessed to determine the feasibility and producibility of functionality and the associated

designed object or for planning its actual deployment.

Nine commonly used mechanical functions are described as functionality primitives that

may be deployed in a design repository system. These primitives are fundamental in nature and

may be used to build other complex functionality objects for mechanical devices. These

primitives are defined as “atomic mechanical functional element that operate on basic

mechanical concepts without the invocation of any other functionality operation”. The nine

functionality primitives described in this research are: transformation, transmission, joint, load

bearing, energy converter, frictional, offset, channel, and block. The definitions of these

primitives are summarized in Table 6. A more detailed description of the nine primitives is

given in Appendix B.

A subsequent combination of the functionality primitives and definition of their unique

relationships and interactions yields a more complex functionality operation that may be used to

construct any mechanical function. As an illustration (see Figure 49), a combination of offset

and load bearing primitives will yield the support function in a trolley. Additional refinement

of this support functionality might then include joint functionality to hold the corresponding

functionality artifacts together. Similarly, motion sub-functionality may be achieved by

combining force transmission and force-to-displacement transformation. A subsequent

combination of support and motion sub-functions will then yield a more complex function –

transportation function.

129

Table 6 Functionality models of commonly used mechanical product functionality

Primitive
Operation

Definition (Basic Form) Description

Transformation

 CA B

Converts one functionality operand to another, e.g., force to
torque or deformation.
A: Source Operand
B: Target Operand
C: Transform Operator: A-B interaction

Transmission

 C

BA

Conveys an operand from one point to another, e.g., force
transmission along a beam and torque transmission of a
pump spindle.
A: Source Operand
B: Target Operand
C: Transmission Operator: A-B interaction

Joint

CA B

Retains an absolute or relative position of functional
elements achieved by exerting a retentive force on entity
or/and resisting dissociating forces.
A: First Operand
B: Second Operand
C: Joint Operator: A-B interaction

Load bearing

B

C

A

A B
C

Bear loads exerted by mechanical operands to maintain the
equilibrium/stability of the mechanical elements.
A: Source Operand (Load)
B: Target Operand (Base)
C: Load Bearer Operator: A-B interaction

Energy
Converter CA B

Stores or transforms energy from one form to another.
A: Source Operand
B: Target Operand
C: Converter Operator: A-B interaction

Frictional
F

M
C1

B

A
C2

Describes frictional elements in mechanical systems.
A: First Operand Å C1
B: Second Operand Å C2
C: Friction Operator: A-B-C1-C2-M-F interaction

Offset A

B

C
A

C
B

Maintain a specified offset between entities by providing
obstruction to disallowed position.
A: First Operand
B: Second Operand
C: Offset Operator: A-B interaction

Channel

C

B

A

Provides a mechanical assistance to ensure that an entity
assumes a desired spatial location. Constrains displacement
along a pre-defined path, e.g., guide rails, chamfers for
assembly.
A is the channel, guide, or path enforcer.
B is the guided or channeled operand.
C is the channel Operator defining A-B interaction.

Block

B

C

A

Block: disallows non-permissible and expected
entrance/motions, e.g., provision of insulation in electrical
systems, guards in fans etc.
A: First Operand
B: Second Operand
C: Block Operator: A-B interaction

130

MOTION

TRANSMIT
(force)

TRANSMIT
(solid)

SUPPORT

OFFSET
LOAD

BEARING

TRANSPORTATION

Pull

Figure 49 Example of compound functionality in a cart

The idea of functionality design is that form need not be known at the start of design.

Only functions are needed. The product in Figure 49 is included to help the reader understand

the concept of compound functionality operation and functionality decomposition.

131

6.0 IMPLEMENTATION AND TESTING

Since the scope of this work is to develop a methodology to support functionality-based

design (FbD) in CAD systems, it is appropriate that a computer model is implemented to

validate and demonstrate the concepts proposed in this work. However, since the objective of

this work is to develop a model that is applicable to mechanical systems, it is necessary to

ensure that the computer implementation demonstrates all aspects of the functionality model as

is applicable to mechanical systems.

The implementation and testing is achieved by developing a functionality data model and

the associated computer tools that are then applied to the design of a real product – space-frame

sub-assembly. The following computer tools were developed in this work:

• Functionality modeling and definition tool.

• Functionality constraint imposition tool.

• Functionality data structure.

• Functionality data propagation mechanism.

6.1 Functionality Object Model

The physical realization of product functionality is hierarchical in nature. As illustrated

in Figure 50, product functionality can normally be realized by bringing together separate

entities of sub-functionalities and operands. Each sub-functionality accomplishes a specific

132

function that contributes towards the accomplishment of the overall function. The sub-

functionalities are in turn sub-divided into sub-functionalities and operands. The operand is the

lowest level of this hierarchical decomposition. Each operand has a specific functional purpose

that contributes directly or indirectly (as in the case of sub-functionalities) toward the realization

of the overall function. This hierarchical organization gives the functionality-modeling problem

a robust property that makes it possible to use object-oriented approach in functionality

representation.

Product
Functionality

Sub-functionality 1 Sub-functionality nSub-functionality 2 Operand 1 Operand mOperand 2

Sub-
functionality

1

Sub-
functionality

n

Sub-
functionality

2
Operand 1 Operand mOperand 2

Sub-
functionality

1

Sub-
functionality

n

Sub-
functionality

2
Operand 1 Operand mOperand 2

Level 1

. . .

Level K

Level 3

Level 2

.

.

. . ..
.
.

Figure 50 Product functionality decomposition

133

In this work, unified modeling language [79] (UML) is used to model product

functionalities. This method employs object-oriented approach to describe product functionality

as a collection of discrete objects that incorporate both data structure and behavior. The major

four aspects of object-oriented approach are: identity, classification, polymorphism, and

inheritance. Identity means that data is quantized into discrete, distinguishable entities called

objects. Each object has its own inherent identity. This implies that two objects are distinct

even if all attribute values are identical. Classification means that objects with the same data

structure (attributes) and behavior (operation) are grouped into a class. Each object is said to be

an instance of a class. Each instance of a class has its own values for each attribute but share the

attribute names and operations with other instances of the class. Polymorphism means that the

same operation may behave differently on different classes. A specific implementation of an

operation by a certain class is called a method. Inheritance is the sharing of attributes and

operations among classes based on a hierarchical relationship. A class can be defined broadly

and then refined into successively finer subclasses. Each subclass incorporates, or inherits, all of

the properties of its super-class and adds its own unique properties.

In this research, object models are used to describe the static structure of functionality

objects (operations) in a system and their relationships. The object model is graphically

represented with the object diagram. An object diagram is a graph whose nodes are object

classes and whose arcs are relationships among classes.

The class diagram of the functionality object model developed in this work is shown in

Figure 51. This object diagram represents the product-level functionality model. The

components of the functionality object model include functionality operation, form, operand set,

134

coupling bond set, and state. Taking this functionality modeling approach, a generic modeling

engine is developed to represent product functionality.

A quick comparison of this model with that of the product functionality decomposition

(Figure 50) will help to illustrate how the inheritance property of the Object Oriented

Programming System (OOPs) may be used. In mechanical systems design, assemblies typically

follow the same structure with components as objects. Each assembly inherits all the properties

of the components / sub-assemblies. Lack of a uniform progression has been one of the major

problems facing previous attempts by other researchers to model functionality. The components

of the functionality object model are described below.

135

+DefineAttrib()

-name
-ID
-OtherAttrib
-form_tag

OperandItem

+defineAttrib()

-name
-item#s

OperandSet

-11

-member operand1..*

+DefineAttrib()
-forceAttrib
FORCE:mechENERGY

+DefineAttrib()
-solidAttrib
SOLID:MATERIAL

+DefineAttrib()
-energyAttrib
mechENERGY:ENERGY

+DefineAttrib()
-torqueAttrib
TORQUE:mechENERGY

+define_couplingBond()

-name
-bond#s

CouplingBondSet

+define_relations()

-couplingPair
-couplingCondition

CouplingBondItem

-11
-member CB1..*

1

-relation 1

-timeVariantAttrib
State

-formIndex
-linkedGeometry

Form -#2
*

-#1
*

-#
3 *

-fxn_ID
-fxn_Name
-fxn_Type

FxnalityOperation

+define_attribVaues()

-ownerOpand
-ValueSet

attribute

-#11

-#2*

+extractAttrib_couplingOpand()

-sub_fxn_ID
-sub_fxn_Name
-couplingOperand

SubFxnalitySet

-1

*

-1

*

Figure 51 Functionality class diagram

136

6.1.1 Functionality Operation

The functionality operation class defines the mechanical task (function) to be realized.

Each functionality object model includes this class in its implementation. It acts like an object

header that provides a reference point for all operations. The attributes of the operation class

are: name, id, type, unit of measure, and functionality description.

Name and ID

The name attribute is the name of the function. It could be user assigned based on

practice of the specific industry or company. To enhance the re-use of product functionality

knowledge, the naming convention should follow a well-defined convention in the

industry/company. For instance, in functionality primitive definition, the keyword is the

functionality operator followed by the associated operands. This is also a good place to apply

some of the naming conventions proposed by previous researcher (24) for example use of words

formed from noun+verb. In the functionality design repository, this convention is followed

where the verb is the operator and the noun is composed of the key operands. For instance,

consider the function named force_torque_transform. This performs a transformation function

that operates on force to produce torque.

The id attribute is a unique identifier for the functionality operation. This is the handle

used to reference an operation by other entities (such as solid models and analysis models) in a

CAD design model. Every functionality operation in a product must have its own unique id.

Type

The type attribute is used to denote the functionality category that the function belongs

to. It defines a super-class for the functionality. As an illustration, the functionality primitives

137

belong to the following types: transformation, transmission, joint, load bearing, energy

converter, frictional, offset, channel, and block. A functionality that is defined as an object of a

class inherits all its attributes hence makes modeling a lot easier.

This is used to define as a new class that extends or uses (duplicates) the capability and

attributes of an existing class. It invokes the use of an existing functionality object model to

modify its attributes and/or behavior by adding new operands, new sub-operations, or

modification of their existing attributes. The selection of a functionality type invokes and

constrains some of the functionality attributes and behaviors. Functions with similar attributes

invoke similar constraints and considerations. For instance, the selection of a transmission

functionality class will invoke and constrain all identifiers as described in the transmission

primitive object.

The type notation is used to build reusable functionality models. For examples, it could

form a repository of re-usable design knowledge base. A system user can create custom

functionality classes that are derived from the existing functionality. Thus, an extension of the

existing behavior and attribute of the functionality library is possible. If no type is provided in a

functionality operation object, this attribute is blank (empty) and implies that a new or

generative operation is being defined.

6.1.2 Operand Set

This is a set of all the functionality operands that are used in the functionality model.

These operands are distinguished from other operands that do not have a child-parent

relationship with the functionality operation. These other categories of operands include the

138

coupling operands that are part of other sub-functionality operations. An operand set is given

by:

OPERANDS: {A<attrib A>, B<attrib B>, C<attrib C>, … , K<attrib K>}

Where,

A, B, C, …, K are individual operands; and

<attrib i> is the attribute set of operand i.

Each operand provides a reference index attribute (form_tag) that is used to link it to

specific geometric entities in the CAD solid model. This tag is included in the XML data that is

propagated to downstream design activities and used for design verification and functionality

analysis.

Based on the scope [*] of this work, operands are grouped into two categories: material

(SOLID) and energy (FORCE and TORQUE).

Operand Class

{










TORQUE
FORCE

mechENERGY

SOLIDmaterial

The additional operand-specific attributes as described in Chapter 4 are:

* The scope of the operand modeling developed in this work is discussed in Chapter 4.

139

SOLID {FM, DoF, PyC, MP, MT},

Where

FM is the set of functional positional markers;

DoF is the required degree of freedom of operand;

PyC is the set of physical constraints on the operands;

MP is the set of mass properties on the operands; and

MT is the material type constraint.

FORCE {<source | kind> <mag, angle, point> <nature>},

Where

source defines the source of force;

kind defines the kind of force;

nature defines the nature of force,

mag, angle, and point, are the magnitude of force; the rotation from the

Cartesian axis and the 3-D coordinates of the point of

application of the force respectively.

Similarly, TORQUE is modeled by:

TORQUE {<source | kind> <mag, angle, axis> <nature>},

Where

source defines the source of force;

kind defines the kind of force;

nature defines the nature of force,

mag, angle, and axis, are the magnitude of force; the rotation from the

Cartesian axis, and the axis of rotation of the torque respectively.

140

6.1.3 Sub-Functionality Set

The sub-functionality set defines the collection of other related functionality operations

that interact with the function. This is used to link functionality cases where a function will

invoke other cooperating functions in order to accomplish its objective. For example, a friction

reduction functionality object might be invoked by a motion functionality operation to reduce

friction between moving parts / solids. This linkage cooperation is used to realize the

hierarchical structure of a functionality object as shown in Figure 50.

Interaction specifies the cooperation among the entities while the functional invocation is

used to actually instantiate the inclusion of the desired functionality object together with all it

attributes. The coupling operand is used to define the actual sub-functionality operand that

interacts (or interfaces) to the main functionality operation. The coupling operand includes the

attributes and states that are used in the coupling bond.

6.1.4 Form

This describes any prior form or concept associated with a given functionality model.

This approach is used to store information on physical embodiment or conceptual form

associated with a predefined functionality operation. The formIndex attribute is the index of the

form while linkedGeometry is the actual linkage to the instance of the linked form.

141

6.1.5 Coupling Bond (CB) Set

The coupling bond class defines the set of operators involved in the functionality

operation. This is a collection of all the active relations and constraints imposed on the

functionality operands (including the coupling operands of the sub-functionality objects). The

CB class defines the context of operation and models the what-if and casual effects (input-

outputs) between operands.

6.1.6 States

This is a class of all the allowable distinct time-variant operand attribute combinations in

the functionality operation. The state class represents the time-variant attributes of the

functionality object. This class associates each time-variant attribute to an operand and defines

the feasible value range. This feasible value range is defined by the valueSet attribute.

6.2 Computer Implementation

The modeling and reasoning concepts proposed in this research are implemented for

Pegasus, [80,81] an e-Product design and realization platform. Pegasus system is a collaborative

product design environment that allows for customers, designers, engineers, and other

stakeholders to participate in product design. It provides a scalable, flexible, and efficient

collaborative product design platform, which enables different stakeholders of design to work on

product development concurrently. Various computational engineering tools make certain

142

services available to other design participants in a network-based distributed environment. These

tools are called service providers. The services that are provided by different engineering tools

are published by a service manager, and are available within this distributed environment. The

inclusion of functionality model in Pegasus will allow remote collaborators in a product design

to remotely specify and propagate their functionality requirements to other remote collaborators

and downstream design activities / tools.

An interactive graphic user interface (GUI) is developed in this research to serve as the

designer’s interface during product design. This interface ensures that a human oriented

description of the function (specifications – preferences, constraints, and needs) is translated into

the appropriate functionality data structure for reasoning and propagation in a computer system.

The functionality-based design interface tool is implemented in computer system using

Microsoft Visio 2002 graphics engine. [82] The implementation uses an object-oriented data

structure for the representation and propagation of functionality as design constraints. This data

structure serves as an interface during the functional requirement definition phase of design. It

is used to capture the designer’s intent (functional requirements) during the conceptual design

phase.

The modeling scope of this computer implementation is limited to functionality

operations that can be modeled and conceptualized in two-dimensional coordinate system. The

2-D models developed in this functionality engine are converted to 3-D solid models in CAD

systems. The computational tools developed in this work include:

� Functionality Definition Interface and Tool Kits

� Functionality Object Model

� Data Representation in XML

143

A more detailed description of the various computational tools is provided in the

following sub-sections.

6.2.1 Functionality-Based Design Procedure

The implementation of functionality-based design procedure in a CAD environment

involves four distinct steps. The flow chart for this functionality-based design procedure is

shown in Figure 52. A more detailed description of the activities involved in each step is

described in the remainder of this section.

1) Problem definition and specification

This is the design task identification step. It involves the identification of the need and

design task that a product is to accomplish. Hence, the inputs to the system include the

perceived needs in the form of problem statements, constraints, and preferences. It is important

that the designer identify all the needs that should be realized by the system. This is necessary

because any need that is neglected at this stage cannot be captured by the functionality model

and hence will not be realized by the final design. Example of the problem identification might

be the identification of need for a means of transforming a linear motion into rotational motion

as in a slider-crank mechanism of an internal combustion engine of a car.

144

START

Define Problem

Perform Functional
Requirement Analysis

Perform Functionality
Modeling

Propagate Functionality
Model to Detail Design

System

Figure 52 Functionality-based design flow chart

2) Functional requirement analysis

At this stage, the design tasks and needs identified in step 1 are mapped into functional

requirements that the designed product must have to perform successfully. This mapping is

illustrated in Figure 53.

145

Design task
or

Need

Functional
Requirements mapping

Figure 53 Mapping from design task to functional requirement

 The designer should at this stage ensure that all the known factors that might influence

the product are clearly identified. Functional requirement analysis leads to the identification of

the functional elements necessary for the realization of the design task. That is this step

identifies the functional composition necessary for the task. The specific items identified at this

stage include:

� The functionality structure and hierarchy.

� Required functionality operands and their corresponding attributes including functional

markers.

� Any required sub-functionality operations.

� The nature of interaction between operands.

� Functional constraints.

146

3) Functionality Modeling

In the modeling step, the functional requirements identified during the analysis phase are

translated into object instances in the functionality model. Hence, the identified operands and

their corresponding attributes are modeled in a computer system. The inter-operand interactions

are defined as relations using operand-coupling bonds. In building the functionality model, the

designer is made to consider some factors (such as operand attribute) that may have been

neglected during functional requirement analysis. The mapping from “functional requirement”

to functionality model is illustrated in Figure 54.

Functional
Requirements

Functionality
Model

mapping

Figure 54 Mapping from functional requirement to functionality model

4) Propagation of functionality model

The model developed in step 3 is now represented in an XML data file (forming what is

called the functionality signature). This XML file is then propagated to the detailed design

147

phase, where the complete solid CAD model is developed and then evaluated against the

functionality constraints embedded in the XML data file.

6.2.2 Functionality-Based Design (FbD) Architecture

The functionality flow diagram for the evolution of design in an FbD design environment

is shown in Figure 55. The input to the system is functional specification in the form of problem

statement, constraints, and preferences. These inputs are used in the functional definition and

modeling of the product functionality. At the functionality modeling stage, the designer is

allowed to define all the functionally relevant attributes of the product. Such description

involves the specification of the known operands, operators, and coupling bonds involved in the

functionality operation.

The output of the functionality modeling stage of the FbD system is the functionality

signature. The functionality signature consists of: operand set and coupling bond set together

with all the constraints, relations, and required degrees of freedom. The signature also contains

a pointer or a link to any proposed geometric form defining or/and satisfying the given

functionality constraints or corresponding to specific operands in the model. These geometric

links are embedded in the form of an XML tag pointing to the CAD model represented by the

functionality component. Additional extrinsic constraints may also be imposed on the

functionality model by other factors external to the functionality object. These constraints might

include some technological and physical restrictions on possible values a functionality parameter

might assume.

148

Functionality Modeling

Functional R
equirem

ent A
nalysis

Preferences

Problem

Constraints

Form Conceptualization

Form
Generation

Form
knowledge- base

Concept
Evaluation

Creative
Graphics

(GUI)

Detailed
Design

Design
Verification

Functionality Signature

Conceptual form

Detailed form

A B

+DefineAttrib()

-name
-ID
-OtherAttrib
-form_tag

OperandItem

+defineAttrib()

-name
-item#s

OperandSet

-11

-member operand1..*

+DefineAttrib()
-forceAttrib
FORCE:mechENERGY

+DefineAttrib()
-solidAttrib
SOLID:MATERIAL

+DefineAttrib()
-energyAttrib
mechENERGY:ENERGY

+DefineAttrib()
-torqueAttrib
TORQUE:mechENERGY

+define_couplingBond()

-name
-bond#s

CouplingBondSet

+define_relations()

-couplingPair
-couplingCondition

CouplingBondItem

-11
-member CB1..*

1

-relation 1

-timeVariantAttrib
State

-formIndex
-linkedGeometry

Form -#2
*

-#1
*

-#
3 *

-fxn_ID
-fxn_Name
-fxn_Type

FxnalityOperation

+define_attribVaues()

-ownerOpand
-ValueSet

attribute

-#11

-#2*

+extractAttrib_couplingOpand()

-sub_fxn_ID
-sub_fxn_Name
-couplingOperand

SubFxnalitySet

-1

*

-1

*

Figure 55 Functionality-based design flow diagram for the evolution of design

The linked concepts and artifact describes any prior form or concept associated with a

given functionality description. This approach is used to store information on physical

embodiment or conceptual form associated with a predefined functionality operation. When

new products are designed using functionality-based approach, the design (conceptual form /

artifact) and the associated functionality description are stored in the functionality knowledge

base. These descriptions form part of the design repository of reusable designs that may be used

in future functionality reasoning.

149

The functionality signature is propagated to the form conceptualization and detailed

design phases. This signature serves as our design objective and is a standard against which all

design proposals must be evaluated. Such functionality model may now be used in the

conceptualization of design parameters to satisfy the functionality constraints. In the detailed

design phase, the constraints are used to evaluate design proposals to ensure that they satisfy the

original product functionality. Hence, an automated and transparent functionality verification of

designs is possible.

In an intelligent design environment, the functionality signature is used to retrieve

acceptable design structures from the knowledge base during the form generation stage. It

presents a template for matching functions to stored knowledge when available. Otherwise, they

serve as a trigger flags signaling the geometric models that need to be defined or associated to

functionality entities. They may also be used in the transformation of functionality

representation to a creative graphic (wire-frame) representation to aid the creativity of the

designer. This concept is illustrated in Figure 56 for a shaft transmission example Figure 56(a).

Figure 56(b) illustrates the use of wire-frame model to represent the transmission shaft example.

In the figure, points A and B are the functional markers while the line A-B represents the

transmission axis.

Transmission Shaft

Direction of rotation

Direction of
resisting load

A B

Functional element

(a) (b)
Figure 56 Sample transmission design

150

6.2.3 XML Functionality Data Format

XML stands for EXtensible Markup Language. Tags enclosed in “<” and “>” characters

are used to define the structure and data elements of an XML text or string. These tags are not

predefined in XML. Hence, one is required to define custom tags for new implementations.

XML uses a Document Type Definition (DTD) or a Schema to describe the data. A DTD or

Schema is designed to be self-descriptive.

The primary and sole purpose of XML is to carry data. XML was designed to describe

data and to focus on what data is. It is created to structure, store, and to exchange information. It

is a cross-platform, software and hardware independent tool for transmitting information. This

makes it particularly applicable to represent functionality data that may be exchanged between

different CAD platforms and systems.

The following example is an XML description of an operand attribute, mass.

<?xml version="1.0" encoding="ISO-8859-1"?>
<attribute>

<name>mass</name>
<unit>kg</unit>
<value>37.25</value>

</attribute>

With XML, data can be stored in separate XML files and exchanged as texts between

incompatible systems. Since XML data is stored in plain text format, it provides a software-

and hardware-independent way of sharing data. This makes it much easier to create data that

different applications can work with. It also makes it easier to expand or upgrade a system to

new operating systems, servers, applications, and new browsers. In the CAD world, designer

151

packages contain data in incompatible formats. One of the most time-consuming challenges for

developers has been to exchange data between such systems. The use of XML data format in

functionality representation and propagation can greatly reduce this complexity and create data

that can be read by many different types of applications. Hence, help to overcome inter-

operability problems associated with traditional CAD systems.

Plain text files can be used to store data XML formatted functionality information in

databases and also be used in a collaborative design environment where data is transmitted to

distributed design participants at remote locations.

a) XML Syntax

The syntax rules of XML are very simple and very strict. XML documents use a self-

describing and simple syntax. The first line in the document - the XML declaration - defines the

XML version and the character encoding used in the document. In the above example on

attribute representation, the document conforms to the 1.0 specification of XML and uses the

ISO-8859-1 (Latin-1/West European) character set.

The first tag in an XML document is the root tag. In the above example, the next line

describes the root element of the document (like it was saying: "this document is an attribute"):

<attribute>. All XML documents must contain a single tag pair to define the root element. All

other elements must be nested within the root element. All elements can have sub elements

(children). Sub elements must be correctly nested within their parent element. The next four

lines describe four child elements of the root (name, unit, and value). In XML, all elements must

have a closing tag. In the example, the last line defines the end of the root element: </attribute >

152

An XML Parser is used to read and update - create and manipulate - an XML document.

Loading an XML files into the parser extracts the data embedded in the XML file. A function

(code) written in VBA is used to accomplish the parser function. This parser function is used to

perform both read from and write to file operations.

b) Functionality XML data format

The XML schema for the functionality model is listed below: A brief description of each

tag is given below.

<?xml version= "1.0" ?>
<!-- Pegasus Functionality Definition !-->
<functionality-operation>
 <info></info>
 <opand-set></opand-set>
 <state></state>
 <coupling-bond-set></coupling-bond-set>
 <sub-fxn-set></sub-fxn-set>
 <form></form>
</functionality-operation>

The XML declaration
The first line in the document (<?xml version= "1.0" ?>) is the XML declaration. It

defines the XML version used in the document. In the functionality model above, the document

conforms to the 1.0 specification of XML. The statement enclosed within “<!--“ and “!-->” are

comments.

The root tag
The first tag (<functionality-operation>) is the root tag. It describes the root element of

the document (like it was saying: "this document is a functionality operation"). It begins the

definition of an instance of the functionality model in XML. The last line defines the end of the

153

root element: </functionality-operation>. It marks the end of the XML data of the functionality

operation. All the other information concerning the functionality operation must be enclosed

within the opening and closing tags.

The info tag
This tag (<info></info>) contains the general information about the functionality

operation. This information consists of: id, name, type, unit, and description of the functionality

operation. The schema for this information is shown below.

Functionality information XML Schema:

<info>
<id></id>

 <name></name>
 <type></type>
 <unit></unit>
 <description></description>
</info>

The opand-set tag
This tag (<opand-set></opand-set>) contains the set of operands included in the

functionality model. Information about each operand is contained inside its own operand

opening and closing tags: <opand></opand>. Operand specific information include: opand-id;

opand-name; opand-type; opand-form-tag; opand-description; and attrib-set (for solid, this

includes functional markers, physical property attributes, mass property, DoF, and mass

properties). The schema for this information is shown below.

154

Functionality operand set XML Schema:

<opand-set>
 <opand>
 <opand-id></opand-id>
 <opand-name></opand-name>
 <opand-type></opand-type>
 <opand-form-tag></opand-form-tag>
 <opand-description></opand-description>
 <attrib-set>
 <attrib-name></attrib-name>
 <attrib-value></attrib-value>
 </attrib-set>
 </opand>

 <opand>
 </opand>
</opand-set>

The state tag
This tag (<state></state>) contains information on the possible state of the functionality

operands.

Functionality state XML Schema:

<state>
 <opand-attrib>

 <value-set>
 <lower> </lower>
 <upper> </upper>
 </value-set>
 </opand-attrib>

</state>

The coupling-bond-set
This tag (<coupling-bond-set></coupling-bond-set>) contains information on the

coupling bond set of the functionality operation.

155

Functionality coupling bond set XML Schema:

<coupling-bond-set>
 <coupling-bond>
 <id></id>
 <name></name>
 <type></type>
 <form-tag></form-tag>
 <description></description>
 <pair>
 <opand-1>
 <id></id>
 <name></name>
 <coupling-attrib-set>
 <attrib-name></attrib-name>
 </coupling-attrib-set>
 </opand-1>
 <opand-2>
 <id></id>
 <name></name>
 <coupling-attrib-set>
 <attrib-name></attrib-name>
 </coupling-attrib-set>
 </opand-2>
 </pair>
 <condition>

<fxnal-rel-set>
<f-relation>

<id></id>
<factor-1></factor-1>
<rel></rel>
<factor-2></factor-2>

 </f-relation>
 </fxnal-rel-set>
<fxnal-constr-set>

<f-constr>
<id></id>
<factor></factor>
<rel></rel>
<const></const>

 </f-constr>
 </fxnal-constr-set>

 <dof-set>
 <dof>

156

 <id></id>
<type></type>

 <ref-frame></ref-frame>
 </dof>
 </dof-set>
 </condition>
 </coupling-bond>

 <coupling-bond>
 </coupling-bond>
</coupling-bond-set>

The XML representation of the functionality markers (POINT, LINE, and ARC) is

shown below.

Functional Markers XML Schema:

<fxnal-marker-set>
 <f-point>
 <id></id>
 <name></name>
 <x></x><y></y><z></z>
 </f-point>
 <f-line>
 <id></id>
 <name></name>
 <type> fixLen or infLen </type>
 <begin>
 <x></x><y></y><z></z>
 </begin>
 <end>
 <x></x><y></y><z></z>
 </end>
 <side>
 <lS1></lS1>
 <lS2></lS2>
 </side>
 </f-line>
 <f-arc>
 <id></id>
 <name></name>

157

 <type> circ or elsp </type>
 <begin>
 <x></x><y></y><z></z>
 </begin>
 <end>
 <x></x><y></y><z></z>
 </end>
 <bow-dim></bow-dim>
 <side>
 <aS1></aS1>
 <aS2></aS2>
 </side>
 </f-arc>
</fxnal-marker-set>

The sub-fxn-set tag
This tag (<sub-fxn-set></sub-fxn-set>) contains information on the sub-functionality

operations included in the functionality operation.

Functionality sub-functionality operation set XML Schema:

<sub-fxn-set>
 <sub-fxn>
 <fxn-id> </fxn-id>
 <fxn-name> </fxn-name>
 <coupling-opand>
 <opand-id> </opand-id>
 <opand-name> </opand-name>
 <opand-type> </opand-type>
 <opand-form-tag> </opand-form-tag>
 <opand-description> </opand-description>
 <opand-attributes>
 <attrib-name> </attrib-name>
 <attrib-value> </attrib-value>
 </opand-attributes>
 </coupling-opand>
 </sub-fxn>

 <sub-fxn>
 </sub-fxn>
</sub-fxn-set>

158

The form tag
This tag (<form></form>) contains information that links the functionality operation

model to a specific CAD geometric model.

Functionality form XML Schema:

<form>
 <tag></tag>
 <geometric-index></geometric-index>
</form>

6.2.4 Graphic User Interface and General Capability

The Graphic User Interface (GUI) is implemented in a customized Microsoft Visio 2002

environment. A customized functionality drawing template was created as a model drawing for

functionality objects. This template includes the necessary functionality stencil containing

master shapes for the various components of the functionality-based design process. Stencils

were developed to automate the various activities involved in definition of functionality model.

Most of the drawing activities were automated by programs written in Microsoft Visual Basic

for Application (VBA).

A stencil is like a software library in which one can collect the shapes you build for later

reuse. Masters are customized shapes stored in a stencil for future reuse. A master is a shape,

multiple shapes, a group, or an object from another application that is saved on a stencil, which

can be opened in other drawings. The master represents basic functionality elements such as

operands and coupling bond. Connections and functional marker shapes are also saved as

159

masters. When a designer drags a master from the stencil onto a drawing page, the Visio engine

creates a copy of that master on the drawing’s document stencil and creates an instance of the

master on the drawing page. An instance is linked to the copy of its master on the document

stencil and inherits its behavior and appearance from that master. Because a stencil contains the

shapes from which users of the functionality solution will construct a drawing, it is a primary

user interface element in this drawing solution.

A template opens particular functionality stencils and specifies page settings, layer

information, style, shapes, pre-drawn elements and functionality macros, which makes it simple

to deliver a custom solution to users.

To develop a functionality model, the designer opens the customized Visio functionality

template, which brings up the basic functionality stencil containing all the basic modeling

objects as master shapes. These set of masters in the stencil are called the functionality toolkit

as they provide the basic tools needed to model product functionality. On startup of the

functionality package, a user interface containing the initial toolset similar to that shown in

Figure 57 is displayed on the screen. In the case of a new design, the dialog box shown in

Figure 58 is also displayed to collect function –level information such as name, type,

description, unit of measure, and an internally generated functionality operation ID. The

components of the various functionality stencils are described below.

160

Basic functionality
Stencil

Solid Operand
Stencil

Functionality
modeling drawing

page

Page name

Functionality components:
Master shapes

Figure 57 Functionality modeling interface using Microsoft Visio

161

Figure 58 Functionality operation start-up definition dialog box

a) Basic Functionality Stencil

The basic functionality stencil is used to define the operands, coupling bonds, states, and

sub-functionalities that make up a functionality operation. The behavior of each of the

component is determined by the VBA codes embedded in the basic functionality stencil. For

instance, double clicking or dropping a master from the stencil will instantiate an action in the

modeling of the functionality operation. Some of the masters such as operands also trigger

events that results in the addition or/and opening of a detailing page for the clicked operand.

Each of the masters in this stencil also has its own unique user form to enable customization of

the properties of the corresponding functionality component. A brief description of each of the

basic functionality operand is listed in Table 7.

162

Table 7 Summary of the master shapes in the basic functionality stencil

Master Symbolic Shape Description
Solid Operand
master

SOLID OPAND

Solid

• Represents an instance solid of operand in the
functionality model.

• Double clicking this object brings up the
operand detail page corresponding to this solid.
It also opens the appropriate toolkit (solid
operand stencils) needed for the editing.

• The definition dialog box (shown in Figure 64)
is also opened to guide the user in the creation
of the solid operand.

Force operand
master

FORCE OPAND

Force

• Represents an instance of force operand in the
functionality model.

• Double clicking this object brings up the
operand detail page corresponding to this
force. It also opens the appropriate toolkit
(energy operand stencils) needed for the
editing.

• The definition dialog box (shown in Figure 65)
is also opened to guide the user in the creation
of the force operand.

Torque operand
master

TORQUE OPAND

Torque

• Represents an instance of torque operand in the
functionality model.

• Double clicking this object brings up the
operand detail page corresponding to this
torque. It also opens the appropriate toolkit
(energy operand stencils) needed for the
editing.

• The definition dialog box (shown in Figure 66)
is also opened to guide the user in the creation
of the torque operand.

Coupling operand
master Coupling Bond

• Represents an instance of the coupling bond in
the functionality model.

• Double clicking this object brings up the
coupling detail page corresponding to this CB.

• The definition dialog box (shown in Figure 67)
is also opened to guide the user in the creation
of the coupling bond.

• The two operands to be coupled are then
selected in the CB user form interface.

• In addition, all the coupling attributes,
relations, constraints, and DoF are defined in
this interface.

163

Table 7 (continued).

Functionality State
master

OPAND STATES

• Represents an instance of operand state in the
functionality model.

• Double clicking this objects brings up the
definition dialog box is also opened to guide
the user in the creation of the operand states.

• The user selects operands and coupling bond
in which state is a relevant factor. The
selected operands together with their
respective attributes are then defined as time
variant functionality components.

• These time variant components attributes
define the different states the system can
assume and hence are considered during the
design verification / analysis phase.

Sub-functionality
master SUB-FXN. OBJ.

• Represents an instance of a sub-functionality
operation included in the model.

• Double clicking this object brings up the
corresponding operation detail page together
with the user form with which the designer
selects the operands that are used in coupling
bond with the other operands in the super-
functionality operation.

Connector master

• Represents an instance of component
connector in the functionality model
drawing.

• It links components (operands and CBs)
together.

• It performs no action and is only used to
pictorially link components together.

b) Solid Operand Stencil

The solid operand stencil is used to define the attributes and functional markers of a

given solid operand. It is invoked whenever a solid operand detail page is opened or a solid

operand is double clicked for editing purposes. The opening of the solid operand page also

invokes the “solid operand user form” shown in Figure 64. This form is used to guide the user

in the definition of the attributes of the solid operand.

164

The actual Visio implementation of the functional markers is limited to points, line, and

circular arcs. The point is defined by the coordinates of its points in two dimensions: x and y

coordinates. The line on the other hand is defined by the begin and end points together with the

sides (side 1 and side 2) as shown in Figure 59.

Side 2: y < mx + c

Side 1: y > mx + c
line: y = mx + c

y

x

begin

end

c

Figure 59 Modeling of functional line in Visio

The circular arc is defined by begin and end points of the arc together with the bow of

the arc (see Figure 60). The magnitude of the bow is the distance from the midpoint of the

chord to the midpoint of the arc. The bow’s value is positive if the arc is drawn in the

counterclockwise direction; otherwise, it is negative. The radius or the parent circle is related to

the magnitude of the bow as follows:

 |Bow| = radius * (1 – COS(angle/2))

 Where, “radius” is the radius of the arc; and “angle” is the angle that the arc subtends at

the center of the circle. If the bow is zero, the arc is a straight line.

165

Chord

Control Point

Bow

Side 2: r2 < R

Side 1: r1 > R

Figure 60 Modeling of functional arc in Visio

The behavior of each of the masters in this stencil is determined by the VBA codes

embedded in the solid operand stencil. For instance, double clicking or dropping a master from

the stencil will instantiate an action in the modeling of the functionality operation. Each of the

masters in this stencil also has its own unique user form to enable customization of the

properties of the corresponding functional marker. A brief description of each of the solid

operand stencil masters is listed in Table 8.

Table 8 Summary of the master shapes in the solid operand stencil
Master Symbolic FM Shape Description
FPoint master • Represents a functional point (marker) in a

solid operand.
• It is placed on the detail page of a solid

operand to denote a point that is functionally
important for the operand.

• Double clicking this object brings up the
“FPoint” user form (Figure 61) with which the
designer can define the parameters of the
functional point.

166

Table 8 (continued).

Fline master • Represents a functional line (marker) in a
solid operand.

• It is placed on the detail page of a solid
operand to denote a line / axis that is
functionally important for the operand.

• Double clicking this object brings up the
“FLoint” user form (Figure 62) with which
the designer can define the parameters of the
functional line.

FArc master

• Represents a functional arc (marker) in a
solid operand.

• It is placed on the detail page of a solid
operand to denote an arc that is functionally
important for the operand.

• Double clicking this object brings up the
“FArc” user form (Figure 63) with which the
designer can define the parameters of the
functional arc.

FrectArea master • Represents a functional rectangular region
(marker) in a solid operand.

• It is placed on the detail page of a solid
operand to denote a rectangular region that is
functionally important for the operand.

FCirArea master

• Represents a functional circular region
(marker) in a solid operand.

• It is placed on the detail page of a solid
operand to denote a circular region that is
functionally important for the operand.

DimConstraint
master

• Represents an instance dimensional
constraint between the functional markers in
a solid operand.

• Double clicking this object brings up the
coupling definition dialog box to guide the
user in the creation of the dimensional
constraint.

• The two functional markers to be related are
then selected in the DimConstraint user form
interface. The value of the dimensional
constraint is also specified.

167

Figure 61 Functional point user form

Figure 62 Functional line user form

168

Figure 63 Functional arc user form

Figure 64 Solid operand definition user form

169

c) Energy Operand Stencil

The energy operand stencil is used to define the attributes and the functional markers of a

given energy operand. It is invoked whenever an energy operand detail page is opened or an

energy operand is double clicked for editing purposes. The opening of the energy operand page

also invokes the “energy operand user form” shown in Figure 65 (force) and Figure 66 (torque).

This form is used to guide the user in the definition of the attributes of the energy operand.

The behavior of each of the masters in this stencil is determined by the VBA codes

embedded in the energy operand stencil. For instance, double clicking or dropping a master from

the stencil will instantiate an action in the modeling of the functionality operation. Each of the

masters in this stencil also has its own unique user form to enable customization of the

properties of the corresponding functional marker. A brief description of each of the energy

operand stencil masters is listed in Table 9.

Table 9 Summary of the master shapes in the energy operand stencil
Master Symbolic Shape Description
EPoint master • Represents an instance of a functional point (marker)

in the energy operand.
• It is placed on the detail page of an energy operand to

denote a point that is functionally important for the
operand.

• Double clicking this object brings up the “EPoint”
user form with which the designer can define the
parameters of the functional point.

EVector master

• Represents a vector instance of the energy operand.
• It is placed on the detail page of an energy operand to

denote an energy vector (magnitude and direction) that
is functionally important for the operand.

• Double clicking this object brings up the “EVector”
user form with which the designer can define the
parameters of the energy vector.

170

Figure 65 Force operand definition user form

171

Figure 66 Torque operand definition user form

d) Coupling Bond Definition

Dropping a master of the coupling bond from the toolkit (stencil) creates an instance of

coupling bond master. Double clicking an instance of the coupling bond opens up the coupling

bond definition user form (shown in Figure 67). This form is used to define the elements of the

coupling bond. It provides a means for the designer to specify the functional relations, degrees

172

of freedom, and the constraints present at the interaction of the coupling pair (operands). The

coupling pair is defined by selecting from the available set of operands in the functionality

operation. A form tag number is also specified to link the coupling bond to a solid CAD model.

Figure 67 Coupling bond definition user form

173

Functional Relations

A general functional relation is given by the expression shown in Equation 12. In the

expression, the FACTOR EXPRESSION consists of operators (opt) and relational entities

[attribute values (AValue), and user defined constants (Const)]. Note that Const must be

defined before use by either assigning it a specific value or assigning it to a physical

functionality attribute.

FACTOR EXPRESSION A <rel> FACTOR EXPRESSION B

Equation 12

The “relator” is represented symbolically by “<rel>” and is defined as the mathematical

relationship operator between two functional expressions. Functional relators are classified into

two groups: qualitative and quantitative relator.

• Qualitative: in this implementation, the qualitative relator are limited to spatial

relations between functional markers of an attribute. This set includes the following

relations: against, aligned, coincident, etc.

• Quantitative: the qualitative relator defines a relation between the magnitude of the

attributes or FACTORs of operands. The implementation of this is restricted to the

following set: equality (=) and inequalities (≥ and ≤).

The functional relation operator co-joins attribute values and constants to form a single

functional factor. Operator set includes: multiplication (*), division (/), addition (+), and

subtraction (-).

174

The relational entities are attribute values of operands (AValue) or relational constants

(Const) defined by the designer. Relational constants must be defined before use by either

assigning it a specific value or assigning it to a physical functionality attribute. The user form

used to define quantitative functional relations is shown in Figure 68, while that used to specify

spatial (qualitative relations) is shown in Figure 69.

Figure 68 Quantitative functional relations definition user form

175

 (a) (b)

Spetial relations user form Entities (functional markers) selction form

Figure 69 Spatial relations definition interface

Constraint representation:

Engineering constraints are special form of functional relations where the right hand side

(RHS) is assigned to a constant (Const) value. They are used to restrict the limit an operand

attribute or functional parameter can assume. Hence, it defines the value range or limits on

relational entities (attribute values and constants). For instance, the weight limit of an operand

may be given as follows: mass * gravity ≤ maxStrength , where mass is the value of the mass

attribute, gravity is the earth gravitational constant, and maxStrength is a user defined constant

176

for the maximum weight limit on the object. The maxStrength may be related to the maximum

strength of a load bearing operand connected to the operand with the given mass. Unlike in the

case of functional relators, the relator set for constraints is limited to quantitative relators:

equality (=) and inequalities (≥ and ≤). The operators are also restricted to qualitative operators:

multiplication (*), division (/), addition (+), and subtraction (-). The user form used to define

engineering constraints is shown in Figure 70.

Figure 70 Quantitative constraints definition user form

Degree of Freedom

The degree of freedom (DoF) defines the required restriction on the allowable motions of

an operand. The DoF specification applies to oparands as an entity not just to a single attribute

or operand component. A reference (<ref>) defines a reference axis, marker, or datum used in

the DoF specification. It might refer to an axis, plane, or surface. The DoF is defined during the

specification of the spatial relations. Hence, the input form used here is the same as that used in

spatial relations specification (Figure 69).

177

6.3 Testing and Validation

The principles developed in this work are tested and validated using a case study: the

design of a sub-assembly of an automotive space-frame. The primary activity involved in the

validation of the work is answering the question, does the work accomplish the research

objectives defined at the beginning of this work. To answer this question, it is important to re-

emphasize the objective of a design in general and the objective of functionality modeling in

particular. How is a design judged as being good or bad? In this work, a design is considered as

being good if it performs successfully the task for wish it was designed. The functionality-

modeling tool developed in this work is used to specify the desired task (functionality) to be

accomplished by a product. Hence, the models developed in this work can be validated by

evaluating how efficiently they capture the functional requirements of the product.

To evaluate this modeling efficiency, the following procedure is followed.

• Selection of a case study comprising of a problem that require the use of a

mechanical device.

• Definition of the need and design objective.

• Functional analysis of the selected product.

• Development of functionality model using FbD methodology.

• Evaluation of performance in the case, highlighting the benefits and limitations of the

methodology.

178

6.3.1 Functionality-based Design (FbD) Procedure

Before applying the FbD concepts, the general FbD modeling steps identified in Section

6.2.1 is expanded to illustrate the specific design actions that are involved when using the

method and computer tools developed in this work. The process flow associated with these

steps is illustrated by the flow chart of Figure 71. This FbD algorithm is described below.

1. Identify the needs and specification of the proposed mechanical product.

2. Perform the functional requirement analysis of the problem (need) to identify the

relevant:

• Functionality operands and their corresponding attributes.

• Functionality relations and constraints including both qualitative and quantitative

coupling relations.

3. Start the functionality design toolkit.

4. Instantiate the functionality operation – define functionality NAME, TYPE, UNIT, and

DESCRIPTION.

5. Define a new operand:

• Click and drag from toolkit and drop in the drawing page.

• Specify known attributes of operand including the functional markers for SOLID

operands.

• Define attribute value set if known.

6. If new operand required:

• Repeat STEP 5.

7. Else, define coupling bond between operands:

179

� Select the coupling operand pair.

� Define coupling constraints

� Define inter-operand relations (both qualitative and quantitative relations need to be

specified)

� Define the degree of freedom restriction on the coupling pair.

8. If sub-functionalities required:

� Define a new sub-functionality (from re-usable KB if available)

� Specify known attributes

� Specify coupling operands

� Specify linkage to external functionality operands and operations (coupling bond)

9. If new sub-functionality required:

� Repeat sub-functionality inclusion step 9

10. Generate XML representation of functionality

11. Map functionality to conceptual form (tag XML to form as the functionality constraint).

12. Save and propagate XML data file for use in the detail design phase.

The above algorithm is applied to the functionality modeling of the car frame selected as

a case study product. The actual FbD modeling steps are described in Section 6.3.2, while the

evaluation of the methodology is discussed in Section 6.3.3.

180

Start

Identify needSpecification(problem,
constraints, and

preferences)

Functional requirement
analysis to identify:
- operands
- relations
- constraints

Start Functionality Toolkit

Define function-level attributes:
name, type, unit, description

Define a new OPERAND:
- Click and drop from toolkit
- specify known attributes

New Operand
needed?

Define Coupling Bonds:
- select operand pair
- specify coupling constraints
- specify inter-opand relations

Sub-
functionalities

needed?

Define sub-functionalities:
- specify sub-functionality
- specify known attributes
- specify coupling operands

Generate XML
(tag XML to form as

constraints)

Save and Propagate XML
data file to Detail CAD

system

Figure 71 Functionality modeling flow diagram

181

2-D Approximation of Functional Markers

The demonstration of the FbD concept is restricted to two dimensions. Consequently,

the functional markers described in Section 4.1.1 are modified for 2D application as follows. A

functional feature is defined with markers using the following notation:

M1: a point p1(x1, y1).

M2: a point p2(x2, y2).

M3: a point p3(x3, y3).

L: line(p1, p2): a line through p1 and p2.

P: plane(p1, p2, p3): a plane through p1, p2, and p3.

From the above definitions, the basic set of functional markers for the 2D operand

approximation includes the following: a point, a line, and a plane. Inter-functional marker

constraints are geometric constraints that describe the dependencies between functional markers

within or between solid operands. The functional marker geometric constraint set simplified for

2D modeling application is summarized in Table 10.

182

Table 10 Inter-functional feature constraints representing geometric constraint set

Constraint Figure
on_line(M1, L): p1 lies on the line L. M1 L
on_plane(M1, P): p1 lies on the plane P.

M1

P

parallel(L1, L2): line L1 is parallel to line L2.

L1 L2
angle_w(L1, L2, θ): the angle between L1 and
L2 is θ.

L2

L1

angle

dist(M1, M2): the distance from p1 to p2 is d. d M2

M1

dist(M1, L, d): the distance from p1 to the
projective point on line L is d.

d

L

M1

dist(L1, L2, d): the perpendicular distance
between line L1 and line L2 is d.

L1

d

L2

183

6.3.2 Functionality Modeling of an Automotive Space-Frame Sub-assembly

Space-frames are metal skeletons on which the body panels of a car are hung. A sample

space-frame is shown in Figure 72. [83] The body panels are hung about the hard points, adding

extra strength as well as making the structure aerodynamic and keeping the wind off the driver.

Most of the space frame structure is formed from hollow section extrusions with wall

thicknesses that vary to distribute stresses evenly. These components are extruded and bent into

the required shape, before being assembled. Their exact form depends on how they are used,

parts of the roof frame for example are shaped differently from the door pillars.

Figure 72 Space-frame of a car

The sample product used to evaluate the principles developed in this work is a sub-

assembly of an automotive space-frame. This case study is evaluated by first, developing a

functionality model of the frame sub-assembly using the four-step process outlined in Section

184

6.2.1. The functionality model is then evaluated to illustrate its goodness or deficiencies. This

case evaluation is restriction to 2-dimesional analysis as defined in the scope of this research. [*]

For the analysis on the space frame, it is assumed that the exact geometric shape (or

form) of the sub-assembly is not known at the beginning of the design process. This assumption

makes it possible to demonstrate the design steps involved in evolving a generic product design

using FbD methodology.

STEP I: Problem definition

The purpose of this step is to define the problem and the engineering task that the frame

needs to accomplish. In a typical design scenario, this is provided by the customer or the target

user of the product. Hence, it forms a unique interface between the engineering function of

design and the customer. It is important that the proper tasks and or problems are identified at

this stage of product development. A poorly defined problem will yield a product that has poor

performance as it is ill-conceived with incomplete or even wrong design (engineering)

objectives or goals.

The primary engineering tasks of the auto-frame are to:

• Maintain the structural integrity of the entire automotive assembly (including the

body, engine assembly, wheels, transmission system, passenger sits, etc);

• Provide support for other components of the car (that is, to provide a base to which

other components of the car can be mounted to); and

• Provide load bearing functionality for the car assembly (including weight of other

components), its passengers, and cargoes

* The scope of this work is defined in Section 3.1. Computer implementation is restricted to 2-D. Material
operands is limited to solids with rigid body.

185

STEP II: Functional requirement analysis

The identified engineering tasks of step I implies some functional requirements for their

satisfaction. The first step in functional requirement analysis is the use of quality function

deployment (QFD) (84, 85) matrix tool to identify the key functional features of the required

product. This tool lists the engineering tasks (identified in step I) as row headings while the

column headings are the functional features or attributes of the product. This is illustrated in

Table 11. This table does not provide information about detailed engineering specifications, but

merely identifies the set of engineering features that correspond to the required product tasks.

In implementing the functionality-based design, the first step is to translate the

functionality (engineering task) into functional requirements and subsequently constraints that

need to be satisfied. For the space-frame sub-assembly, the functional requirements as shown in

Table 11 include the following:

• Operand set;

• Strength requirement;

• Stability requirement;

• Spatial relation of the various components; and

• Material compatibility.

186

Table 11 Task - functional features QFD for the car frame

 Operand Strength Stability Spatial

relation

Material

Compatibility

Maintain Structural
Integrity

⊕ ⊕ ⊕ ⊕

Provide Support ⊕ ⊕ ⊕ ⊕ ⊕

Provide Load Bearing ⊕ ⊕ ⊕ ⊕

The “⊕” symbol in Table 11 shows the perceived interrelations between the tasks and the

identified functional features. In other to provide the above engineering tasks, the product must

satisfy its set of functional requirements. Hence, the next step in the functional requirement

analysis is the translation of the functional features into identifiable set of operands and

operators (as elements of the coupling bond). The functional requirements need to be translated

into functionality constraints. A satisfaction of all the functionality constraints will guarantee

that under operation, the final design will meet all the initial functional requirements.

Having identified the functional requirements, the next step is to map these requirements

to basic functionality design elements - operands together with their corresponding coupling

bonds. The specific operands and their corresponding attributes required to achieve the design

tasks are obtained by mapping the functional features to actual functionality elements

(operands).

Operands and Spatial Relation:

Given the nature of the task that need to be performed and the context of operation, the

identifiable operand are SOLID material and FORCE energy operands. The SOLID operand

consists of the actual physical components that make up the product. The FORCE operand on

187

the other hand, is the set of external forces that represent the resultant impact of other

components of the car assembly on the sub-frame.

Material operands:

The context of operation of the frame requires that a topological structure similar to that

shown in Figure 73 be evolved for the product. This topology is dictated by the fact that other

components of the car need to fit with this frame for it to provide the support and load bearing

functionality. The markers (line X and points A, B, C) are used as attachment nodes to other

components of the car. As can be seen from the figure, three key points are functionally needed

by the context of operation as the point of attachment to other components of the car. Points A,

B, and C are at a fixed distance apart and are required to maintain this constant spatial relation.

Another requirement for this SOLID operand is that points A and B should be at the end of a

straight line, line X.

pt. A

pt. B

line X

pt. C

800 mm

650 mm

1180 mm

Figure 73 Solid operand features of the frame

188

With the above requirements in mind, points A, B, and C, and line X could all form one

rigid SOLID component or they can be split into separate components and then joined (coupled)

together. The SOLID operand is split into two smaller solids: {A, B, X} and {C}. The two

solids can assume any specific form provided that they satisfy the requirements of providing

features A, B, C, and line X, while maintaining the required spatial relation. It is intuitive to

conceptualize SOLID{A, B, and X} as a beam with points A and B as end points as shown in

wireframe model of Figure 74. On the other hand, SOLID{C} may assume any form (option 1,

option 2, or option 3) as shown in Figure 74 or it may be formed by the union of all the options

to form a planer structure. The exact form of SOLID{C} is determined by other factors such as

strength, weight, cost, and designer’s preference. For the initial functionality model, SOLID{C}

is assumed to be a solid beam with point C as one of its end. The other end (JC) is connected to

the AB beam.

pt. A

pt. B

line X

pt. C

form set: SOLID{C}

Option3:
SOLID{C}

Option1:
SOLID{C}

Option2:
SOLID{C}

Figure 74 Solid operands: SOLID{A, B, X} and SOLID{C}

189

Consequently, SOLID operands for the space-frame functionality model is composed of

two solids:

• SOLID{A, B, X}: referred to as the Cross-beam (CROSSBEAM)

• SOLID{C}: referred to as the Tee-beam (TEEBEAM)

Energy operands:

The second type of operand that is required for this model is the FORCE energy operand.

All vehicles are subject to both static and dynamic loads, which cause stresses. The static

analysis of the structure gives, on one hand, the internal loads in the structural elements making

up the structure (e.g., the direct loads, normal loads, bending moments, and torque) due to the

instantaneous external loads, and on the other hand, the internal and external displacements

caused by the load system. The following list of static loads, which should be taken as stressing

cases, includes maximum dynamic loads, which only occur infrequently.

� Static load of stationary vehicle (including weight of components attached to the frame)

� Braking

� Acceleration

� Cornering

� Torsion

� Maximum load on front axle

� Maximum load on rear axle

� Drawbar loads

190

The values for the individual load cases are taken from the expected service conditions of

the particular vehicle. The worst-case loading conditions (distribution of load) as well as

overloading are assumed for static load case. The braking and acceleration cases are determined

by the possible driving conditions. The lateral acceleration in cornering will be determined by

the tire forces available, or a tilt test may be specified.

In practice, it is sufficient to use a lumped mass approximation, with simple statically

equivalent masses concentrated at selected nodal points. [86] Discrete attached masses are

connected to the structure at the nodal points. Hence, the equivalent assumed maximum loads at

the node points are F1, F2, … , F6 as shown in Figure 75. The values used for F1, F2, … , F6 are

approximate worst case forces that might impact the space-frame sub-assembly. It is important

to note that the use of lumped masses is only an approximation of the real loading situation,

where the loading is distributed over the entire region of the solid operand. However, in such

cases, other complex methods of analysis as discussed in [Beermann 1989] [86] may be used to

analyze the loads.

191

pt. A

pt. B

line X

pt. C

Option3:
SOLID{C}

Option1:
SOLID{C}

Option2:
SOLID{C}

F1

F5

F4

F3

F2 F6

Figure 75 Resultant loading forces on the frame structure

The loading forces determine the strength and optimum spatial configuration for the load

bearing components (the SOLID operands).

Strength:

The strength functional feature specifies the maximum deformation and stress that the

space-frame should withstand. Under operational condition, a car is usually subjected to

different kinds of forces including impact, steady, and random forces as earlier discussed under

energy operands. The frame structure should be designed in such a way that it can withstand

such forces. Hence, the strength functional feature refers to the following attributes of the

SOLID operands: the allowable normal stress and the allowable shear stress. In this work, rigid

192

body solids are assumed; hence, the strain of the solid operands is neglected. This strength

requirement must be specified for the entire solid frame including any joint that is required to

maintain a fixed spatial relation between solid operands.

Stability:

The stability feature ensures that the design yields a product that is stable while in

operation. It stipulates that the internal forces acting on the product are balanced. The internal

forces are because of the SOLID operand’s reaction to the external forces (F1, F2, F3, F4, F5, F6).

For this stability requirement to be satisfied, the strength of the SOLID operand must be

sufficiently high to withstand the external loading forces. An extension of this stability

requirement is that the effect of the external forces all must cancel out as a necessary condition

for equilibrium.

Material Compatibility:

Since other materials need to be attached to this frame, it has to be compatible with those

components to avoid any negative compatibility issues. The components to be attached to this

frame are all metals – STEEL and ALUMINUM. Hence, any compatible metal or material may

be selected for the frame, subject to the satisfaction of other factors such as strength, weight, and

cost. In this case study, aluminum appears to satisfy this requirement, hence ALUMINUM is

proposed as an initial material type in the functionality model. It should be noted that the

designer is at liberty to change the material type at any time during the design process.

193

STEP III: Functionality modeling

In building a functionality model, the functional features are instantiated as design

objects with their corresponding attributes. This case study demonstrates how the generic

functionality model discussed in Section 3.3.3 is used to map the functionality description of the

car frame into mathematical relationships and constraints. It provides a means for representing,

propagating, and enforcing car frame functionality as design constraints. The generic

functionality model of the functionality operation (a modeling representation for frameBOPN)

is defined by the ternary relation, Γi, given by Equation 13.

Γi = {(x, s, f) | x ∈Xi, s ∈ Si, and f ∈ Fi}

Equation 13

Where,
• i = functionality operation index

• Xi = a functionality operator

• Si = a set of functionality states

• Fi = function-form mapping set

Operands and attributes

Given a set of operands (Oi) in a functionality operation with an index, i. Each member

of this operand set is given by:

oiq = {aiqs | aiqs ∈ Aiq}

Where

• i = functionality operation index

• q = functionality operand indix

• Aiq = attribute set for functionality operand oiq

194

As identified in Step II of the FbD procedure, the operands involved in the space-frame

functionality operation are listed below:

j Operand Name Operand Type
1 Cross-beam SOLID
2 Tee-beam SOLID
3 F1 FORCE
4 F2 FORCE
5 F3 FORCE
6 F4 FORCE
7 F5 FORCE
8 F6 FORCE

A detailed description of these operands and their corresponding attributes is shown in

Table 12 - Table 19. In the tables, a question mark (?) is used to denote the operand attributes

whose “absolute” value is either not known at conceptualization or is determined by other

factors during operand coupling. This is especially true for designs in which values of attributes

are not known during initial problem definition and functional requirement analysis. This

procedure supports incremental decision making in design.

The strength of a solid operand depends on both the type of material, treatment, and

geometry of the solid and on the type of loading the operand will experience. This allowable

stress constitutes a set of strength constraint on the SOLID operands. By knowing the loading

condition (type and magnitude of force) and the required strength (yield strength) on the SOLID,

the geometric configuration that satisfies this strength requirement can then be determined from

the strength constraint set. In a simple SOLID with uniform cross-sectional area, the stress is

given by F/A, where F = applied force and A = cross-sectional area. Given a material with yield

195

strength, Sy, the allowable stress as discussed in Section 5.1.3 is given by the following

constraints.

• Allowable normal stress (N/m2):

yNy SSS 60.045.0 ≤≤

• Allowable shear stress (N/m2):

yS SS 40.0=

Coupling relation is given as FSy ≥ F. This relation implies that the force required to

attain the yield stress of Sy must be greater than applied external loading force (F). This force

(FSy) is however dependent on the geometry of the solid.

Table 12 Functionality attributes of cross-beam solid operand

Type Fline - SOLID operand Value
• Begin point markers A
• End point marker B
• Joint point marker JAB

on_line(AB)

Functional markers

Intra-FM coupling dist(A, JAB, d) [0.00,1180.00] mm
Length dist(A, B, d) 1180 mm

Normal (Tensile & Compression) 0.6 Sy Strength
Shear 0.4 Sy
Mass ?
Area ?

Mass properties

Volume ?
Material type Compatible with Aluminum and Steel ALUMINUM
DoF Fixed

196

Table 13 Functionality attributes of tee-beam solid operand

Type Fline - SOLID operand Value
• Begin point markers C
• End point marker JC

Functional markers

• Joint point marker JC
Length dist(C, JC, d) [650.00, 1030.78] mm

Normal (Tensile & Compression) 0.6 Sy Strength
Shear 0.4 Sy
Mass ?
Area ?

Mass properties

Volume ?
Material type Compatible with Aluminum and Steel ALUMINUM
DoF Fixed

In computing the value of the external loading forces, the impact forces (as a result of

crash) were neglected. The space-frame is subjected to only steady/static loading. This

restriction is necessary as the models developed here are based solely on the assumption of rigid

bodies. Inclusion of impact forces (say from a crash) will necessitate an extension of the model

to consider energy-absorbing beams, subject to deformation. It is believed that this

approximation is sufficient to demonstrate the application of the concepts developed in this

work. The attributes of the loading forces are shown Table 14 – Table 19. The magnitudes of

the forces are only approximate estimations (since the impact forces are excluded) large enough

to illustrate application of FbD methodology.

197

Table 14 Functionality attributes of F1 force-energy operand

Type FEnergy – ENERGY FORCE operand
Magnitude |F1| 50,000 N
Direction A Æ B;

|| to FlineAB.
[def@coupling with
reference to cross-
beam]

Point of contact Point B on Crossbeam [def@coupling with
reference to cross-
beam]

Source External loads External loads and
components
assembled to the
frame.

Nature External forces operands Steady
DoF Fixed

Table 15 Functionality attributes of F4 force-energy operand

Type FEnergy – ENERGY FORCE operand
Magnitude |F4| 50,000 N
Direction A Æ B;

|| to FlineAB
[def@coupling with
reference to cross-
beam]

Point of contact Point B on Crossbeam [def@coupling with
reference to cross-
beam]

Source External loads External loads and
components
assembled to the
frame.

Nature External forces operands Steady
DoF Fixed

198

Table 16 Functionality attributes of F2 force-energy operand

Type FEnergy – ENERGY FORCE operand
Magnitude |F2| 50,000 N
Direction From side 1;

⊥ to FlineAB
[def@coupling with
reference to cross-
beam]

Point of contact Point A on Crossbeam [def@coupling with
reference to cross-
beam]

Source External loads External loads and
components
assembled to the
frame.

Nature External forces operands Steady
DoF Fixed

Table 17 Functionality attributes of F3 force-energy operand

Type FEnergy – ENERGY FORCE operand
Magnitude |F3| 50,000 N
Direction From side 1;

⊥ to FlineAB.
[def@coupling with
reference to cross-
beam]

Point of contact Point B on Crossbeam [def@coupling with
reference to cross-
beam]

Source External loads External loads and
components
assembled to the
frame.

Nature External forces operands Steady
DoF Fixed

199

Table 18 Functionality attributes of F5 force-energy operand

Type FEnergy – ENERGY FORCE operand
Magnitude |F5| 50,000 N
Direction From side 2;

⊥ to FlineAB
[def@coupling with
reference to cross-
beam and tee-beam]

Point of contact Point C on Teebeam [def@coupling with
reference to tee-beam]

Source External loads External loads and
components
assembled to the
frame.

Nature External forces operands Steady
DoF Fixed

Table 19 Functionality attributes of F6 force-energy operand

Type FEnergy – ENERGY FORCE operand
Magnitude |F6| 50,000 N
Direction From side 2;

⊥ to FlineAB
[def@coupling with
reference to cross-
beam and tee-beam]

Point of contact Point C on Teebeam [def@coupling with
reference to tee-beam]

Source External loads External loads and
components
assembled to the
frame.

Nature External forces operands Steady
DoF Fixed

200

Coupling bonds (CB)

Having identified the operands in the sub-frame, the next task is to define the interaction

between them to yield the space-frame functionality identified in Step I. Using the notation

presented in Section 4.3, this functionality is symbolically represented as:

frameBOPN: {<o1 : a1>,<o1 : a2>, <oi : aj>, … <o8 : a8> }

 where,

 frameBOPN = space-frame functionality operator

<oj> = functionality operand j,

{aj } = attributes of operand j

i, j = 1, 2, .., 8 (operand indices)

The operand indices and corresponding operands are listed below. These indices will be

used to refer to each operand in the remainder of this case study.

j Operand name
1 Cross-beam
2 Tee-beam
3 F1
4 F2
5 F3
6 F4
7 F5
8 F6

201

With the operand set known, the functionality relationship is defined by a functional

relationship set (Xi) as given in Equation 14.

Xi = {xijk(oij, oik) | oij ∈ Oi, and oik ∈ Oi}

Equation 14

Where

• Oi = set of operands in functionality operation i.

• xijk = coupling bond between functionality operands j and k.

• j, k = functionality operand indices

The coupling bond (xijk) defines the active relationships between the functionality

operands j and k. It is the coupling condition that describes the nature of interaction between

operands.

In computer modeling, the relationship set (Xi) is represented by a matrix, functionality

coupling bond (CB) matrix, Xmxn. Since there are eight operands in the space-frame

functionality, the dimension of CB matrix is 8 by 8. The coupling bond has three components

that constitute the coupling conditions: DoF, relations, and constraints. Thus, it gives the set of

relationships, constraints, and DoF that must hold in the inter-operand coupling for the

functionality to achieve the specified task. The coupling bond is defined by including these

three components in the coupling bond equation as shown in Equation 8.

{ } ijijijijij ydcrx ⊗= ,,

Equation 15

202

Where

rij = relation between operands i and j.

cij = constraint on relation between operands i and j.

dij = degree of freedom on relation between operands i and j.







 ≥
=

otherwise

jiandjandioperandsbetweenexistcouplingif
yij

)()(

0

1

The entire set of coupling bonds in a functionality operation is represented by the

coupling bond matrix as follows:

[]ijxX = , where i = 1, 2, 3, … , 8; and j = 1, 2, 3, … , 8

given that,

[]ijrR = and []ijyI =

 subject to,

[]ijcC =

[]ijdD =

In a full matrix notation, X is given by:



















88

2822

181211

8

2

1

821

00

0

x

xx
xxx

OP

OP
OP

OPOPOP

L

MOMM

L

L

M

L

203

Where:

OPk (k = 1, 2, .., 8) are the functionality operands.

xij (i,j = 1, 2, …, 8) are the coupling bounds between operand OPi and operand OPj.

I is a zero-one square linkage matrix representing the valid linkage interactions for the

given coupling operation. The I (linkage matrix) is derived by entering a one for each matrix

element where a valid coupling exists between the operands and a zero is entered otherwise.

The size of the I matrix is determined by the number of interacting operands. For the space-

frame, the functionality interaction graph is depicted in Figure 76. Since there are eight

interacting operands, I is a 8x8 square matrix. Hence the I matrix is given by:

































=

10000000
01000000
00100000
00010000
00001000
00000100
11000010
00111111

I

204

OP1
(cross-
beam)

OP3
(F1)

OP2
(tee-

beam)

OP5
(F3)

OP6
(F4)

OP4
(F2)

OP7
(F5)

OP8
(F6)

Figure 76 Car frame operand interaction graph

(Note: Shaded FORCE operands are involved in a global coupling to ensure the stability of the system)*

The other variables in the equation are derived as follows for the example. Applying the linkage

matrix, I, gives the X matrix as:

* For equilibrium, sum of forces must equal zero and sum of moments must equal zero.

205

































=×

88

77

66

55

44

33

282722

161514131211

88

0000000
0000000
0000000
0000000
0000000
0000000

00000
00

x
x

x
x

x
x

xxx
xxxxxx

X

Where, the diagonal elements, x11, x22, x33, x44, x55, x66, x77, and x88, are the intra-operand

constraints and relations. They include the constraints on the attributes of the corresponding

operands; degree of freedom restriction on the functional markers and attributes of the operands,

and finally relations between attributes of the operand. Some of the known attribute values for

the space-frame are specified in Table 12 to Table 19 while others that are dependant on other

operands are defined during coupling. The meaning of the other non-zero elements of the

coupling bond matrix is described in Table 20.

Table 20 Coupling bond elements

CB
element

x12 SOLID-SOLID Crossbeam – Teebeam Joint Table 21
x13 SOLID-FORCE Crossbeam – F1 Compression Table 22
x14 SOLID-FORCE Crossbeam – F2 Shear Table 23
x15 SOLID-FORCE Crossbeam – F3 Shear Table 24
x16 SOLID-FORCE Crossbeam – F4 Compression Table 25
x27 SOLID-FORCE Teebeam – F5 Compression Table 26
x28 SOLID-FORCE Teebeam – F6 Shear Table 27

global FORCE-FORCE F1, F2, F3, F4, F5, F6 Equilibrium Table 28

206

The CB matrix (X) for the automobile sub-frame can be expanded in terms of R, C, and

D as follows. The R matrix is formed by pulling all the valid relationships in the system

involving operands OP1 to OP8. Similarly, C and D matrices are formed by pulling all the valid

constraints and DoF restrictions respectively in the system involving operands OP1 to OP8.

Hence,

































































































=

88

77

66

55

44

33

282722

161514131211

88

77

66

55

44

33

282722

161514131211

88

77

66

55

44

33

282722

161514131211

0000000
0000000
0000000
0000000
0000000
0000000

00000
00

0000000
0000000
0000000
0000000
0000000
0000000

00000
00

0000000
0000000
0000000
0000000
0000000
0000000

00000
00

d
d

d
d

d
d

ddd
dddddd

and
c

c
c

c
c

c
ccc

cccccc

tosubject

r
r

r
r

r
r

rrr
rrrrrr

X

207

A detailed listing of the CB components (xij) for the car frame is listed in Table 21 to

Table 27. Figure 77 and Figure 78 illustrates the effect of coupling bond (CB) relations on the

conceptual form of the space-frame. Figure 79(a)-(b) is the three members of the possible form

set of the space frame. [*] For evaluation purposes, the form shown in Figure 79 (b) is selected.

Table 21 Joint operation: crossbeam-teebeam coupling bond (x12)

Functionality
Entity

Entity 1
(j=1)

Entity 2
(k = 2)

Coupling Pair
(O1q)

O11 = SOLID: Crossbeam O12 = SOLID: Teebeam

Attributes (A1q) A111 = length,
A112 = FM set
A113 = material type

A121 = length
A122 = FM set
A123 = material type

Functional Constraints
C1 = {dist(A, C, d1) = 752.93 mm}
C2 = {dist(B, C, d2) = 1030.78 mm}
C3 = {C on side2}
C4 = {dist(A, JAB, d3) = fixed}
C5 = {strength_joint ≥ min_strength(crossbeam,
teebeam)}

The effect of C1,
C2, and C3 is
shown in Figure 77.

Functional Relations
R1 = {JAB coincident JC}
R2 = {JAB on_line(AB)}

The effect of C1,
C2, and C3 is
shown in Figure 78.

Degree of Freedom

Coupling Bond
Relations (X1)

D1 = {JAB : fix}
D2 = {crossbeam : fix}
D3 = {teebeam : fix}

Functionality-
form Mapping
(F1)

F1 = {(r112, f112l) | FFl=1, FF l=2, … }, l = 1, 2, 3.

Member elements shown in Figure 79.

* It is possible to expand the form set to include form conceptual form by considering the continuous nature of the
possible location of marker JAB on the cross-beam.

208

pt. A

pt. C

pt. B

|BC| = 1030.78 mm

|AC| = 752.93 mm

Locus of
|AC| = fixed

Locus of
|BC| = fixed

side2side1

Figure 77 Application of constraints on functional markers A, B, and C

209

pt. A

pt. C

pt. B

side2side1

JC

JAB

Joint Relation:
{Coincident: JAB <-> JC}

Joint Relation:
{on-line: JAB on FlineAB}

Figure 78 Application of constraint on joint location

 pt. A

pt. B

line X

pt. C
Option1:

SOLID{C}

pt. A

pt. B

line X

pt. COption2:
SOLID{C}

pt. A

pt. B

line X

pt. C

Option3:
SOLID{C}

l = 1

(a)

l = 2

(b)

l = 3

(c)

Figure 79 Conceptual form set for joint operation (l = 1, 2, 3)

210

Table 22 to Table 27 shows the coupling bond for the various loading forces on the cross

and tee beams. It should be recalled that stress is given as a ratio of force to cross-sectional area.

Since stress depends on cross-sectional area, for a solid operand with varying cross-section, the

stress varies along the loading axis. Hence, to ensure the satisfaction of the stress requirement,

the instantaneous internal forces (as a result of the stress) along the operand must be greater than

the applied load.

Let

Finternal = instantaneous internal force;

Fapplied = loading force;

A = cross-sectional area; and

σ = normal stress.

The normal strength requirement of the solid operand require that the following

constraint be satisfied:

Finternal ≥ Fapplied

Where, Finternal = A x σ

For a given material of known yield stress (Sy), the allowable stress σallow = 0.65Sy.

Consequently, the maximum allowable internal force (FSy) in the solid operand if given by

substituting this into the constraints to yields:

FSy = A x σallow ≥ Fapplied

211

Hence, the strength coupling constraint between a solid and force operand is given as FSy

≥ Fapplied. This relation implies that the force required to attain the allowable stress of σallow must

be greater than applied external loading force (Fapplied). This force (FSy) is however dependent

on the geometry of the solid.

In the following tables, normal_strength_operand refers to the design limit of maximum

internal forces (FSy) in the solid operands under normal loading condition. Similarly,

shear_strength_operand refers to the design limit of maximum internal forces in the solid

operands under shear loading condition.

Table 22 Load bearing: crossbeam-F1 coupling bond (x13)

Functionality
Entity

Entity 1
(k = 1)

Entity 2
(j=3)

Coupling Pair
(O1q)

O12 = SOLID: Crossbeam O11 = FORCE: F1

Attributes (A1q) A121 = length
A122 = normal_strength
A123 = FM: A

A111 = |F1|
A112 = dir(F1)
A113 = nature
A114 = <applic point>

Coupling Bond
Relations (X1)

Constraints:
C1 = {normal_strength_crossbeam ≥ |F1|}

Relations:
R1 = {<applic point> coincident A}
R2 = {dir(F1) parallel AB)}

DoF:
D1 = {<A>: fix}
D2 = {dir(F1) : fix}

212

Table 23 Load bearing: crossbeam-F2 coupling bond (x14)

Functionality
Entity

Entity 1
(j = 1)

Entity 2
(k =3)

Coupling Pair
(O1q)

O12 = SOLID: Crossbeam O11 = FORCE: F2

Attributes (A1q) A121 = length
A122 = shear_strength
A123 = FM: A

A111 = |F2|
A112 = dir(F2)
A113 = nature
A114 = <applic point>

Coupling Bond
Relations (X1)

Constraints:
C1 = {shear_strength_crossbeam ≥ |F2|}

Relations:
R1 = {<applic point> coincident A}
R2 = {angle_w(dir(F2), AB, 90)}

DoF:
D1 = {<A>: fix}
D2 = {dir(F2) : fix}

Table 24 Load bearing: crossbeam-F3 coupling bond (x15)

Functionality
Entity

Entity 1
(j = 1)

Entity 2
(k =5)

Coupling Pair
(O1q)

O12 = SOLID: Crossbeam O11 = FORCE: F3

Attributes (A1q) A121 = length
A122 = shear_strength
A123 = FM: B

A111 = |F3|
A112 = dir(F3)
A113 = nature
A114 = <applic point>

Coupling Bond
Relations (X1)

Constraints:
C1 = {shear_strength_crossbeam ≥ |F3|}

Relations:
R1 = {<applic point> coincident B}
R2 = {angle_w(dir(F3), AB, 90)}

DoF:
D1 = {: fix}
D2 = {dir(F3) : fix}

213

Table 25 Load bearing: crossbeam-F4 coupling bond (x16)

Functionality
Entity

Entity 1
(j = 1)

Entity 2
(k=6)

Coupling Pair
(O1q)

O12 = SOLID: Crossbeam O11 = FORCE: F4

Attributes (A1q) A121 = length
A122 = normal_strength
A123 = FM: A

A111 = |F4|
A112 = dir(F4)
A113 = nature
A114 = <applic point>

Coupling Bond
Relations (X1)

Constraints:
C1 = {normal_strength_crossbeam ≥ |F4|}

Relations:
R1 = {<applic point> coincident B}
R2 = {dir(F4) parallel AB)}

DoF:
D1 = {: fix}
D2 = {dir(F4) : fix}

Table 26 Load bearing: teebeam-F5 coupling bond (x27)

Functionality
Entity

Entity 1
(j = 2)

Entity 2
(k=4)

Coupling Pair
(O1q)

O12 = SOLID: Teebeam O11 = FORCE: F5

Attributes (A1q) A121 = length
A122 = normal_strength
A123 = shear_strength
A124 = FM: C

A111 = |F5|
A112 = dir(F5)
A113 = nature
A114 = <applic point>

Relation (R1) Constraints:
C1 = {normal_strength_teebeam ≥ |F5|normal}
C2 = {shear_strength_teebeam ≥ |F5|shear}

Relations:
R1 = {<applic point> coincident C}
R2 = {angle_w(dir(F5), AB, 90)}

DoF:
D1 = {<C>: fix}
D2 = {dir(F5) : fix}

214

Table 27 Load bearing: teebeam-F6 coupling bond (x28)

Functionality
Entity

Entity 1
(j = 2)

Entity 2
(k=5)

Coupling Pair
(O1j)

O12 = SOLID: Teebeam O11 = FORCE: F6

Attributes (A1q) A121 = length
A122 = normal_strength
A123 = shear_strength
A124 = FM: C

A111 = |F6|
A112 = dir(F6)
A113 = nature
A114 = <applic point>

Relation (R1) Constraints:
C1 = {normal_strength_teebeam ≥ |F6|normal}
C2 = {shear_strength_teebeam ≥ |F6|shear}

Relations:
R1 = {<applic point> coincident C}
R2 = {dir(F6) parallel AB)}

DoF:
D1 = {<C>: fix}
D2 = {dir(F6) : fix}

FORCE-FORCE coupling bonds

Force-force coupling is necessary for stability and equilibrium of the frame. However,

since these forces are external to the frame, they are related to each other with reference to other

coupled operands that serve as source to these forces. The actual sources of these forces are

neglected in this coupling.

The aim of a static analysis is to determine the internal loads of a structure when

subjected to external loads. The basis for this analysis is that the equilibrium of forces shall be

maintained at all points in the structure. The conditions of equilibrium are sufficient for the

direct analysis and guarantee of equilibrium of statically determinate structures. The equilibrium

conditions for the forces Fk in the coordinate directions and the moments Mk acting about these

coordinates give:

215

0;0 == ∑∑
∀∀ y

k
x

k FF

0;0 == ∑∑
∀∀ y

k
x

k MM

Where,

k (=1, 2, 3) are the nodal points (corresponding to A, B, and C functional

markers).

It is preferable to define these forces at the nodal points or the joints. This results in the

forces being defined at the ends of the beams. The analysis finds the internal loads at any point

along the beam. The internal loads are given as stress distributions in the cross section of the

beam.

In the case of the space-frame, the structure breaks up naturally into beam elements with

the ends as nodes (Figure 75). At each node, there are two forces and two moments (2D

coordinate system assumed). These forces and moments are referred to as the loads at a node.

For the kth node the loads are arranged in column matrices:

fk = {Xk Yk Mxk Myk}

And for the complete structure

f = { f1 f2 … fk … }

216

To ensure the stability of the space-frame, all the external loading forces are coupled

through a global coupling bond that defines the equilibrium conditions as constraints on the

product functionality. This coupling bond is shown in Table 28.

Table 28 Equilibrium constraint: global coupling (F1, F2, F3, F4, F5, F6)

Functionality Entity
Coupling
operands (O1j)

O11 = (F1); O12 = (F2); O13 = (F3); O14 = (F4); O15 = (F5); O16 =
(F6)

Attributes (A1q) A1i1 = |F|, A1i2 = dir, A1i4 = applic point
Coupling Bond
Relations (X1)

Force Constraints:
C1 : = { 0=∑

∀X
kF | 0532 =++ FFF }

C2 : = { 0=∑
∀Y

kF | 0641 =++ FFF }

Moment Constraints:
C3 : = { }∑∑∑∑ ==== 0;0;0|0 CBAk MMMM

Functionality-
form Mapping
(F1)

Computer implementation

Screen captures of the computer implementation of the functionality model for the space-

frame structure is shown in Figure 80 to Figure 83. Figure 80 is the start-up screen of the Visio

interface for inputting the name of the functionality operation. . Figure 81 is a screen capture of

a wire frame model of the Crossbeam solid operand. Figure 82 is a screen capture of the

operand interaction graph of the space-frame. Figure 83 is a screen capture of a wire frame

model of the coupled solid operands.

217

Figure 80 Dialog box showing the start-up screen of the Visio interface

Figure 81 Screen capture of a wireframe model of the crossbeam solid operand

218

Figure 82 Screen capture of the space-frame operand interaction graph

219

Figure 83 Screen capture of a wireframe model of the coupled solid operands

STEP IV: Propagation of functionality model to detailed design

The model developed in Step III is now represented in an XML data file (forming what

is called the functionality signature). This XML file (containing information on the conceptual

form and functionality constraints) is propagated to the detail design phase. In the detail design

system, where the complete solid CAD model is developed and then evaluated against the

functionality constraints embedded in the XML data file.

220

6.3.3 Evaluation of Application of Methodology

The functionality-based design (FbD) methodology developed in this research is used to

specify the desired product task (functionality) to be accomplished by a designed product.

These tasks were defined (in terms of required resources (operands) and functionality constraints

and engineering relations as shown) in Table 12 through Table 28. The model developed for the

space-frame is validated by evaluating how efficiently it captures the original functional

objectives of the product. To accomplish this, the set of functionalities of the space-frame is

examined. Each of these functionalities is evaluated against the propagated functionality

constraints to demonstrate that the satisfaction of the constraints will guarantee the

accomplishment of the design goal as captured by the functionality definition.

1. Maintain structural integrity;

2. Provide support; and

3. Provide load bearing.

Maintenance of structural integrity

The structural integrity of the space frame is realized only if the conditions of

equilibrium (stability) are satisfied. This condition implies the following functional

requirements:

• the beams (solid operands) used in the design should have enough strength to withstand

all the external forces that impact the space frame;

• that the sum of all the external forces and moments on the space frame is zero.

221

To guarantee a satisfaction of the above functional requirements, the following specific

constraints were developed during the functionality modeling and then propagated to the

detailed design phase through the XML data.

• The various coupling bonds between FORCE and SOLID operands (x13, x14, x15, x16, x27,

x28) stipulate that the strength of any selected material and the corresponding geometric

feature must exceed the required internal forces necessary to overcome the impacting

external forces (F1, F2, F3, F4, F5, F6). Since this requirement is modeled as a constraint

and propagated to the detail design phase, it is available to the design system in a

transparent manner, ensuring that its satisfaction will guarantee the realization of

functional requirement #1.

• The global coupling bond on the external forces (F1, F2, F3, F4, F5, F6) has as its

coupling constraint that the equilibrium conditions are met. This condition states that the

equilibrium conditions for the forces FX and FY in the coordinate directions and the

moments Mx and My acting about these coordinates give:

∑∑ == ;0;0 YX FF

∑∑ == ;0;0 yx MM

As these constraints are also propagated to the downstream design stage, there

satisfaction will guarantee the realization of the structural integrity functionality objective of the

space-frame.

222

Provision of support as in mounting points

The functionality of providing support for other components of the car is realized is only

if acceptable mounting points are provided in the final design. This functionality implies that the

space frame is made of a suitable material that is compatible with the attached components and

that the mounting points are properly positioned to support the mounts.

To guarantee a satisfaction of the above functional requirements, the following specific

constraints were developed during the functionality modeling and then propagated to the detail

design phase.

• Two solid operands (cross-beam and tee-beam) coupled are used to provide the

mounting points. These operands correspond to actual physical rigid bodies to which the

components are attached. Appropriate constraints imposed on the possible forms of the

solids are expressed in the form of constraints (Table 12, Table 13, Table 21 – Table 27).

• The mounting points are defined as functional markers in the SOLID operands

corresponding constraints imposed on their position and orientation to guarantee that the

correct spatial relationships are maintained by the final design for the support of the

mounts.

• To ensure that the selected material is compatible to the mounts, a material type

constraint is imposed on the solid operands. This constraint restricts the material type to

ALUMINIUM.

223

Since these constraints are also propagated to the downstream design stage, there

satisfaction will guarantee the realization of the support functionality objective of the space

frame component.

Provision of load bearing task.

The load bearing functionality is realized is only if acceptable stress bearing components

with appropriate support points are provided in the final design. This functionality implies that

the space frame is made of a suitable material that is capable of withstanding any external load it

is subjected to. Analysis of the external forces (Table 14 - Table 19) shows that the maximum

expected resultant external force ranges from 0 N (F1) to 50,000 N (F4).

To guarantee a satisfaction of the above functional requirements, the following specific

constraints were developed during the functionality modeling and then propagated to the

detailed design phase through the XML data exchange.

• The strength of the various SOLID operands where expressed as constraints for both the

normal and shear stresses of the operands. However, since the stress specification of a

solid is related to the geometry (cross-sectional area), this requirement is hence defined

as a constraint related to the specific geometric form of the product. The internal forces

are as a result of reaction to external forces (F1, F2, F3, F4, F5, F6) on the solid operands.

• Another constraint that ensures that the load bearing is achieved is the spatial

relationship requirement that specifies the orientation and location of the load bearing

components. This constraint is expressed as coupling relations imposed on the

functional markers and joint coupling operation.

224

Since these constraints are also propagated to the downstream design stage, there

satisfaction will automatically guarantee the realization of the support functionality objective of

the space frame component.

An experiment is designed to validate and demonstrate how functionality constraint can

be used to verify design parameters in an integrated product development environment. This

experiment involves the use of ANSYS analysis package to perform finite element analysis on

sample designs to verify that the normal strength constraints are satisfied by the proposed

design.

The procedure used for this analysis is to subject two designs (each with different design

parameter – beam thickness) to the expected maximum normal loading forces to determine its

compliance to the strength functionality constraint. The CAD model of the test model is shown

in Figure 84. The first variation of the design is referred to as Design I, while the second design

is referred to as Design II. The two beams (cross-beam and tee-beam) have uniform cross-

sectional areas. Design I has a beam thickness of 2.5 mm and cross-sectional area of 675 mm2.

Design II has a beam thickness of 0.75 mm and cross-sectional area of 207.75 mm2.

Both beams are designed with aluminum alloy material. The yield strength (Sy) of this

material under normal loading is 280.00 N/mm2. Using the functionality strength constraint

listed in Table 12 and Table 13, the maximum allowable normal stress (Sallow) for the two

designs is given by:

Sallow = 0.6 Sy

 = 0.0 x 280 = 168 N/mm2

225

Figure 84 CAD model of test design

Consequently, the normal stress in the beams should not exceed this value (168 N/mm)

for the design to be functionally acceptable. The ANSYS finite element analysis (FEA) package

is used in the analysis of the normal stresses. Each design is tested under three different loading

conditions to evaluate the resulting normal stress distribution in the beams. The loading

conditions are shown in Appendices A.1 – A.4.

2

226

The ANSYS result shown in Table 29 shows the maximum normal stress on the beams.

The result of the ANSYS analysis in shows that while Design I was able to sustain the maximum

expected external load, Design II exceeds the defined stress limit (might breakdown under this

loading condition) under test condition #3. A complete listing of the result of this analysis is

shown in Appendix A.

Table 29 ANSYS test result showing maximum normal stress in space-frame

Design Test condition #1 Test condition #2 Test condition #3

Design 1

(max stress – N/mm2)
40.41 39.30 92.41

Design 2

(max stress – N/mm2)
124.73 121.11 279.23

While this demonstration is manual, an integration of the functionality-based design

procedure developed in this research in to CAD and analysis packages can help provide support

for an automated verification of product functionality, which is not presently supported in CAD

systems.

Benefits compared to the commercial CAD packages

The commercial CAD systems have evolved into powerful designer aid in the

development of mechanical products. The common CAD systems including AutoCad,

227

Solidworks, ProE, and Catia, are considered as the state-of-the-art in the product design

community. These CAD systems are compared to the capabilities of an FbD-based system as

outlined in Section 6.3.2 for evaluation and validation of the functionality modeling

methodology. The result of this comparison is summarized in Table 30. The tabulation shows

that the FbD methodology provides support for the modeling and propagation of product

functionality as constraints through its XML file propagation system. This support allows down

stream design systems to access product functionality data for better integration and decision-

making purposes.

Table 30 FbD capability versus Existing Commercial CAD Systems

Comparison measure Commercial CAD systems
(AutoCAD, Solidworks, ProE,
and Catia)

FbD Methodology

Mathematical representation of
product function

Not available Supported

Function to concept bridge Limited support (QFD, axiomatic
design, etc)

Supported

Functionality constraint
representation

Limited support (e.g. feature-
based design)

Supported

Link between function and form Not supported Supported
Propagation of function to detail
design

Not supported Supported

Transition from concept to detail Limited support (e.g. Pro-D from
PTC)

Supported

Provision of mechanism + data
for automatic function
verification and enforcement.

Not supported Supported (through
XML data)

228

7.0 CONCLUSION AND FUTURE WORK

7.1 Conclusion

This research provides a methodology to support computer-aided conceptual design. It

provides a methodology for mapping product needs in the form of problem statements and

preferences through functional requirement analysis into a functionality model describing all the

functional aspects of a design that could solve the original problems. The functionality model

provides a description of the product in the form of functionality relations and constraints

imposed on the physical resources used in the realization of the given task. New modeling

concepts in the form of operands and coupling bonds were introduced in the modeling of

product functionality. The resources required to accomplish a function have been described in

the form of functionality operands. The relations and constraints are defined in terms of

coupling bonds. A generic model of product functionality has been developed to describe

functionality in a mathematical form.

The concepts developed in this work have been demonstrated in a computer system. This

demonstration was accomplished by building a customized functionality-modeling engine in a

Microsoft Visio platform. Specifically, the following computer tools have been developed to

support functionality-based design for mechanically engineered products:

• Functionality modeling toolkit implemented by customizing and automating master

shapes, stencils and drawing functions in a Visio graphic design environment.

• Special graphic user interfaces were developed to provide an interactive environment for

the modeling of product functionality.

229

• Functionality constraint modeling tools were developed to extract constraint information

from the functionality components.

• Functionality data structure was created using object modeling approach. This data

modeling approach provides an easy and flexible means of managing functionality

information.

• Functionality data propagation to downstream design activities has been enabled by the

use of an XML data representation schema developed in this work for functionality

propagation and exchange.

The methodology developed in this research allows CAD systems to capture and model

product functionality during conceptualization. Hence, it possible to impose product

functionality as a set of design constraints that may be used during the detailed design and

analysis phase of the product. This work will help designers to ensure that the original design

intents are maintained throughout the design process. It also serves as an interface tool between

the conceptual design phase and detailed design phase of a product.

The integration of the functionality-based design tool with CAD systems (solid

modelers) will support the re-use of past design experiences and knowledge. The development

of functionality-based design system will significantly reduce the product development time and

the associated costs. This is possible because the functionality constraints propagated to detail

design phase can be used to evaluate design proposals in a transparent manner, thereby avoiding

the need for the usual iterative design and analysis process and the associated overhead cost and

time.

230

Functionality modeling can support product issues such as safety and reliability. The

reliability of a product requires that it perform the primary task without failures. Safety, on the

other hand, ensures that the operation of the product does not result in an injury to its operators,

users, or other people. The inclusion of operational requirements of a product as functionality

constraints in the functionality model ensures that a reliable and safe design is produced, as it

must satisfy the functionality constraints that guarantee the desired level of reliability and safety.

Reliability and safety inclusion in the functional requirement, however, would require an

understanding of factors that impact product reliability and safety. These factors are then

mapped into functionality elements in terms of operands (and corresponding attributes) and

coupling relations (coupling bonds).

The proposed functionality-based design procedure provides a framework that allows a

designer to carry out conceptual design with the aid of a computer. It will also serve as an

interface tool between the conceptual design phase and detailed design phase of a product. The

result of this research will be integrated into the Pegasus [10] designer platform.

7.2 Future Work

This research provides the basic structure and methodology for functionality-based

design. Future research will extend the set of operands developed in this work to include all

material and energy operands. It is also possible to extend the result of this work to the design

of other engineering products (other than the current restriction to mechanical devices). The

proposed functionality verification scheme can be incorporated into solid CAD modelers. This

231

verification scheme may be extended and used for decision-making in the selection of

competing design proposals from bidders (say in a supply chain environment).

The computer implementation has been used to demonstrate the concepts developed in

this work. There are obvious limitations on the computer toolkit developed in this work. It is

restricted to modeling product functionalities that may be captured in 2-dimentional coordinate

modeling environments. Future work on this project may extend this to capture 3-dimensional

objects. Other possible extensions include the provision of functionality state modeling tools

and the provision of more functional markers (to cover shapes such as rectangles, circles, etc)

instead of the current implementation that is restricted to points, lines, and curves.

Functionality states were not included in the computer implementation of this work. A

future extension of this work will extend the scope of the operand states covered from two to

continuous states. A computer implementation to support functionality states will also be part of

the future extension of this work.

Finally, another possible extension of this work is the provision of real design repository

in computer system covering the basic mechanical primitives discussed in this work. This

extension will actualize the proposed advantages of reusable design knowledge.

7.2.1 Integration with CAD System

The functionality-modeling support may be integrated into commercial CAD systems by

the use of attribute XML form tags. These form tags are unique attribute identification number

(attribute ID) assigned to each functionality model element (including, coupling bonds, operand

and associated functional markers). These numbers when propagated to a CAD system informs

232

the detailed CAD system of the solid components and their corresponding features that need to

be instantiated to build a solid model for the propagated functionality model. The detailed CAD

system (designer) creates solid models that correspond to each of the propagated attribute ID.

Hence, the “attribute IDs” are incorporated into the XML data file that is propagated to the

CAD.

For instance, the implementation of this in ACIS kernel would require the use of a

special customization feature provided in ACIS [87] architecture to support definition of user

assigned attributes. ACIS is an object-oriented three-dimensional (3D) geometric modeling

engine from Spatial Technology Inc. [88] It is designed for use as the geometric foundation

within virtually any end user 3D modeling application. The ACIS model representation consists

of various geometric and topologic entities, as well as attributes that may be attached to the

entities. The model is implemented in C++ using a hierarchy of classes. All geometric entities

specified in the XML data are linked to solid model. In ACIS solid model, attribute ID is used as

a linkage tag. This functionality model’s XML data goes together with geometric data (solid

model) in functionality data transitions. It allows functionality information to be persistently

captured in a CAD design environment.

Hence, functionality is attached to the solid components as attributes just as geometric

information is done. During design verification, the system may simply invoke the attributes and

compare them with that of the actual designed product (solid CAD model).

233

7.2.2 Extension to Commercial Product Level

The work in this research has been focused on the development of modeling concepts

necessary for the representation of product functionality in CAD systems. The implementation

has been restricted to demonstration of the concepts developed in this research. To advance the

functionality-modeling tool to a commercial product level, the following additional

improvements need to be performed.

• A special API to handle the use of XML tags as means of propagating functionality

information to CAD systems needs to be developed to enable integration with other design

tools.

• The FbD tools need to be integrated [*] with existing CAD and analysis systems in such a

way that transparent functionality verification and propagation are supported. A standard

communication protocol needs to be developed to enable interoperability of the design

tools.

• Support for functionality states should be implemented in computer system for all types of

states ranging from discrete to continuous states.

• The computer implementation of the functionality-modeling tool should be extended to

support three-dimensional (3-D) models.

• An extension of the supported operands is necessary to cover operands such as gases,

liquids, electrical, chemical, thermal, electrical, magnetic, acoustic, radioactive, chemical,

biological, optical, hydraulic, or pneumatic energy source. In addition, the solid operand

should be extended to cover deformable solids.

* See discussion on FbD – CAD integration, Section 7.2.1.

234

• There is a need to develop a verification mechanism to be supported by existing analysis

packages such as ANSYS, [89] ADINA, [90] CFX, [91] etc. For this to be accomplished, it is

necessary to work in collaboration with the software companies that developed these

packages to evolve a standard specification mechanism to allow for transparent analysis of

product functions.

• The computer graphic capability needs to be improved by implementing the system as an

independent package (that is outside of Visio environment). Alternatively, its capability in

Microsoft Visio 2002 may be improved by working in close collaboration with Microsoft

Inc. to achieve extensive customization without compromising the processing speed.

• Provision of a design repository to serve as a knowledge-base containing prototype

functionality models from which as user may select objects and then customize them for

their specific needs.

• Inclusion of decision-making support will enable the system to suggest design alternatives

in case of design violation during functionality verification.

235

APPENDICES

APPENDIX A

ANSYS FINITE ELEMENT ANALYSIS RESULT

Software Used: ANYSIS DesignSpace 6.1

A.1 Definition of Aluminum Alloy

Table 31 "Aluminum alloy" properties

Name Type Value Temperature

Modulus of Elasticity Temperature-Independent 71,000.0 MPa

Poisson's Ratio Temperature-Independent 0.33

Mass Density Temperature-Independent 2.77×10-6 kg/mm³

Coefficient of Thermal Expansion Temperature-Independent 1.7×10-5 1/°C

Thermal Conductivity Temperature-Dependent 0.11 W/mm·°C -100.0 °C

Thermal Conductivity Temperature-Dependent 0.14 W/mm·°C 0.0 °C

Thermal Conductivity Temperature-Dependent 0.17 W/mm·°C 100.0 °C

Thermal Conductivity Temperature-Dependent 0.18 W/mm·°C 200.0 °C

Table 32 "Aluminum alloy" stress limits

Name Type Value

Tensile Yield Strength Temperature-Independent 280.0 MPa

Tensile Ultimate Strength Temperature-Independent 310.0 MPa

Compressive Yield Strength Temperature-Independent 280.0 MPa

Compressive Ultimate Strength Temperature-Independent 0.0 MPa

Description: "6061-T6 aluminum. Fatigue properties come from MIL-HDBK-5H, page 3-277."
"Aluminum Alloy" contains nonlinear data for thermal conductivity.

 237

A.2 Test Condition 1

Table 33 Model : parts

Name Material Bounding Box (mm)

"Part 1" "Aluminum Alloy" 70.0, 70.0, 1,180.0

"Part 2" "Aluminum Alloy" 650.0, 70.0, 70.0

Table 34 Contact conditions

Name Behavior Associated Parts

"Contact Region" Bonded "Part 2" and "Part 1"

Figure 85 Loading condition for test condition 1

Table 35 Structural loading

Name Type Magnitude Associated Parts

"Force" Surface Force 50,000.0 N "Part 1"

Table 36 Structural supports

Name Type Associated Parts

"Fixed Support" Fixed Surface "Part 1"

"Fixed Support 2" Fixed Surface "Part 2"

 238

A.3 Test Condition 2

Table 37 Model : parts

Name Material Bounding Box (mm)

"Part 1" "Aluminum Alloy" 70.0, 70.0, 1,180.0

"Part 2" "Aluminum Alloy" 650.0, 70.0, 70.0

Table 38 Contact conditions

Name Behavior Associated Parts

"Contact Region" Bonded "Part 2" and "Part 1"

Figure 86 Loading condition for test condition 2

Table 39 Structural loading

Name Type Magnitude Associated Parts

"Force" Surface Force 50,000.0 N "Part 1"

Table 40 Structural supports

Name Type Associated Parts

"Fixed Support" Fixed Surface "Part 1"

"Fixed Support 2" Fixed Surface "Part 2"

 239

A.4 Test Condition 3

Table 41 Model : parts

Name Material Bounding Box (mm)

"Part 1" "Aluminum Alloy" 70.0, 70.0, 1,180.0

"Part 2" "Aluminum Alloy" 650.0, 70.0, 70.0

Table 42 Contact conditions

Name Behavior Associated Parts

"Contact Region" Bonded "Part 2" and "Part 1"

Figure 87 Loading condition for test condition 3

Table 43 Structural loading

Name Type Magnitude Associated Parts

"Force" Surface Force 50,000.0 N "Part 2"

Table 44 Structural supports

Name Type Associated Parts

"Fixed Support" Fixed Surface "Part 1"

"Fixed Support 2" Fixed Surface "Part 1"

"Fixed Support 3" Fixed Surface "Part 1"

 240

A.5 Result of Design 1, Test condition 1

Figure 88 Normal stress distributions for design 1, test condition 1

Table 45 Structural results

Name Scope Orientation Minimum Maximum Alert Criteria

"Normal Stress" All Parts In "Model" World X Axis -40.41 MPa 25.74 MPa None

 241

A.6 Result of Design 1, Test condition 2

Figure 89 Normal stress distributions for design 1, test condition 2

Table 46 Structural results

Name Scope Orientation Minimum Maximum Alert Criteria

"Normal Stress" All Parts In "Model" World X Axis -39.3 MPa 14.71 MPa None

 242

A.7 Result of Design 1, Test condition 3

Figure 90 Normal stress distributions for design 1, test condition 3

Table 47 Structural results

Name Scope Orientation Minimum Maximum Alert Criteria

"Normal Stress" All Parts In "Model" World X Axis -92.41 MPa 0.0 MPa None

 243

A.8 Result of Design 2, Test condition 1

Figure 91 Normal stress distributions for design 2, test condition 1

Table 48 Structural results

Name Scope Orientation Minimum Maximum Alert Criteria

"Normal Stress" All Parts In "Model" World X Axis -124.73 MPa 86.51 MPa None

 244

A.9 Result of Design 2, Test condition 2

Figure 92 Normal stress distributions for design 2, test condition 2

Table 49 Structural results

Name Scope Orientation Minimum Alert Criteria

"Normal Stress" All Parts In "Model" World X Axis -121.11 MPa 48.46 MPa None

Maximum

 245

A.10 Result of Design 2, Test condition 3

Figure 93 Normal stress distributions for design 2, test condition 3

Table 50 Structural results

Name Scope Orientation Minimum Maximum Alert Criteria

"Normal Stress" All Parts In "Model" World X Axis -279.23 MPa 0.0 MPa None

 246

APPENDIX B

MODELING WITH FUNCTIONALITY PRIMITIVES

B.1 Transformation Operation

This functionality operation transforms or converts one mechanical operand (such as:

force, torque, pressure, heat, etc) to another mechanical operand. For example, force to torque,

force to deformation/strain (effect), force to linear displacement, and torque to angular

displacement. The transform operation has three components (A, B, and C) as shown in Figure

94.

• A is the Source Operand

• B is the Target Operand

• C is the Transform Operator defining the nature of A-B interaction

These components and their corresponding attributes are identified during the initial

requirement analysis of the function.

CA B

Figure 94 Transform operation

247

The source and target operands identified during the functional requirement phase are

specified at design time by selecting from any of the functionality oparands. Hence, one might

select FORCE as the source operand and TORQUE as the target operand. This decision will

automatically invoke the attributes corresponding to FORCE and TORQUE operands. This

approach thus ensures that the designer is aware of all the relevant factors that might influence

the functionality of the design.

The transform operator defines the relevant coupling bond necessary to achieve the A-to-

B transformation operation. This coupling bond includes the set of DoFs, constraints, and the

functional relations necessary to achieve the desired transformation task. The designer is

allowed to also define some custom relations involving the attributes and the functional features

of the operands.

Additional operands that might be required to achieve the transformation are also defined

for the operation. For the case of FORCE to TORQUE transformation, a MATERIAL

MEDIUM is necessary to realize this functionality as shown in Figure 95 and Table 51.

TORQUE
MEDIUM - SOLID

FORCE

turning
direction

Figure 95 FORCE to TORQUE transformation functionality operation

248

Table 51 Force to torque transformation functionality operation
<source operand> FORCE Attributes of FORCE.
<target operand> TORQUE Attributes of TORQUE.
<operator> <additional operands> MEDIUM - SOLID
 <relations>

T = F x L; where, L is MEDIUM attribute;
Spatial relations between operands.

 <constraint> {MEDIUM: strength, functional markers,
length}{FORCE: magnitude, direction}{TORQUE:
magnitude, direction}

 <dof> Defines movement restrictions on: MEDIUM, FORCE,
TORQUE

B.2 Transmission Operation

This functionality operation conveys a mechanical operand from one point to another.

This primitive has a positional component associated with it. It does not change the nature of an

operand, but merely changes its spatial location in space. Examples include: force transmission

along a beam, power transmission of an automobile shaft, torque transmission of a pump

spindle, and pressure transmission in a pipe. Other examples that are outside the scope of this

work include: electromagnetic transmission, sound transmission, and thermal transmission. The

transmission operation has three components (A, B, and C) as shown in Figure 96.

A: Source Operand

B: Target Operand

C: Transmission Operator: A-B interaction

249

C
BA

Figure 96 Transmission operation functionality

The components of transmission functionality together with their corresponding

attributes are identified during the initial functional requirement analysis of the function. The

source and target operands are specified at design time by selecting from any of the

functionality oparands. Hence, one might select FORCE as the source operand and FORCE′ as

the target operand. This decision will automatically invoke the attributes corresponding to

FORCE and FORCE′ operands. This approach thus ensures that the designer is aware of all the

relevant factors that might influence the functionality of the design.

The transmission operator defines the relevant coupling bond necessary to achieve the

A-to-B transmission operation. The coupling bond includes the set of DoFs, constraints, and the

functional relations necessary to achieve the desired transformation task. The designer is

allowed to also define some custom relations involving the attributes and the functional features

of the operands.

Additional operands that might be required to achieve the transformation are also defined

for the operation. For the case of FORCE-to-FORCE′ transformation, a MATERIAL MEDIUM

is usually necessary to realize this functionality. Force transmission results in displacement,

loading, stress, strain, pressure, etc. For each transmission element, the system invokes the

corresponding attributes that may be imposed as constraints. Consequently, for a force

250

transmission element, we will have attributes such as mode of application, point of application,

nature of force (impact, steady, or random loading), and associated transformation.

As an illustration, consider as case of MATERIAL-to-MATERIAL transmission

functionality operation. This transmission operation conveys or relocates a MATERIAL

operand from one point to another. Thus, it effects the spatial displacement of a material. This

material transmission functionality is commonly known as motion function. For example,

Figure 97 (and Table 52) shows a SOLID material BLOCK conveyed from point A1 to point

A2.

BLOCKA2BLOCKA1

XYZ

Point A1 Point A2

Figure 97 Solid transmission functionality example

Table 52 Solid transmission functionality operation example
<source operand> SOLID: BLOCK Attributes of BLOCK solid operand.
<target operand> SOLID: BLOCK Attributes of BLOCK solid operand.
<operator> <additional operands> - FORCE (weight, friction and applied forces)

- MEDIUM / trajectory.
 <relations>

 <constraint> {MEDIUM - trajectory: strength, length}{FORCE:
magnitude, direction}{BLOCK: solid material attributes}

 <dof> Defines movement restrictions on: MEDIUM, FORCE,
BLOCK

• Force and motion equations;
• Frictional relations; and
• Spatial relations

251

B.3 Joint Operation

Retains/maintains an absolute or relative position of functionality operands (holds two or

more entities in relative position). This is usually achieved by exerting a retentive (restricting)

force on operand or/and resisting dissociating forces. The joint operation has three components

(A, B, and C) as shown in Figure 98.

A: First Operand

B: Second Operand

C: Joint Operator: A-B interaction

CA B

Figure 98 Joint functionality operation

The components and their corresponding attributes are identified during the initial

functional requirement analysis phase of the function. The first and second operands need to be

specified at design time by selecting from any of the operands. These operands are usually

SOLID material operands that need to maintain a given spatial relation with each other. It is

possible to extend the concept of joint functionality beyond MATERIAL operands to include

energy operands. However, in this work description of joint operation is limited to SOLID

operands. Hence, one might select two solid operands as the A and B components of the joint

functionality. The selection of A and B operand will automatically invoke the attributes

corresponding to selected solid operands.

252

The joint operator defines the relevant coupling bond necessary to achieve the A-to-B

joint operation. The coupling bond includes the set of DoFs, constraints, and the functional

relations necessary to achieve the desired joint task. The designer is allowed to also define some

custom relations involving the attributes and the functional features of the operands.

Additional operands that might be required to achieve the joint operation are also defined

for the operation. A joint functionality is usually realized by the inclusion of some additional

operand or operand mechanisms necessary to spatially maintain the specified DoF.

Some functional considerations necessary for the definition of the joint functionality

design are:

� Consideration of the type of loading, such as shear and tension, to which the structure

will be subjected and the size and spacing of holes.

� Compatibility of the fastener material with the components to be joined is important.

Incompatibility may lead to galvanic corrosion and crevice corrosion.

� Nature of expected dissociating forces: steady, random, vibration, impulsive, etc.

In specifying the joint functionality operation, the class or type of joint required is

usually determined by the desired spatial relation and degree of freedom of the operands

(coupling components). Two broad classes of joints are available: hard and soft joints.

� Resistance force: effect and reaction of force

� Desired spatial relation and the degree of freedom restriction requirements.

253

� Hard joint from hard fastening: A fixed DoF is maintained between the coupled

operands. Hence, no relative motion is allowed between the fastened parts. Examples of

hard joints are formed by welding, screw, glue, and rivets processes.

� Soft joint from soft fastening: When a fixed DoF is not necessary between the operands,

a soft joint option is an option. Here, operands are joined together so that relative motion

between these two parts is consistent. Soft joints are used to create movable joints, such

as hinges, sliding mechanisms for drawers and doors, and adjustable components and

fixtures. Examples of such joints include revolute joint, cylindrical joint, spherical joint,

prismatic joint, helix, and plane joints.

In terms of reversibility of the joint operation, two classes of joints are available:

o Permanent / Semi-Permanent joint: welding, glue, rivets, etc.

o Reversible (fastening) Joint: Used to join two or more components in such a way

that they can be taken apart sometime during the product’s service life.

Examples: clips, threaded fasteners, rivets, metal stitching, seaming, crimping,

and clamping.

As an illustration of joint functionality operation, consider as case where two SOLID

operands (steel beams) are brought together to form a tee-joint using the joint functionality

operation. This joint operation maintains the two operands in a fixed spatial relation with

respect to each other. Thus, it maintains the spatial location of the material operands.

254

B.4 Load bearing Operation

Bear loads exerted by mechanical operands by resisting displacement/deformation forces

without exceeding a maximum deformation limit, thus maintains a state of stability for the

mechanical operands. The load bearing functionality operation has three components (A, B, and

C) as shown in Figure 99.

A: Source Operand (Load)

B: Target Operand (Base)

C: Load bearer Operator: A-B interaction

B

C

A

Figure 99 Load bearing functionality operation

The source operand (A) is the operand that provides the load that needs to be resisted.

Load is expressed in terms of force. This source of loading force could be because of the weight

of a solid (material) operand or as a result of application of an external force. Whatever the

nature of this force, its attribute is captured by its properties and any associated solid operands.

Other issues that need to be considered include:

� Nature of loading: steady, impulse, random, vibration

� Position and orientation of load (vertical, horizontal, or inclined)

255

The target operand (B) is the operand that provides the resistance to the applied loading.

Hence, it provides conditions necessary to maintain stability or equilibrium. In this work, this

operand is limited to SOLID operands. A future extension of this set could include the use of

energy operands such as the forces provided by electromagnetic systems to bear load. The usual

attribute set of SOLID materials needs to be defined for this operand. In particular, the strength

and elastic properties should be such that it can withstand the type of loading it is subjected to.

The load-bearing operator defines the relevant coupling bond necessary to achieve the A-

to-B load bearing operation. The coupling bond includes the set of DoFs, constraints, and the

functional relations necessary to achieve the desired load-bearing task. The designer is allowed

to also define some custom relations involving the attributes and the functional features of the

operands. Spatial relations need to be defined with respect to operands A and B. This spatial

relation determines some other factors such as: nature of the load (tensile, compressive,

torsional, and shear loading), bending moments, stress, strain. In addition, the required DoF of

the load and its interaction with the base defines the issues related to support and stability.

As an example, consider the design of a shelf that supports stacks of books by providing

a load bearing functionality operation. This functionality operation ensures that the books

placed in the shelf are retained by resisting the weight (loading force) exerted by the books. In

this example, component A is the stack of books, component B is the shelf (SOLID operand)

that served as a base, and component C is the interaction (coupling bond) A and B. This load

bearing operation maintains the two operands in a fixed spatial relation with respect to each

other.

256

B.5 Energy Converter Operation

This is a special type of transformation functionality operation occasioned by the scope

of this work. In this work, it is assumed that all the energy that impact mechanical product

functionality is present in mechanical form. For this assumption to hold, all energy sources,

other than mechanical energy, are first applied to an energy converter, which transforms that

energy into a mechanical form. Thus, energy converter (a specialized transformation operation)

is used as a primitive operation in the functionality model.

Consequently, the energy converter transforms energy from one form to another. It has

three components (A, B, and C) as shown in Figure 100.

A: Source Operand: Input Energy

B: Target Operand: Output Energy

C: Converter Operator: A-B interaction

CA B

Figure 100 Energy converter functionality operation

Although energy may assume any form (mechanical, electromagnetic, etc), the only form

that is modeled in this work is the mechanical energy (FORCE and TORQUE). Although A and

B components may assume any form, the scope of this work is such that either A or B

(depending on the one directly in contact with the rest of the functionality model) must be in a

mechanical form (FORCE or TORQUE).

257

Converter operator (C): A lot of work has been done by physicists in determining the

relation between various forms of energy. In this work, no attempt is made to include the detail

of this relation in the model. The designer is at liberty to define the details of such relations.

The only relevant factor in this work is an accurate description of the mechanical energy

components (FORCE / TORQUE) that is in direct contact with the rest of the functionality

model. This description will typically include all the attributes of a FORCE / TORQUE operand

(magnitude, direction, and spatial relations).

B.6 Frictional Operation

This is functionality primitive that manages frictional relations between surfaces of

operands in mechanical systems. It may reduce, increase or maintain mechanical friction. The

joint operation has three components (A, B, and C) as shown in Figure 101.

A: First Surface (C1): functional Region of SOLID operand A

B: Second Surface: (C2): functional Region of SOLID operand B

C: Friction Operator: A-B-C -F interaction 1-C2-M

Where, F is the frictional force and M is the normal load on surface C2

F

M
C1

B

A
C2

Figure 101 Frictional functionality operation

258

The First and Second entities (C1 of A and C2 of B) need to be specified at design time

by selecting two surfaces (as a functional region) from the functional marker set of any of the

solid oparands already included in the functionality model. The operands (A and B) are SOLID

material operands that involve some sliding motion on the contacting surfaces. It is possible to

extend the concept of frictional functionality beyond SOLID MATERIAL operands to include

GASEOUS and LIQUID operands. However, in this work, description of frictional operation is

limited to SOLID operands. Hence, one might select two SOLID operands as the A and B

components of the frictional functionality. The selection of A and B operand will automatically

invoke the attributes corresponding to selected solid operands. This approach thus ensures that

the designer is aware of all the relevant factors that might influence the functionality of the

design.

The friction operator defines the relevant coupling bond necessary to achieve the A-to-B

frictional operation. The coupling bond includes the set of DoFs, constraints (including

frictional forces), and the functional relations necessary to achieve the desired frictional task.

The designer is allowed to also define some custom relations involving the attributes and the

functional features of the operands.

�

Additional operands or tasks (example polishing, ball bearing, lubrication, etc) that

might be required to achieve the desired friction level are also defined for the operation. Some

additional functional considerations necessary for the definition of the joint functionality design

are:

� Nature of expected forces: steady, random, vibration, or impulsive.

Desired spatial relation and the degree of freedom restriction requirements.

259

� Frictional Heat: In sliding friction, if the frictional force F is collinear with the direction

of the velocity V of the point of application, the amount of the friction heat generated

while the force was applied from time t1 to t2 is:

∫ ⋅= 2

1

t

t
VdtFQ

If the force and velocity remain constant in time,

 () sFttFVQ ∆=−= 12

 Where,

 ∆s is the distance traveled at constant velocity

� Amonton’s law demands that friction force is:

nFF µ=

where,

Fn = normal force compressing the two rubbing solids

µ = constant (friction coefficient, depends only on material and surface)

Similarly, if constant friction torque T is applied to a solid rotating at an angular velocity

w, during a time interval t ∆θ = w(t2 – t1 or angle of rotation 2 – t1), the heat generated is:

() θ∆=−= TttTwQ 12

B.7 Offset Operation

Maintain a specified offset (distance) between entities by providing obstruction to

disallowed motion. This might invoke sub-functions such as fastening and load-bearing

functionalities. This is usually achieved by exerting a retentive (restricting) force on entity

260

or/and resisting dissociating forces. The offset operation has three components (A, B, and C) as

shown in Figure 102.

A: First Operand

B: Second Operand

C: Offset Operator: A-B interaction

A B
C

Figure 102 Offset functionality operation

The First and Second operands are specified at design time by selecting from any of the

operands already included in the design tool. These operands are usually material operands that

need to maintain a given spatial offset relation with each other. It is possible to extend the

concept of offset functionality beyond MATERIAL operands to include energy operands.

However, in this work, description of offset operation is limited to SOLID operands. Hence,

one might select two material operands as the A and B components of the offset functionality.

The selection of A and B operand will automatically invoke the attributes corresponding to

selected solid operands.

The offset operator defines the relevant coupling bond necessary to achieve the A-to-B

offset operation. The coupling bond includes the set of DoFs, constraints, and the functional

relations (including spatial relations) necessary to achieve the desired offset task. The designer

261

is allowed to define some custom relations involving the attributes and the functional features of

the operands.

Additional operands that might be required to achieve the offset operation are also

defined for the operation. An offset functionality is usually realized by the inclusion of some

additional operand or operand mechanisms necessary (as separators) to spatially maintain the

necessary offset.

Some functional considerations necessary for the definition of the offset functionality

design are:

B.8 Channel Operation

� Consideration of the type of loading that might be present, such as shear and tension, to

which the offsetting operator will be subjected.

� Nature of expected dissociating forces: steady, random, vibration, impulsive, etc.

� Desired spatial relation and the degree of freedom restriction requirements.

As an illustration, consider as case where two SOLID operands (steel components) offset

functionality operation. This offset operation maintains the two operands in a fixed spatial

relation with respect to each other.

Provides a mechanical functionality that ensures that entities assume a desired spatial

position. Constrains displacement along a pre-defined path by exerting reaction forces.

Examples: guide rails, fixtures and jigs, and chamfers for assembly.

262

This is usually achieved by exerting a retentive (restricting) force on entity or/and

resisting dissociating forces. The channel operation has three components (A, B, and C) as

shown in Figure 103.

A is the channel, guide, or path enforcer.

B is the guided or channeled operand.

C is the channel Operator defining A-B interaction.

C

B

A

Figure 103 Channel functionality operation

The First and Second operands are specified at design time by selecting from any of the

functionality operands. These operands are usually material operands that need to maintain a

given spatial relation with each other. It is possible to extend the concept of channel

functionality beyond MATERIAL operands to include energy operands (as in optical fibers).

However, in this work description of channel operation is limited to SOLID operands. Hence,

one might select two components as the A and B components of the channel functionality. The

selection of A and B operand will automatically invoke the attributes corresponding to selected

solid operands. This approach ensures that the designer is aware of all the relevant factors that

might influence the functionality of the design.

263

The channel operator (C) defines the relevant coupling bond necessary to achieve the A-

to-B channel operation. The coupling bond includes the set of DoFs, constraints, and the

functional relations (including spatial relations) necessary to achieve the desired channel task.

The designer is allowed to also define some custom relations involving the attributes and the

functional features of the operands.

Additional operands that might be required to achieve the channel operation are also

defined for the operation. Channel functionality is usually realized by the inclusion of some

additional operand or operand mechanisms necessary (as separators) to spatially maintain the

necessary channel.

B.9 Block Operation

Block: Disallows non-permissible entrance / motions. Examples include provision of

insulation in electrical systems, guards in fans, etc. Maintain a specified separation/offset

between entities by providing obstruction to disallowed contacts. It functions by providing an

operand as a separator. This is usually achieved by exerting a retentive (restricting) force on

entity or/and resisting dissociating forces. This operation has three components (A, B, and C) as

shown in Figure 104.

A: First Operand

B: Second Operand

C: Block Operator: A-B interaction

264

B

C

A

Figure 104 Block functionality operation

The First and Second operands need to be specified at design time by selecting from any

of the functionality operands. These operands are usually material operands that need to

maintain a given spatial separation and relation with each other. It is possible to extend the

concept of block functionality beyond MATERIAL operands to include energy operands.

However, in this work description of block operation is limited to SOLID operands. Hence, one

might select two components as the A and B components of the block functionality. The

selection of A and B operand will automatically invoke the attributes corresponding to selected

solid operands. This approach ensures that the designer is aware of all the relevant factors that

might influence the functionality of the design.

Additional operands that might be required to achieve the guard-block operation are also

defined for the operation. Block functionality is usually realized by the inclusion of some

The block operator defines the relevant coupling bond necessary to achieve the A-to-B

block operation. The coupling bond will include the set of DoFs, constraints, and the functional

relations (including spatial relations) necessary to achieve the desired block task. The designer

is allowed to also define some custom relations involving the attributes and the functional

features of the operands.

265

additional operand or operand mechanisms necessary (as separators) to spatially maintain the

blocking.

266

BIBLIOGRAPHY

BIBLIOGRAPHY

1. Dentsoras, A.J., “A Selective, Multi-criteria Method for Handling Constraint Violations in

Well-defined Design Problems”, Artificial Intelligence for Engineering Design, Analysis,
and Manufacturing, Vol. 13, (1999), pp. 205-215.

2. Tien-Lun, L., and Nnaji, B.O., “Realization and Management of Product Design Constraints

in CAD Modeling”, (To be published in Computer-Aided Design).

3. Mullins, S.H. and Anderson, D.C., “Automatic Identification of Geometric Constraints in

Mechanical Assemblies”, Computer-Aided Design, Vol. 30, No. 9 (1998), pp. 715-726.

4. Rowe Jeffrey, “Teamwork”, MCAD Vision, June 2000, http://www.mcadcafe.com.

5. Abrahamson, S, et al., “Integrated Design in a Service Marketplace”, Computer-Aided

Design, Vol. 32, (2000), pp. 97-107.

6. Oh, V. and Sharpe, J., “Conflict Management in an Interdisciplinary Design Environment”,

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 9, (1995),
pp. 247-258.

7. NSF workshop on e-Product Design and Realization, University of Pittsburgh, Pittsburgh,

Oct 19-18, 2000.

8. Tong, C. and Sriram, D., ed., Artificial Intelligence in Engineering Design: Design

Representation and Models of Routine Design, Volume I, “Introduction, by C. Tong and D.
Sriram” (New York: Academic Press Inc, 1992), pp. 1-53.

9 . Lotter, B., Manufacturing Assembly Handbook. (Boston: Butterworths, 1986).

10. Nnaji, B., “Pegasus e-Product Designer System” IUCRC workshop on e-Product Design and

Realization (Pittsburgh, Pennsylvania: University of Pittsburgh, December, 2000).

11. Huang, G.Q., ed., Design for X; Concurrent Engineering Imperatives, “Design for

Manufacture and Assembly: The Boothroyd-Dewhurst Experience, by G. Boothroyd” (New
York: Chapman & Hall, 1996), pp. 1-17.

268

http://www.mcadcafe.com
obinna muogboh

269

12. Lee, Kunwoo, Principles of CAD / CAM / CAE Systems (Massachusetts: Addison-Wesley,

1999), pp. 101.

13. Chan, B., and Finger, S., “Supporting Conceptual Design: A Model for Reflective-

Interactive Design”, Knowledge Intensive CAD, 1998, pp. 215-236.

14. Terpenny, J.P., Nnaji, B.O., and Bohn, J.H., “Blending Top-Down and Bottom-Up

Approaches in Conceptual Design”, Proceedings of the Seventh Industrial Engineering
Research Conference, (Banff, Canada: May 9-10, 1998).

15. Gorti, S.R., Sriram, R.D., “From Symbol to Form: a Framework for Conceptual Design”,

Computer-Aided Design, Vol. 28, No. 11 (1996), pp. 853-870.

16. Mukherjee, A. and Liu, C.R., “Conceptual Design, Manufacturability Evaluation and

preliminary Process Planning using Function-Form relations in Stamped Metal Parts”
Robotics & Computer-Integrated Manufacturing, Vol. 13, No. 3 (1997), pp. 253-270.

17. Brown, D. C., and Chandrasekaran, B., “Investigating Routine Design Problem Solving”,

Artificial Intelligence in Engineering Design: Design Representation and Models of Routine
Design, Vol. I, (1992), pp. 221-249.

18. Pahl, G, and Beitz, W., Engineering Design: A Systematic Approach, (New York: Springer,

1996), pp. 1-400.

19. Chang, T. C., Expert Process Planning in Manufacturing, (Addison Wesley, 1990).

20. Shah, J., Sreevallasan, P., and Mathew, A., “Survey of CAD/Feature-based Process Planning

and NC Programming Techniques”, Computer-Aided Engineering Journal, (February, 1991),
pp. 25-33.

21. Nnaji, B. O., Kang, T., Yeh, S., and Chen, J. P., “Feature Reasoning for Sheet Metal

Components”, International Journal of Production Research, Vol. 29, No. 9 (1991), pp.
1867-1896.

22. Tien-Lun, L., “A Coordinated Constraint-Based Modeling and Design Advisory System for

Mechanical Components and Assemblies” (unpublished Ph.D. Dissertation, School of
Engineering, University of Massachusetts, 1998).

23. Rodenacker, W., Methodishes Konstruieren, (Berlin: Springer, 1971).

24. Tomiyama, T., Umeda, Y., and Yoshikawa, H., “A CAD for Functional Design” Annals of

the CIRP, Vol. 42, No.1 (1993), pp. 143-146.

25. Hubka, V., and Eder, W.E, Theory of Technical Systems, (Berlin: Springer, 1988).

osmst1

270

26. Proceedings of the Workshop on Universal Design Theory, Karlsruhe, May 1998,

“Universal Design Theory”, by Grabowski, H., Rude, S., and Grein, G.

27. Grabowski, H., Rude, S, and Huang, M., “Supporting Early Phase of Mechatronic Product

Design with Layered Function Models”, IEEE Transactions , Vol. 2 (1999), pp. 914-918.

28. Al-Hakim, L., Kusiak, A, and Mathew, J., “A Graph-theoretic Approach to Conceptual

Design with Functional Perspectives”, Computer-Aided Design, Vol. 32 (2000), pp. 867 –
875.

29. Gorti, S.R. and Sriram, R.D., “From Symbol to Form: a Framework for Design Evolution”,

Technical Report, No: IESL 94-02, (Intelligent Engineering Systems Laboratory, Dept of
Civil and Environmental Engineering Nov 1994).

30. Cole, E.L. (Jr.), “Functional Analysis: A System Conceptual Design Tool”, IEEE

Transactions on Aerospace and Electronic Systems, Vol. 34, No. 2 (April 1998), pp. 354-
365.

31. Cross N., Engineering Design Methods: Strategies for Product Design (New York: Wiley,

1994).

32. Mudge A.E, Value Engineering: A Systematic Approach, (Pittsburgh, PA: J. Pohl

Associates, 1989) unpublished.

33. Deng, Y. –M, Britton, G.A., and Tor, S.B., “Constraint-Based Functional Design

Verification for Conceptual Design”, Computer-Aided Design, Vol. 32 (2000), pp. 889-899.

34. Usher, J.M., Roy, U., and Parsaei, H.R., ed., Integrated Product and Process Development

Methods, Tools, and Technologies, “Functional Design, by Tor, S.B., Britton, G.A.,
Chandrashekar, M., and Ng, K.W.” (New York: Wiley, 1998), Chapter 2, pp. 29-58.

35. Deng, Y.-M., Britton, G.A., and Tor, S.B., “A Design Perspective of Mechanical Function

and its Object-oriented Representation Scheme”, Engineering with Computers, Vol. 11, No.
4 (1998), pp. 309-320.

36. Proceedings of the 12th International Conference on Engineering Design, Munich, Germany,

1999, “A Comprehensive Representation Model for Functional Design of Mechanical
Products, by Tor, S.B., Deng, Y.-M., and Britton, G.A.” (Germany, 1999), Vol. 3, pp.1929-
1932.

37. Proceedings of the Fifth ACM Symposium on Solid Modeling, Ann Arbor, Michigan, USA,

1999, “A Computerized Design Environment for Functional Modeling of Mechanical
Products, by Deng, Y.-M., Tor, S.B., Britton, G.A.” (Ann Arbor, Michigan, USA, 1999), pp.
1-12.

osmst1

271

38. Roy, U., Pramanik, N., Sundarsan, R., Sriram, R.D., and Lyons, K.W., “Function-to-Form

Mapping: Model, Representation and Applications in Design Synthesis”, Computer-Aided
Design, Vol. 33 (2001), pp. 699-719.

39. Szykman, S.; Fenves, S. J.; Keirouz, W., and Shooter, S.B., “A Foundation for

Interoperability in Next-generation Product Development Systems”, Computer-Aided
Design,. Vol. 33, No. 7 (2001), pp. 545-559.

40. Proceedings of 1999 ASME Design Eng. Technical Conferences (International Conf. Design

Theory and Methodology), “The Representation of Function in Computer-Based Design, by
Szykman, S., Racz, J.W., and Sriram, R.D.” (New York: American Society of Mechanical
Engineers, 1999), DETC99/DTM-8742

41. Szykman, S., Sriram, R.D., Bochenek, C., Racz, J.W., and Senfaute, J., “Design

Repositories: Engineering Design’s New Knowledge Base”, IEEE Intelligent Systems &
their applications. Vol. 15, No. 3 (2000), pp. 48-54.

42. Hsu, W, and Woon, I.M.Y, “Current Research in the Conceptual Design of Mechanical

Products”, Computer-Aided Design, Vol. 30, No. 5 (1998), pp. 377-389.

43. McAdams, D.A., Stone, R.B., and Wood, K.L., “Functional Interdependence and Product

Similarity Based on Customer Needs”, Research in Engineering Design, Vol. 11 (1999), pp.
1-19.

44. Proceedings of the Tenth FAIM 2000 - Flexible Automation And Intelligent Manufacturing

Conference, University of Maryland, College Park, Maryland, June 26-28, 2000, "A
Methodology for Knowledge Discovery and Classification, by Terpenny, J.P., Strong, S.,
and Wang, J.” (2000).

45. Yan, Hong-Sen, Creative Design of Mechanical Devices (Singapore: Springer-Verlag,

1998), pp. 9-10.

46. Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., and Tomiyama, T., “Supporting

Conceptual Design Based on the Function-Behavior-State Modeler”, Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, Vol. 10 (1996), pp. 275-288.

47. Wang, Y. and Nnaji, B., “Functionality-Based Modular Design for Mechanical Product

Customization Over the Internet”, Journal of Design and Manufacturing Automation, Vol. 1,
No. 1 & 2 (2001) pp. 107-121.

48. Ambler, A. P., and Popplestone, R. J., “Inferring the Positions of Bodies from Specified

Spatial Relationships”, Artificial Intelligence, Vol. 6, No. 2 (1975), pp. 157-174.

osmst1

272

49. Popplestone, R. J., Ambler, A.P., and Bellos, I. M., “RAPT: An Interpreter for a Language

Describing Assemblies”, Artificial Intelligence, Vol. 14 (1978), pp. 79-107.

50. Popplestone, R. J., Ambler, A.P., and Bellos, I. M., “An Efficient and Portable

Implementation of RAPT”, Proceedings of First ICAA, (Bedford, UK: IFS (Publications),
March 1980), pp. 411-422.

51. Popplestone, R. J., “The Edinburgh Designer System as a Framework for Robotics”,

Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3
(1987), pp. 1972-1977.

52. Liu, H.S., and Nnaji, B. O., “Design with Spatial Relationships,” Journal of Manufacturing

Systems, Vol. 10, No. 6 (1991)

53. Liu, H., “Design with Spatial Relationships and Tolerance Specification and Propagation for

a Product Modeler” (unpublished Ph.D. Dissertation, School of Engineering, University of
Massachusetts, 1992).

54. Kalay, Y. E. ed., Computability of Design, "Designing with Constraints, by Gross, M.,

Ervin, S., Anderson, J. and Fleisher, A.” (New York: John Wiley & Sons, Inc., 1987), pp.
53-83.

55. Tong, C. and Sriram, D., ed., Artificial Intelligence in Engineering Design: Design

Representation and Models of Routine Design, Volume I, "Tools and Techniques for
Conceptual Design, by Serrano, D. and Gossard, D.” (New York: Academic Press Inc,
1992), pp. 71-116.

56. Ullman, D. G., The Mechanical Design Process (2nd edition; New York: McGraw-Hill, Inc.

1997).

57. Ullman, D. G., Dietterich, T. G. and Stauffer, L. A., "A Model of the Mechanical Design

Process Based on Empirical Data," Artificial Intelligence for Engineering Design, Analysis
& Manufacturing, Vol. 2, No. 1 (1988) pp. 33-52.

58. Sivaloganathan, S. and Andrews, P. T. J., ed, Design for Excellence: Engineering Design

Conference, “Invited Specialist Paper: Constraints Modeling in Product Design, by Lin, L.
and Chen, L. –C.” (London: Professional Engineering Pub., 2000), pp. 151-161.

59. Stauffer, L. A. and Slaughterbeck-Hyde, R. A., "The Nature of Constraints and Their Effect

on Quality and Satisfying," Design Theory and Methodology, ASME, DE Vol. 17 (1989),
pp. 1-7.

60. Van Hentenryck, P. and Saraswat, V., “Strategic Direction in Constraint Programming”,

ACM Computing Surveys, Vol. 28, No. 4 (1996), pp. 701-726.

osmst1

273

61. Chan, W. T. and Paulson, B. C., "Exploratory Design Using Constraints," Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 1, No. 1 (1987), pp.
59-71.

62. Suh, N. P., 1990, The Principles of Design, (New York: Oxford University Press, 1990).

63. Shah, J. J. and Mantyla, M., Parametric and Feature-based CAD/CAM: Concepts,

Techniques, and Applications, (New York: John Wiley & Sons, Inc., 1995)

64. Gero J. S. ed., Artificial Intelligence in Engineering: Design, "Constraint Management in

MCAE, by Serrano, D. and Gossard D.” (New York: Computational Mechanics
Publications, 1988).

65. Gu, P. and Kusiak, A., ed., Concurrent Engineering: Methodology and Applications,

“Constraint Management in Design Fusion, by Navinchandra, D., Fox, M. S. and Gardner,
E. S.” (New York: Elsevier Science Publishers, 1993), pp. 1-30.

66. Kusiak, A. and Wang, J., “Decomposition of the Design Process”, Journal of Mechanical

Design, Vol. 115, No. 4 (1993), pp. 687-695.

67. Bowen, J., O’Grady, P., and Smith, L., “A Constraint Programming Language for Life-Cycle

Engineering”, Artificial Intelligence in Engineering, Vol. 5, No. 4 (1990), pp. 206-220.

68. Bowen, J. and Bahler, D., “Frames, Quantification, Perspectives, and Negotiation in

Constraint Networks for Life-Cycle Engineering”, Artificial Intelligence in Engineering,
Vol. 7, No. 4 (1992), pp. 119-226.

69. Thornton, A. C. and Johnson, A. L., “CADET: A Software Support Tool for Constraint

Processes in Embodiment Design”, Research in Engineering Design, Vol. 8, No. 1 (1996),
pp. 1-13.

70. Lakmazaheri, S. and Rasdorf, W. J., “Constraint Logic Programming for the Analysis and

Partial Synthesis of Truss Structures”, Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, Vol. 3, No. 3 (1989), pp. 157-173.

71. Jaffar, J. and Maher, M. J., “Constraint Logic Programming: A survey”, Journal of Logic

Programming, Vol. 19, (1994), pp. 503-581.

72. Hsu, W. and Woon, I.M.Y., “Current Research in Conceptual Design of Mechanical

Products”, Computer-Aided Design, Vol. 30, No. 5 (1998), pp. 377-389.

73. Yan, H., Creative Design of Mechanical Devices, (Singapore: Springer-Verlag Ltd., 1998),

pp 17-31.

74. Weizsäcker von, C.F., Die Einheit der Nature – Studien, Munchen: Hanser 1971.

osmst1

274

75. Kramer, G. A., Solving Geometric Constraint System, a Case Study in Kinematics,

(Cambridge, Massachusetts: MIT Press, 1992).

76. Liu, Hsu-Chang, Nnaji, Bartholomew O., "Design with Spatial Relationships”, Journal of

Manufacturing Systems, Vol.10, No.6 (1991), pp.449-463.

77. Hamrock, J.B., Jacobson, B., and Schmid, S. R., Fundamentals of Machine Elements,

(Boston: McGraw-Hill Pub., 1999), pp. 111-112.

78. Wolfson, R. and Pasachoff, J. M., Physics for Scientists and Engineers, (New York: Addison

Wesley Longman, Inc., 1999).

79. Watson, M. and Harmon, P., Understanding UML: The Devloper’s Guide, with a Web-

Based Application in Java, (San Francisco: Morgan Kaufmann Pub., Inc., 1998).

80. Nnaji, B. O., Muogboh, O. S., and Ene, P., “Evolving CAD Systems for Collaborative

Product Design and Realization”, Conference Proceedings, Sixth Africa-USA Intl.
Conference on Manufacturing Technology, Abuja, July 2002, (Preprint).

81. Nnaji, B.O., Wang, Y., Kim, K., and Muogboh, O., “Pegasus: A Service-Oriented Product

Engineering System over the Internet”, Submitted to IIE Transactions on Design.

82. Visio 2002 Product Information, February 2, 2003,

http://www.microsoft.com/office/visio/evaluation/default.asp.

83. American Iron and Steel Institute, Southfield, Michigan, “Great Designs in Steel Seminar

2002 Launches to an Enthusiastic Crowd of 500 Automotive Engineers”, 2002 E-zine
article, http://www.steel.org/autosteel/articles/2002_gdis_ezine.htm

84. Guinta, L. R. and Praizler, N. C., The QFD Book: The Team Approach to Solving Problems

and Satisfying Customers Through Quality Function Deployment, (New York: Amacom,
American Management Association, 1993).

85. Mazur, Glenn H., “QFD for Service Industries: From Voice of the Customer to Task

Deployment”, The Fifth Symposium on Quality Function Deployment, Novi, Michigan,
June 1993.

86. Beermann, H.J., The Analysis of Commercial Vehicle Structures, (London: Mechanical

Engineering Publications Limited, 1989).

87. Corney, T., and Theodore Lim, T., 3D Modeling with ACIS, (2nd Edition, Scotland: Saxe-

Coburg Publications, 2002).

88. Spatial Inc., “3D Software Development Technologies”, 2003, http://www.spatial.com/.

http://www.microsoft.com/office/visio/evaluation/default.asp
http://www.steel.org/autosteel/articles/2002_gdis_ezine.htm
http://www.spatial.com/
osmst1

275

89. ANSYS Inc., “ANSYS Software”, 2003, http://www.ansys.com/ansys/index.htm.

90. ADINA R & D, Inc., “The Finite Element System for Structures, Heat Transfer, and CFD”,

2003, http://www.adina.com/.

91. CFX, “Computational Fluid Dynamics (CFD) Software and Services”, 2003,

http://www.software.aeat.com/cfx/default.asp.

http://www.ansys.com/ansys/index.htm
http://www.adina.com/
http://www.software.aeat.com/cfx/default.asp
osmst1

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1 Problem Statement
	1.2 Research Objective
	1.3 Contributions
	1.4 Methodology
	1.4.1 Information Flow in Functionality-enabled CAD System
	Functionality Modeling Interface (FMI) Module
	Post FMI Design Stage

	1.4.2 Functionality Modeling Process

	1.5 Research Organization

	2.0 TECHNICAL BACKGROUND
	2.1 Design of Mechanically Engineered Products
	2.1.1 Design Process
	2.1.2 Feature-Based Design

	2.2 Functionality-based Design
	2.2.1 Functionality Modeling and Verification
	2.2.2 Input-Output Model (Black-box Model)
	2.2.3 Functionality Decomposition
	2.2.4 Functionality-based Product Design Conceptualization

	2.3 Spatial Relationship in Product Design
	2.4 Design Constraints

	3.0 PROPOSED FUNCTIONALITY-BASED DESIGN MODEL
	3.1 Modeling Scope
	3.2 Major Challenges
	3.3 Functionality Operations
	3.3.1 Basic Functionality Operations (BOPN)
	3.3.2 Compound Functionality Operations (COPN)
	3.3.3 Generic Functionality Model

	4.0 FUNCTIONALITY OPERANDS
	4.1 Material Operand: Solid Operands
	4.1.1 Functional Position Marker
	Markers
	Inter-Functional Marker Constraints

	4.1.2 Degree of Freedom: Kinematic Constraints
	4.1.3 Physical Constraint Set
	4.1.4 Material Type
	4.1.5 Mass Properties
	4.1.6 Topology

	4.2 Energy Operand – Mechanical Energy Operand
	4.2.1 FORCE Operand
	a) Kind of Force
	b) Attribute Set and Vector Representation
	c) Nature

	4.2.2 TORQUE Operand

	5.0 FUNCTIONALITY RELATIONS AND STATES
	5.1 Functionality Relations
	5.1.1 Coupling Bond (CB)
	5.1.2 Representation of Functionality Relations
	5.1.3 Derivation of Functionality Relations

	5.2 Functionality States
	5.3 Functionality Modeling Repository

	6.0 IMPLEMENTATION AND TESTING
	6.1 Functionality Object Model
	6.1.1 Functionality Operation
	6.1.2 Operand Set
	6.1.3 Sub-Functionality Set
	6.1.4 Form
	6.1.5 Coupling Bond (CB) Set
	6.1.6 States

	6.2 Computer Implementation
	6.2.1 Functionality-Based Design Procedure
	6.2.2 Functionality-Based Design (FbD) Architecture
	6.2.3 XML Functionality Data Format
	a) XML Syntax
	b) Functionality XML data format

	6.2.4 Graphic User Interface and General Capability
	a) Basic Functionality Stencil
	b) Solid Operand Stencil
	c) Energy Operand Stencil
	d) Coupling Bond Definition

	6.3 Testing and Validation
	6.3.1 Functionality-based Design (FbD) Procedure
	6.3.2 Functionality Modeling of an Automotive Space-Frame Sub-assembly
	STEP I: Problem definition
	STEP II: Functional requirement analysis
	STEP III: Functionality modeling
	TYPE
	DESCRIPTION
	TYPE
	REFERENCE

	STEP IV: Propagation of functionality model to detailed design

	6.3.3 Evaluation of Application of Methodology

	7.0 CONCLUSION AND FUTURE WORK
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Integration with CAD System
	7.2.2 Extension to Commercial Product Level

	APPENDIX A
	A.1 Definition of Aluminum Alloy
	A.2 Test Condition 1
	A.3 Test Condition 2
	A.4 Test Condition 3
	A.5 Result of Design 1, Test condition 1
	A.6 Result of Design 1, Test condition 2
	A.7 Result of Design 1, Test condition 3
	A.8 Result of Design 2, Test condition 1
	A.9 Result of Design 2, Test condition 2
	A.10 Result of Design 2, Test condition 3

	APPENDIX B
	B.1 Transformation Operation
	B.2 Transmission Operation
	B.3 Joint Operation
	B.4 Load bearing Operation
	B.5 Energy Converter Operation
	B.6 Frictional Operation
	B.7 Offset Operation
	B.8 Channel Operation
	B.9 Block Operation

	BIBLIOGRAPHY

