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ABSTRACT 
 
 
 
 

SUPPORTING FUNCTIONALITY-BASED DESIGN IN 
COMPUTER-AIDED DESIGN SYSTEMS 

 
 

Obinna Stan Muogboh, PhD 
 
 

University of Pittsburgh, 2003 
 
 
 

Designs are conceptualized in terms of the functions they need to accomplish.  The need 

for a new product design arises as a result of the identification of a new functionality to be 

accomplished by the product.  That is, design is functionality driven.  However, existing CAD 

tools are not equipped to capture functionality or reason in such a fashion to support design for 

product functionality.  This research proposes a new design formalism to enable functionality-

driven design of mechanically engineered products.  This procedure provides a methodology that 

allows a designer to model product functionality and to carry out conceptual design with the aid 

of a computer.  It also serves as a bridging tool between the conceptual design phase and detailed 

design phase of a product.  Thus, the primary objective of this research is to develop a 

methodology that will support the following activities in CAD systems: functionality modeling, 

functionality data structuring, and form conceptualization. 

The functionality modeling methodology developed in this work includes the use of 

operands, operators, and coupling bonds to describe product functionality in CAD systems.  The 

Universal Modeling Language (an object-oriented programming technique) is used to model 

product functionality in computer systems.   

 iii



The tools developed in this research provide a means of modeling and propagating 

product functionality information to downstream design activities.  The propagation of 

functionality as a constraint is achieved using Extensible Markup Language (XML) data files.  

These tools also provide a mechanism for verifying and enforcing constraints on solid CAD 

models.  The functionality definition interface is implemented with a customized Microsoft Visio 

graphics engine. 

The tools developed in this research provide a means of modeling and propagating 

product functionality information to downstream design activities.  It also provides a mechanism 

for verifying and enforcing constraints on solid CAD models.  The functionality definition 

interface is implemented with a customized Microsoft Visio graphics engine.  
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1.0 INTRODUCTION 
 
 
 

In the past two decades, the application of computers in the design of mechanical 

products has seen tremendous improvements ranging from the use of advanced graphic engines 

for solid modeling to automatic imposition of geometric constraints. [1, 2, 3]  This evolution, 

however, has focused on improving the tools for the processes involved in the detailed design 

phase of product design. Little advancement has been made to allow computer-aided design 

(CAD) systems to capture and model product functionality during conceptualization.  Such 

acquisition would have made it possible to impose functionality as a design constraint that may 

be used during the detailed design and analysis phase of the product. 

In this research, a new functionality modeling formalism is proposed to enable 

functionality-based design of mechanically engineered products.  This procedure provides a 

framework that allows a designer to model product functionality and carry out conceptual design 

with the aid of a computer.  It also serves as a bridge between the conceptual design phase and 

detailed design phase of a product.  It is envisaged that this new design procedure will improve 

the creativity and productivity of the designer. 

Existing design tools are not equipped to capture design intent (functionality) at a high 

level.  Hence, they cannot impose functionality as a product design constraint during the rest of 

the design phase.  This inadequacy implies that the designers still have to apply both experience 

and extensive design tests to ensure that the original design intents (functionality) are maintained 

throughout the design process.  A truly integrated CAD system would require that such tests be 

performed by the CAD system in a transparent manner.  Transparency implies that test for 

conformity to functionality is performed concurrently during the design process in the same 
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CAD environment.  The development of such integrated system will drastically reduce the 

product development time and the associated costs.  It will also improve the efficiency and 

productivity of the engineering design process. 

Current CAD packages have no means of checking designs in a transparent manner to 

ensure that the product functionality is maintained throughout the design phase.  The implication 

of this is that most designers will at the end of their “design” phase; export their design to 

independent analysis systems, where such systems exist, to test for each individual product 

functionality.  For example, the design of a load-bearing beam subject to high temperatures, a 

designer would at the end of the design process, employ Finite Element Analysis (FEA) 

packages to perform analysis on the stress response of the beam.  In addition, a separate analysis 

will be performed for the thermal response.  A failure in thermal analysis and pass in the stress 

analysis will result in a design change to meet the thermal need.  This change, however, may 

result in a violation of the stress requirement (after another analysis), and hence, another change 

in design.  This iteration continues until a suitable compromise is reached.  A suitable translation 

of the product functionality as a design constraint and subsequent imposition of such constraint 

to down stream design activities will eliminate this time consuming sequential design-analysis 

process. 

Engineering design is a mapping of a specified product onto a (description of a) 

realizable physical structure – the designed artifact. [8] The desired function of the artifact is what 

it is supposed to do.  The physical structure is the actual physical parts out of which it is made, 

and the part-whole relationship among them.  Typically, the need for a new design arises as a 

result of identification of a new functionality to be accomplished by the product.  Designs are 

conceptualized in terms of the functions they need to accomplish.  That is, design is 
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functionality driven.  Although, designs are functionality driven, modern CAD tools are not 

equipped to capture and reason in such a fashion to design for product functionality.  Because of 

this, designers usually carry out the most important phase of design -- conceptual design, 

without the aid of any CAD tool.  This is usually done by reasoning about the concepts involved 

in the particular application to arrive at a design concept. 

The benefits of concurrent engineering [4, 5, 6] has directed recent research effort in the 

design of CAD/CAM systems towards a seamless computer integration of various processes 

involved in product realization.  Such integration is hampered by lack of suitable representation 

and modeling techniques for the various design issues.  This inadequacy (which was emphasized 

in a recent NSF sponsored workshop on e-Product Design and Realization) [7] is pronounced in 

the representation of product functionality.  Consequently, no CAD tool exists to effectively aid 

the conceptualization of products and subsequent propagation to the conventional CAD systems 

for detailed design activities.  With the available CAD systems, it is difficult to link geometric 

solid models (from detailed design phase) with the conceptual models developed during the 

early design phases as they are based on different representation schemes.  This lack of 

continuity implies that the conceptual and detailed design phases are treated as isolated units that 

inherit all the disadvantages of the traditional over-the-wall product development process. 

Another inadequacy of available CAD packages is the lack of a flexible design 

environment that supports the re-use of past design experiences and knowledge.  Past design 

experiences are stored as product solid models and features with no direct provision to capture 

the function of the product.  With the high shortage and rising cost of domain experts, such a 

system is of great importance.  A knowledge-based CAD system (using the tool proposed in this 

3 



 

work) will overcome this problem by providing the expert knowledge in a virtual form through 

the use of artificial intelligence (AI) techniques. 

This work is focused on developing a suitable way of representing and propagating 

product function as a design constraint.  A suitable representation of Design for Functionality 

(DFF) will ensure that a design constraint defined early in the design process (usually during 

conceptual design phase) is visible and enforced throughout the entire design process.  This task 

will require the development of a generic procedure for propagating functionality description to 

downstream design activities.  This propagation is accomplished in this work by representing 

functionality in an Extensible Markup Language (XML) file format that is tagged to the CAD 

data and file. 

 

1.1 Problem Statement 

 
Design is the process of constructing a description of an artifact that satisfies a functional 

specification, meets certain performance criteria and resource limitations, is realizable in a given 

target technology, and satisfies criteria such as testability, manufacturability, reusability, etc.[8]  

Decisions made early in the design process have a significant impact on other aspects of a 

product’s life cycle.   A study conducted by Lotter [9] indicates that about 75% of the entire cost 

of a product is committed during the design phase.  This commitment also extends to design 

changeability (ability to change or influence the final product design) as illustrated in Figure 1.  

[10].  Conceptual design goes a long way in defining the nature and amount of work required 

during the detailed design phase and other subsequent activities such as manufacturing.  A 

poorly conceived design cannot be compensated for by good detailed design, since the design 
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direction and possibly scope has already been laid down during the conceptual stage.  This is to 

say that detailed design phase merely works within the scope defined during the conceptual 

stage. 

 
 

 

CRITICAL 
DECISIONS

“LOCKED IN” 

Product Development Cycle (Time) 

-- COST, PERFORMANCE, and QUALITY GET LOCKED IN EARLY -- 
 

Design 
Changeability 
and  
Committed Cost 

Figure 1 Relationship between product development cycle and design commitment in term 
of cost and changeability 

 
 

Unfortunately, product requirement and constraints such as safety, reliability, 

manufacturability, and assemblability are imprecise and vague during the conceptual design.  

Usually, the designer only knows the need / function of the product.  Hence, the need to utilize 

the functionality requirement effectively and efficiently during product conception is of 

paramount importance.  However, existing commercial CAD systems are not equipped to 

support and use this essential information – functionality – during the design of a product.  
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Reasoning about product functionality are largely done in the designer’s head with very limited 

or no aid of computing tools.  

Product functionality modeling (representation, propagation, and satisfaction) is a very 

challenging problem that involves the amalgamation of various engineering fields such as 

kinematics, artificial intelligence, feature and geometric reasoning, constraint reasoning, and 

domain specific knowledge such as material properties.  The design of a physical system 

involves additionally reasoning about the artifact’s behavior, both internal and external.  The 

external behavior of a system is what it does from the viewpoint of an outside observer.  Internal 

behavior is based on observing what the parts of the system do.  With increasing complexity in 

mechanical designs and the need for design reuse and CAD/CAM integration, there is a need for 

a system that will adequately model and propagate product functionality during the conceptual 

design phase of a product. 

This research will develop product functionality model that are suitable for computer 

implementation.  The model will enable CAD systems to support functionality-based design at 

both the early and detailed stages of design.  Hence, definition, representation, propagation, and 

satisfaction of functionality as a design constraint is made possible. 

 

1.2 Research Objective 

 
Representation of product functionality as a constraint will assure that functionality 

defined early in the design process is visible and enforced throughout the entire design process.  

The primary objective of this research is to develop, for a mechanically engineered product, a 



 

functionality modeling methodology that will enable functionality-based design (FbD) activities 

in CAD systems.  The specific tasks to be accomplished in this research include: 

 

• Functionality modeling: The work to be done under this research task consists of the 

development of a scheme for representing, propagating, and enforcing the product 

functionality as a design constraint.  This will enable CAD systems to capture the 

functionality-related information during the conceptual design phase.   

• Computer data structure development:  This includes the development of a computable 

modeling data structure for representation and propagation of product functionality in a 

transparent manner. 

 

1.3 Contributions 

 
A functionality modeling methodology together with associated computer tools is 

developed to allow for the development of computer tools to link design functions with the 

structural (physical) embodiment used to realize the functions.  Hence, a seamless integration 

between specification, conceptualization, and detailed design process can be facilitated. 

The following are the expected or anticipated contributions of this work in the field of 

Computer-Aided Design (CAD) of mechanical products. 

 

• Provision of a functionality modeling methodology that supports the definition and 

representation of product functionality as design constraints. 
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• Provision of a means for propagating product functionality developed during the early 

design stage to the detailed design stage.  This provision is made possible by the 

description of the functionality information as an extensible markup language (XML) 

data file with functionality constraints and CAD form linkage embedded as tags. 

• Introduction of the concepts of operands, operators, and coupling bonds in the modeling 

of product functionality. 

• Development of a framework to support the functionality-based design (FbD) of 

mechanical products. 

• Provision of a bridge between the conceptual and detailed design stages of design. 

 

1.4 Methodology 

 
1.4.1 Information Flow in Functionality-enabled CAD System 

The information flow of a functionality-based designer system is shown in Figure 2.  

This work will focus on the functionality modeling interface section of the designer system. 

 

Functionality Modeling Interface (FMI) Module 

The functionality-based design (FbD) aids in the conceptualization of product design to 

solve the design problem using functionality modeling approach.  In this research, product 

conceptualization will be accomplished through a functionality-driven approach.    

The functionality-modeling interface (FMI) in an FbD system takes design needs and 

converts them into functionality-structured representation and constraint. The accomplishment 

of this task provides a structured functional data that makes it possible to use computer tools to 
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reason and perform the following two key design operations central to functionality-driven 

design.  These tasks are (1) functionality model generation operation, and (2) functionality-based 

constraint verification.  To enable the FMI accomplish these tasks, three functionality engines 

are to be developed in this research: functionality definition engine, functionality representation 

engine, and functionality constraint engine. 
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Figure 2 Functionality information flow diagram for the evolution of design in FbD 
 
 
 

The functionality definition engine serves as an interface to the designer.  It accepts the 

definition of the user needs in a human friendly manner and transforms them into a function-

oriented problem definition.  
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 The functionality representation engine converts the functionality-oriented problem 

definition into a functionality-based data structure as described in Section 3.  This representation 

serves as our design objective and is a standard against which all design proposals will be 

evaluated.  In a supply chain management structure, such functionality model may now serve as 

a design order for suppliers to compete on.    For an in-house design operation, such model may 

now be used in the conceptualization of design parameters (DP) to satisfy the functionality 

constraints. 

 The functionality constraint engine extracts functionality constraints from the 

functionality representation.  This constraint is used to evaluate design proposals to ensure that 

they satisfy the original functional requirement.  It is also possible to extend this scheme to be 

used for decision-making in selecting designs of competing proposals from bidders.  

 

 

Post FMI Design Stage 

The form generator is used as an aid to the design by providing tools that will enhance 

the creativity of the designer.  With the use of knowledge base tools, the system could use the 

functionality model together with the vast expert knowledge in its knowledge base system [*] to 

infer the possible forms the artifact can assume.  The concepts generated by this module are sent 

to the detailed design module.  The form generator is part of the future extension of this work. 

In the detailed design module, the concepts from the form generator are developed into a 

detailed design, with all the design parameters fully specified in this module.  Hence, this 

                                                 
*   The implementation of a supporting knowledge base for functionality-based design is not the focus of this 
research.  Hence, it is not implemented in this work. However, the implementation of the design repository 
discussed in Section 5.3 could form the basis for the functionality-based knowledge system.  Each industry could 
also customize its design repository to include domain-specific product functionality information. 
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module completes the design process by providing a detailed description of an artifact that can 

satisfy the functionality proposed in functionality builder module.  A verification engine within 

the detailed design module is used to verify that the detailed design satisfy the original function.  

This module provides an interface to analysis tools, which are used to evaluate the detailed 

design to verify if they satisfy the functionality constraints.  This technique can aid in the 

evaluation of goodness of a design.  The functions of the detailed design and verification have 

traditionally been provided by commercial CAD systems.  An integration of the functionality 

model developed in this research to existing CAD systems will significantly enhance design 

process.  This research will provide an XML data structure to support such future integration. 

 

1.4.2 Functionality Modeling Process 

This is a very crucial part of this research.  Two issues are critical to the success of 

functionality-based design: functionality definition, functionality constraint extraction and 

functionality propagation. The operation of the functionality modeling process will be illustrated 

using the design of a transmission mechanism (shown in Figure 3(a)) as an example. 
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Figure 3  Sample transmission design 
 
 
 

Definition: The functionality definition module is responsible for accepting designer’s 

specifications (problem definition) and transforming them into a functionality model compatible 

format.  For example, in the case of shaft design, it will typically receive information stating that 

a means of transmitting rotational motion is needed.  Once the primary function of transmission 

is selected, the knowledge base [×] that supports transmission will be invoked and instantiated. At 

this point, functional relationships are also defined.  These relationships will prescribe the kind 

of motion, degrees of freedom, expected forces on the product, and other interacting entities 

(components).  In addition, any unique feature or designer’s preferences required by the design 

is also defined at this stage. 

 

 Constraint Extraction:  Having defined the functionality structure all the implied 

functionality constraints from the functionality model are extracted.  For example, in the shaft 

design, some of the implied constraints are: material constraints (solid, elastic limit, and tensile 
                                                 
×   The implementation of a supporting knowledge base for functionality-based design is not the focus of this 
research.  Hence, it is not implemented in this work. However, the implementation of the design repository 
discussed in Section 5.3 could form the basis for the functionality-based knowledge system.  Each industry could 
also customize its design repository to include domain-specific product functionality information. 
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strength), degree of freedom (DoF), clearance, tolerance, motion trajectory, and maximum 

length. These are the constraints that any design proposal must satisfy in order to be functionally 

acceptable.  The advantage of this technique is that these constraints are made available from the 

start of the design process.   

 

Propagation The functionality information from the functionality model is made 

available in such a way that: (1) They may be used to retrieve acceptable design structures from 

the knowledge base during the form generation stage by presenting a template for matching 

functions to stored knowledge; (2) They may also be used in the transformation of functionality 

representation to a creative graphic (wireframe) representation to aid the creativity of the 

designer (this concept is illustrated in Figure 3(b) for the shaft example); and (3) The 

functionality information in the form of constraints are integrated with evolving CAD model and 

propagated to and from the detailed design phase. 

The above research will culminate in the development of an object-oriented data 

structure for the representation and propagation of functionality as design constraints.  This data 

structure (and corresponding model) will serve as an interface during the functional requirement 

definition phase.  It will be used to capture the designer’s intent as functionality constraint 

during the conceptual design phase.  The definition of functionality as constraint will make it 

possible to evaluate and enforce functionality as design constraint just as it is currently being 

done for other product issues such as manufacture, assembly, and geometry reported in most 

design literatures. [11] 
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1.5 Research Organization 

 
Three distinct phases are identifiable in the sequence of operations involved in product 

design (see Figure 4).  During the requirement specification phase, the general information on 

the desired product is specified, albeit in imprecise manner (because of the limited knowledge of 

the product).  In phase 2, the conceptual design phase, the product that will meet the needs 

specified in phase 1 is conceived.  Phase 3, the detailed design phase, defines the detailed 

geometric features, tolerances, and material properties of the conceived product. 

This research focuses on developing a practical modeling technique for product 

functionality and its use as a tool in the design of mechanically engineered products.   The 

modeling of product function will enable us to define it as a design constraint in computer-aided 

conceptual design (CACD).  Consequently, we will come up with generic representation scheme 

for functionality that will enable the propagation and enforcement of functionality constraint 

throughout the product design and possibly manufacturing (through CAM) phases of a product 

lifecycle.  
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Product Requirement Specification

Conceptual Design

Detailed Design

 

Figure 4 Product design phases 

 
 

A computer implementation of the functionality model is developed to test and validate 

the principles developed in this research.   This tool is responsible for accepting functional 

specifications from the user and then translating those functional specifications to functionality 

design constraint that are applied throughout the remainder of the design process.  It is also 

responsible for the transformation from functional specification to functionality model, as 

depicted in Figure 5. 
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Figure 5 Conceptual design unit interactions with the rest of the designer system 

 
The functionality constraints together with the initial product form (conceptual form) are 

generated as the output of the conceptual design phase (see Figure 5).  In the detailed design 

phase, the system merely varies the design parameters generated during the conceptual design 

phase to come up with an optimal or near optimal design. This subsequent variation ensures that 

other design issues such as manufacturing and assembly requirements are taken into 

consideration.  The conceptual design phase has an input from the system knowledge base, [+] 

which represents previous design experiences and some expert knowledge built into the system.  

This knowledge base could be domain specific.  The presence of a knowledge base simplifies 

                                                 
+  The implementation of a supporting knowledge base for functionality-based design is not the focus of this 
research.  Hence, it is not implemented in this work. However, the implementation of the design repository 
discussed in Section 5.3 could form the basis for the functionality-based knowledge system.  Each industry could 
also customize its design repository to include domain-specific product functionality information. 
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the conceptual design process by tapping from previous design experience and expert 

knowledge.  

This thesis is composed of seven chapters.  Chapter 2 looks at the previous work in 

functional modeling and constraint-based modeling and provides some technical background on 

relevant concepts related to this research.  Chapter 3 is on functionality modeling methodology 

implemented in this work.  It provides an overview of the modeling approach developed in this 

work.  It introduces the concepts of functionality operation, operands, operators, and 

relationships.  Representation of the various components of functionality is also discussed.  

Chapter 4 focuses on the application of functionality operands in the functionality models.  

Chapter 5 is on functionality relations.  It covers functionality operators, functionality states, the 

use of coupling bonds, and the functionality design repository. Chapter 6 is on the computer 

implementation, testing, and validation of the functionality model.  Data structures of the 

functionality model are also discussed.  Chapter 7 is on the conclusion and future extensions of 

this research. 
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2.0 TECHNICAL BACKGROUND 
 
 
 

2.1 Design of Mechanically Engineered Products 

 
Engineering design is very important because it determines the ultimate outcome of 

engineering activities, including manufacturing of goods, improvement in quality of life, and 

provision of defense needs.  The design of mechanically engineered products is a very 

challenging task because of the nature of the products and the design process.  A given design 

artifact (product of design) may perform different functions depending on the context of 

application.  Thus, product function is very subjective, depending largely on the context of 

application (i.e. design intent).  This unique characteristic has made it very challenging to 

develop a procedure that directly relates design to functionality.  The lack of a generally 

accepted systematic procedure for the design of mechanically engineered products has further 

complicated the existing problem.  This often leads to cases where a single design specification 

may result in several designs for the same product specification.  This in itself is not a problem, 

as it introduces variety in the product selection.  However, the problem is that there is no 

scientific or systematic procedure for the evaluation of such design proposals.  Thus, the 

evaluation process again is very subjective, and the outcome depends on personal experience 

and preferences of the design evaluators.  For example, a company that solicits for design 

proposals from its supplier’s has no sound engineering or scientific procedure for selecting the 

best design that meets its engineering goals. 

The design process can be thought as the detailing of shape as the designer’s idea 

evolves. [12] Thus, CAD software as a design aid is just a tool to facilitate this detailing process.  
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Although some research has been done to support product conceptualization, [13, 14] existing 

methods for supporting the geometric aspects of design have little impact at the conceptual 

design stage for the following reasons: [15] 

 

• CAD systems have concentrated on the capture and representation of geometric shape, as 

opposed to providing support for conception; 

• Systems which attempt to provide conceptual design support are based on little or no 

relations to function; and 

• CAD systems require a detail of representation, which is too restrictive for conceptual 

design. 

 

Two major challenges of Computer-aided Conceptual Design (CACD) are: [15] (i) how to 

allow a concept representations evolve as detail accumulates in the design process;  (ii) even if it 

were possible to commit early on to a certain abstract shape, complete information needed to 

display the object may be absent. 

The use of CAD/CAM tools for design work has significantly improved designer's 

productivity and the quality of designs. [16] The full potential of computers in design has not 

been fully utilized in conceptual design process, because most of the available CAD tools focus 

on the downstream activity of detailed design or assembly design. Detailed design is carried out 

after the design concept and geometry are well established. CAD/CAM tools help the designer 

in drafting work, FEM analysis, NC cutter path analysis, etc. However, the key design activity is 

the conceptual design stage, where the designer works with the functional requirements of a part. 

The functional requirements need to be decomposed, and at a certain stage, the functionality has 

to be mapped to the geometry or form. The designer may update the functional decomposition, 

update the mapped geometry, and proceed through iterations until the concept is well defined. 
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The above problem is associated with the creative nature [17] of design (involving diverse 

problem-solving techniques and many kinds of knowledge) and hence subjective to the 

designer’s previous experience and preferences.  Hence, the more experienced a designer is, the 

more likely he/she is to find an acceptable design solution within a short period.  The questions 

that interest us are: Can the creativity of the designer be improved with modern computer tools?  

Can the vast experience and information accumulated in over a century of design be captured, 

stored, and made available to the designer using computer tools?  Design decisions made at the 

initial or upstream stage of engineering affect all subsequent outcomes.  In the following 

sections, basic design procedures relevant to this research are presented.  Some of the techniques 

to be used in this research work are also described. 

 

2.1.1 Design Process 

Design has been defined as the process of constructing a description of an artifact that 

satisfies a functional specification, meets certain performance criteria and resource limitations, is 

realizable in a given target technology, and satisfies criteria such as testability, 

manufacturability, reusability, etc. [8]  This definition clearly highlights the key features of 

design as: 

 

• It must satisfy the functional specification.  That is it must be able to accomplish the 

need for which it was designed.  This definition, however, presupposes the existence of a 

well-defined functional specification.  Existing CAD technologies are ill equipped to 

accept product functionality as part of the design specification.  In fact, the inputs of 
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most CAD systems are well-conceived artifacts, albeit in designers’ brain, with the CAD 

only acting as an information recorder. 

• The design output is a description of the mechanical artifact that may now be converted 

to a physical artifact through a manufacturing operation. 

• Existence of design constraints such as resource limitations, and other technological and 

social constraints during a design process.  For example, any conceived artifact must be 

subject to acceptable physical laws such as Newton’s law, F = ma. 

 

The design process may be classified into three categories: [18] generative, adaptive, or 

variant design.  This is illustrated in Figure 6. In generative design, new design tasks and 

problems are realized by original design incorporating new solution principles.  These can be 

realized either by selecting and combining known principles and technology, or by inventing 

completely new technology.  Generative designs usually proceed through all design phases; 

depend on physical and process fundamentals; and require a careful technical and economic 

analysis of the task.  In adaptive design one keeps to known and established solution principles 

and adapts the embodiment to changing requirements.  It may be necessary to undertake original 

designs of individual assemblies or components.  In this type of design the emphasis is on 

geometrical, analytical (strength, stiffness etc), production and material issues.  In variant 

design, the sizes and arrangements of parts and assemblies are varied within the limits set by 

previously designed product structures (e.g. size ranges and modular products).  Variant design 

requires original design effort only once.  It includes designs in which only the dimensions of 

individual parts are changed to meet a specific order. 
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Figure 6 Classification of design 

 
Design involves four distinct aspects of engineering and scientific endeavor:  the 

problem definition from a “fuzzy” array of facts and myths into a coherent statement of the 

question; the creative process (concept generation) of devising a proposed physical embodiment 

of solutions; the analytical process (concept evaluation) of determining whether the proposed 

solution is correct or rational; and the ultimate check (design verification) of the fidelity of the 

design product to the original perceived needs.  The sequence of events involved in the design of 

a product is illustrated in Figure 7. 

It is sometimes difficult to judge whether or not the problem definition does correctly 

represent the perceived needs until the final output of the design process in the form of products, 

processes, or systems is compared with the perceived needs.  This process is usually carried out 

through design verification procedures such as physical prototyping or computer techniques 

such as simulation or virtual prototyping.  The major challenge of computer verification 

techniques is that the functional requirements are usually not clearly defined in such a way to 
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allow for automated computer verification operation.  This research provides a tool to allow 

product functionality to be modeled in such a way that automated function verification might be 

enhanced. 

The second step of the design process is the creative process of synthesizing a design 

solution in the form of physical embodiment.  The creative ideas and the synthesis process 

depend on the specific knowledge possessed by the designer, and on his or her ability to 

integrate knowledge. 

 

Design Verification

Embodiment Design

Concept Evaluation Concept Generation

Problem Definition

Design
Knowledge

Engineering
Need

 

Figure 7 Design process 
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Design creativity is complemented by analytical process.  This aspect is illustrated by 

Suh [62] as shown in Figure 8, which depicts the design process as a feedback control loop.  It 

shows how the creative process must be checked through analysis and corrected for differences 

between the perceived problem definition and the proposed solution.  In the figure, Y is the 

desired outcome and X the input.  The gain of the feedback loop should be as large as possible to 

converge to a correct solution quickly; that is, the ability to judge the quality of the outcome of 

the creative process improves the creative process itself.  In the figure, the former is depicted by 

the function H and the latter by G.  The relationship between X, Y, H, and G is given by: 

 

1
1

1 >>=≈
+

= − GHforH
GH
G

GH
G

X
Y  

Equation 1 

 
When G x H is much larger than unity, the gain is equal to 1/H.  If we cannot analyze a 

design solution, then we cannot rapidly generate the “best” design since we cannot distinguish a 

good design from a bad design.  In the absence of a criterion for selecting a good design, we 

cannot make good design decisions.  The “analysis” of design implies making correct decisions 

as well as evaluating the details of specific features. 

 

 

Figure 8 Feedback control loop depicting the design process 
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Design involves a continuous interplay between what we want to achieve and  how we 

want to achieve it.  The objective of design is stated in the functional domain, whereas the 

physical solution is generated in the physical domain. The design process involves relating the 

functional requirements (FR) of the functional domain to the design parameters (DP) of the 

physical domain.  This is illustrated in Figure 9 (adapted from Suh [62]), where DPs in the 

physical domain are chosen to satisfy FRs in the functional domain. 

 

Figure 9 Design as the mapping from functional space to physical space 

 
Hence, design may be described as the creation of synthesized solutions in the form of 

products, processes or systems that satisfy perceived needs through the mapping between the 

FRs in the functional domain and the DPs of the physical domain, through the proper selection 

of DPs that satisfy FRs.  This mapping process is nonunique; therefore, more than one design 
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may ensue from the generation of the DPs that satisfy the FRs; in other words, the actual 

outcome depends on a designer’s individual creative process. 

The design process begins with the establishment of FRs in the functional domain to 

satisfy a given set of needs, and ends with the creation of an entity that satisfies these FRs.  The 

determination of a good set of FRs from diffused and often poorly defined perceived needs is an 

important step in the design process.  The final design cannot be better than the set of FRs that it 

was created to satisfy.  A problem may be ill conceived, resulting in the formulation of a wrong 

set of functional requirements and consequently, a wrong set of design parameters.  Hence, it is 

very important that FRs are clearly and concisely defined to represent the correct design problem 

or need.  One of the objectives of this research is to come up with a methodology for the 

description of FRs (through functionality modeling) that will facilitate the use of computers in 

the mapping process of FRs to DPs.  

In generative product design (evolution), the need for a product design arises because of 

identification of a need to be accomplished by the product.  In variant (or adaptive) design, 

however, the need for new design or re-design process arises because of the identification of a 

modification or improvement that need to be made to the product.  In this work, discussion on 

design evolution is largely focused on generative designs.  To perform variant design however, 

one only need to identify the functional elements associated with the existing design and then 

performs the functionality modeling for the product.  The integration of the functionality-

modeling tool to existing CAD systems will greatly enhance the ease with which one can 

perform variant or adaptive designs. 
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2.1.2 Feature-Based Design 

Feature-based design is a technique that permits a designer to express geometric design 

intent while creating the geometry of the product. It requires and permits the designer to think 

beyond mere shape and to state explicitly what portions of part are important and why.  There is 

no universally accepted definition for features. Various researchers have defined feature 

differently. Some have given general definitions like “a subset of geometry on an engineering 

part which has a special design or manufacturing characteristic”, [19] “generic shapes with 

which engineers associate certain properties or attributes and knowledge useful in reasoning 

about the product”, [20] or “a set of geometric entities (surfaces, edges and vertices) together 

with specifications of the bounding relationship between them and which imply an engineering 

function on an object”. [21]. Using feature concepts in the product model offers several 

convenient properties as follows: [22] 

 

• Recurring characteristics of products can be modeled as feature types, and used as a 

repository of reusable product knowledge that may be related to a particular shape or 

geometric pattern. 

• Specific products can be modeled through their constituent features, providing a more 

natural basis of interaction with the designer than mere geometric models. 

• Manufacturing knowledge can be associated with features, and accessed to determine the 

producibility of a designed object or for planning its actual manufacture.  

 

In design by features, the part is constructed directly from pre-defined features. [22] The 

part is represented by the features  and the relationships among them. Parts are designed by 
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adding, manipulating and subtracting generic features stored in a database and the user (i.e. the 

part designer) is provided with a library of features to work with. The user may be allowed to 

modify existing features in the library or create new features and add it to the library. A major 

advantage of this approach is its ability to capture and propagate the designer's intentions for use 

by downstream applications.  The functionality model developed in this work offers the 

advantage of extending current feature modeling techniques by associating each feature with 

specific engineering functionalities (which may be context dependent). 

In feature extraction on the other hand, the part is constructed using geometric entities 

(lines, curves etc.) on conventional CAD geometric modelers. The features are then identified, 

i.e. recognized from the geometric model using some geometric reasoning techniques. The main 

attraction of this approach is design freedom and the possibility of using current CAD modelers. 

 

2.2 Functionality-based Design 

 
2.2.1 Functionality Modeling and Verification 

There is no clear and uniform definition of function.  Functions are intuitive concepts 

depending on intentions of designers or users.  Rodenacker [23] defined function as a relationship 

between input and output of energy, material, and information and this representation is widely 

accepted in design research.  This definition is limited in application e.g. when there is no 

energy flow involved.  An alternative definition is provided by Tomiyada et al.; [24] function is “a 

description of behavior abstracted by human through recognition of the behavior in order to 

utilize the behavior.” 

A list of classifications of technical artifacts based on criteria such as function, working 

means, complexity, production, and product was drawn up by Hubka. [25] It is, however, difficult 
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to agree on a generally acceptable system of classification – the tasks, applications and forms are 

much too varied and complex.  Hubka suggested that technical systems should be treated as 

systems connected to the environment by means of inputs and outputs.  A system can be divided 

into sub-systems and what belongs to a particular system is determined by the system boundary.  

The inputs and outputs cross the system boundary.  With this approach, it is possible to define 

appropriate systems at every stage of abstraction, analysis or classification.  While this 

description may be appropriate for general description and to some extent functional description 

of a system, a designer obviously will need a working knowledge of the systems internals in 

order to come up with a good design concept. 

Many researchers have approached the functionality representation problem by providing 

taxonomy of possible product functionality. [26].  Grabowski et al. [27] divided product function 

model into three layered function models with different abstractions: the logical model, the 

status model and the relation model.  Their functional classification is based of the function 

taxonomy provided by Pahl. [18] The logical model is used to represent a high level topology and 

connectivity of sub functions, with the aid of Boolean operators: AND, OR, and NOT.  The 

status model assumes every sub-function / module has some working states, which are numeric 

coded in the status model. Unlike the logic model, this model describes the relation of more than 

one sub functions. Relation model defines the mathematical or physical relations between 

several physical variables including relations between input and output within a component.  

The Grabowski’s group claim that each function model can completely describe a mechatronic 

product with its related abstraction level, and can fluently be converted into another model.  This 

claim is very restrictive as each model only represents a particular view of the product.  Instead 

of this conversion attempt, the models could play a more complementary role to one another.  
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Another limitation of this function classification is that they are defined at an abstract level, in 

such a way that it is not easy to apply in basic design activities that require more concrete special 

functions, which vary with application tasks and are usually realized in form of components. 

Some researchers have tried to map functionality to form through the use of function-

form matrix scheme [16, 27].  A data structure of function-form matrices was employed by 

Mukherjee et al. [16] to provide a relationship between a functional decomposition and the 

sketching abstraction of the parts. They carried out this process using a hierarchical 

decomposition of functions into sub-functions through the process of functional representation 

to the point of initiating the physical design of the part.  Their representation takes into account 

the fact that form-function relationships are usually many-many in nature. There are however, 

some serious limitations in this approach because of lack of suitable functionality representation 

and reasoning schemes. 

The use of graphs in the description of relationships among interacting entities has been 

used in the field of CAD and artificial intelligence. Al-Hakim et al. [28] used graph theory to 

represent a product and define the relationships between its components.  They employed the 

graph-theory concepts of the “tree” and the “forest” to represent a functional design artifact and 

idle condition, respectively.  In their approach, components of a product being designed are 

represented as vertices of a graph while the edges of a graph represent the relationship between 

the components (vertices).  The number of vertices of a graph representing a product in an idle 

status may be different from the graph representing the same product during operation.  They 

used this approach to consider expected mechanical failures and other constraints at the 

conceptual design stage resulting from the flow of energy between the components of a product.  
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It is however difficult to extend this approach to model generic product functionalities at both 

the conceptual and detailed design phases of design. 

Object-oriented principles of encapsulation and inheritance have been used by Gorti and 

Sriram   [15] to localize knowledge representation of product design and process.  They described 

a symbolic evolution approach, symbol-form mapping.  In geometry representation, they used an 

object-oriented paradigm to provide a solution. They also proposed a structure information 

model and primitives for an integrated representation of the design product and process. [29] 

Their symbolic evolution approach has two main components: a structured model that defines 

some primitive constructs and their interaction; and a reasoning approach that operates on the 

representation. The primary objects are context and artifact.  A context consists of the design 

tasks (goal), the user specifications, the decisions that have been made, and the artifacts that are 

created as part of the design process.  The artifact is comprised of function, form, and behavior.  

Design relationships provide the overall functional and spatial coherence for the design.  They 

were concerned primarily with four broad classes of relationships: functional relationships, 

composition, aggregation, and spatial relationships.  The basic object model of the symbolic 

evolution is required to provide for explicit representation of these relationships.  Gorti's 

symbol-form mapping framework relies heavily on explicit representation of relationships.  This 

implies that the utility of their approach is limited to that class of design, which deals with 

assembled systems, where disaggregated knowledge is coordinated together with a common 

process.  In general, the current implementation of the symbol-form mapping framework is 

geared towards conceptual design.  The current approach to dealing with iteration in design is 

somewhat limited. The extent of innovativeness the framework permits is largely limited by the 

representation of behavior in the system.  



 

Hierarchical decomposition approach has been employed in the modeling of product 

design functionality. [30, 16]  Cole [30] employed a hierarchical decomposition of the primary 

system functions into sub-functions, at ever-increasing levels of detail. They used functional 

identification diagrams (FID) to define the structure, components, and functions of the system. 

The FIDs portray the system as a hierarchical structuring of the system functions.  Mukherjee et 

al. [16] in their work noted that the identification of a set of functions for the part is the first step 

in part design. They also carried out this process using a hierarchical decomposition of functions 

into sub-functions through the process of functional representation to the point of initiating the 

physical design of the part. While the functional decomposition process follows a sequence of 

higher level functions being decomposed to intermediate and lower level sub-functions, their 

generic representation of a function is given as follows:    

 

[<v><n><m><d><o>]locn<keywords>                         

where, 

 v, n, m, d, and o are sets and 

v    represents verbs, 

n   represents nouns, 

m   represents a magnitude attribute such as 10 N of force, 

d   represents a direction attribute, and 

o  is another set of nouns representing objects on which the function applies. 

locn  distinguishes between more than one similar functions, 

keywords    is an additional set of specialized words used to enhance the 

functional representation. 
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These models, however, are very restrictive and do not provide a flexible and practical 

way to model functionality relationships and constraints that support implementations and 

propagation to downstream design activities. 

Tomiyama et al. [24] proposed the use of function-behavior-state (FBS) modeling to deal 

with function in conceptual design. They represented a function by two concepts; i.e. its symbol 

represented in the form of to do something and its semantics represented by the relationship 

between function and behavior (which they called F-B relationship).  In their work, Tomiyama’s 

group assumed that the representation of function includes human intention, whereas, the 

representation of behavior of an entity can be determined objectively by its relations to other 

entities based on physical principles.  They called attributes and relations of an entity a state of 

an entity.  For representing functions, they construct a knowledge base of functions by collecting 

prototypes of functions from existing design results.  Table 1 shows the scheme of functional 

prototypes.  Name of a function is described in the form of "to verb objectives."  Decomposition 

describes feasible candidates for detailing this function in the form of networks of sub-functions. 

 

Table 1 Definition of a functional prototype (proposed by Tomiyama et al [24]) 

Item Contents 
Name verb + objectives 
Decomposition networks of sub-functions 
F-B Relationship networks of views 

 
 
Although there has been a lot of work on design evaluation, for example, the weighted 

objective method [31] and value engineering, [32] relatively little work has been carried out on 

design verification. [33] Design evaluation focuses on evaluating different alternatives against 
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specified criteria, whereas verification involves checking that the design proposal satisfies 

functional and other specifications.  There are two families of methods for design verification.  

First, attributes of interest can be directly calculated or estimated by means of domain-specific 

algorithms or formulae.  These methods have limited application, as they require a well-defined 

problem space.  Second, verification can be achieved by simulation.  Developing a structural 

model of the device and allowing this to change state from specified initial conditions simulates 

the behavior of a system or device. 

In the industry, several design verification approaches are used.  The most common 

approach is to use CAE software to simulate the behavior of a design and then to manually 

check this against the desired performance targets.  One extension to this technique involves 

automatic optimization of design variables (within a specified range) for a given working 

environment, e.g. MSC CAE and iSIGHT software. Some advanced user automated design 

verification systems that use Product Data Management (PDM) systems include iMAN, and 

expert systems such as ICAD.  The PDM and expert system approaches are domain and problem 

specific. 

Deng et al. [33] proposed a functional design verification model based on their previous 

work [34, 35, 36, 37] on Function-Environment-Behavior-Structure (FEBS) design model.  Design 

verification is achieved by identifying input and output design variables, developing a variable 

dependency graph, propagating constraints over the variable dependency graph and checking the 

values of the design variables against the functional requirements.  The propagated constraints 

are determined by first deriving algebraic expressions for each output variable.  The algebraic 

expressions are then substituted for the output variables in the expression of the constraint-to-be-

propagated. This technique results in some constraints not being able to propagate to input 
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variables, designers are therefore required to either verify them in a manner similar for 

constraints on input variables or use heuristic methods for constraint solution. Their approach is 

limited because the behavior must be known or specified by the designer. That is it assumes the 

existence of a working design concept.  In addition, this model is based on the fact that product 

models are treated as in-output systems.  This assumption, however, places some restrictions on 

systems that cannot be described with this input/output model. 

Another major challenge faced by researchers in this field is taxonomy.  The National 

Institute of Standards and Technology (NIST) design repository [38, 39, 40, 41] and other research 

groups [18, 26, 27, 42, 43, 44] have tried to approach this problem by developing an extensive library of 

possible product functions.  There are still unresolved issues on how to achieve a computational 

model of this taxonomy that can serve as an aid in product design.  The NIST design repository 

is based on the description of function using functional basis.  The models are based on the use 

of flows to describe functions as inputs and outputs.  This assumption places a restriction on the 

type of functions that can be modeled with this approach to those systems with identifiable 

inputs and outputs (thus, assuming a casual relationship between entities).  Unfortunately, input-

output models cannot be used for functions where no clear casual relationship is identifiable.  

Moreover, the model developed has no transparent and flexible means of modeling and 

propagating functionality as constraint on basic design elements to detailed design. This research 

will address this problem by providing a scheme for mapping the functionality description into 

mathematical relationships and constraints. 
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2.2.2 Input-Output Model (Black-box Model) 

The input-output (or black-box) model views mechanical systems as composed of 

different levels of abstractions with inputs and outputs described in terms of energy and 

material.  Energy and matter have been described as basic concepts of the input-output model of 

an engineering artifact. [18] This is illustrated in Figure 13.  Force is the means by which the 

motion of an artifact (matter) is changed.  Ultimately, this process is explained in terms of 

energy.  Thus, in engineered systems, energy is a fundamental element, the flow or 

transformation of which, can result in the accomplishment of a functional requirement.  

Whenever a change or flow is involved, time is introduced as a fundamental quantity.  By 

reference to time, the interplay of energy and matter can adequately describe the state of a 

system. 

 

 

Energy 

Material 
BLACK BOX 

Energy 

Material 

 

Figure 10 Input-output model of system 

 
In technical sphere, the previous description is usually linked to concrete physical or 

technical representations.  For example, the manifest forms such as mechanical, electrical, 

optical energy etc is used to describe energy.  For matter, it is usual to substitute material with 

properties as weight, color, condition etc. 
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Analysis of technical systems makes it clear that all of them involve technical processes 

in which energy and material are channeled and/or converted.  This model considers these 

conversions as flows, and the prevailing one the main flow.  A second type of flow usually 

accompanies the main flow, and quite frequently all two come into play.  Thus, there can be no 

flow of material without an accompanying flow of energy, however small. 

While the input-output model is very useful in understanding and modeling design 

functionality, it has limitation by considering functional entities as flows and by the assumption 

of causal relationship.  Hence, the input-output model, excludes systems that have no obvious or 

identifiable input and output flows, with no identifiable motion when in operation.  Examples of 

such systems with no identifiable input / output flows include a computer chassis and an electric 

power outlet cover.  The functionality model proposed in this research extends this basic model 

of functionality entities to support all classes of mechanically engineered products.  The basic 

entities are not considered only as time dependant elements – flows.  Rather, they are considered 

simply as basic entities involved in the realization of mechanical functions. 

 

 

2.2.3 Functionality Decomposition 

The physical realization of product functionality is hierarchical in nature.  As illustrated 

in Figure 14, product functionality can normally be described with an overall functionality by 

bringing together separate entities of sub-functionalities and basic components consisting of 

energy and material. Each sub-functionality accomplishes a specific function that contributes 

towards the accomplishment of the overall function. If an overall task has been adequately 

defined – that is, if the attributes and required behavior of all the quantities involved and their 
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actual or required properties are known – then it is possible to specify the overall function.  An 

overall function can often be divided into identifiable sub-functions corresponding to sub-tasks.  

The relationship between sub-functions and overall function is very often governed by certain 

constraints such as functional and physical relationships. 
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Figure 11 Product function decomposition 

 
 

The meaningful and compatible combination of sub-functions into an overall function 

produces a function structure, which may be varied to satisfy the overall function.  To that end, 

it is useful to make a block diagram in which the processes and sub-systems inside a given block 

(black box) are at first ignored. 
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Functions are usually defined by statements consisting of a verb and a noun, for example 

“increase pressure”, “transfer torque” and “reduce speed”.  They are derived from the interaction 

of energy and material.  It is useful to distinguish between main and auxiliary functions.  While 

main functions are those sub-functions that serve the overall objective directly, auxiliary 

functions are those that contribute to it indirectly.  They have a supportive or complementary 

character and are often determined by the nature of the solution. 

A logical analysis of functional relationship starts with the search for the essential ones 

that must appear in a system if the overall problem is to be solved.  There may be some 

conditional elements in sub-functional satisfaction (if-then condition).  Logical relationships 

must also be established between the entities of a particular function / sub-function.  In most 

cases, there are several entities whose relationships can be treated like propositions in binary 

logic.  For example, a simple AND-function may be illustrated by a clutch system; a trigger 

force must be sent and clutch engaged before the torque can be transmitted. 

 

 

2.2.4 Functionality-based Product Design Conceptualization 

Conceptual design involves the process of obtaining a pool of feasible concepts from 

which the most promising one is selected.  This is the process of creation, the most difficult and 

least understood step in the design process. [45] So far, no existing method is available to guide 

designers directly and precisely to invent devices, products, systems, or processes.   

An approach for mapping an evolving symbolic description of design into a geometric 

description was developed by Gorti and Sriram. [15]  They identified symbol-form mapping as 

the crucial issue to be addressed in developing Computer-Aided Conceptual Design (CACD) 
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framework.  That is, the process by which a logical description of an engineered system is 

mapped into physical description during the conceptual design phase. They argued that the 

design process has two aspects – a symbol aspect, which leads to a logical product description, 

and a geometric aspect, which leads to a physical description.  The distinct elements of the 

symbol-form mapping are: (a) deriving spatial relationships between objects as a consequence of 

the functional relationships; (b) instantiating alternative feasible solutions subject to these 

relationships; and (c) presenting the evolving descriptions of geometry. They called this part of 

the design a function-symbol mapping.  At this stage, the specific functional requirements 

coupled with the design context leads to: (a) a selection of components; (b) establishment of 

functional relationships between components; and (c) establishing important parametric 

constraints.  In order to physically realize the design, they noted that the logical description must 

somehow be mapped into a geometric description.  This mapping is often iterative – the 

geometry may lead to further refining the logical description.  Another stress is the importance 

of localized knowledge in relationship mapping.  They focused on developing a domain-

independent methodology to support form conception, by localizing domain-dependent aspects 

of the symbol-form mapping. 

A computer tool called function-behavior-state (FBS) modeler was proposed by 

Umeda’s group [46] to support conceptual design.  To accomplish this, they used the functional 

decomposition and physical features in knowledge base of the modeler.  The key objectives of 

the FBS are: 

 

• To distinguish subjective parts of a design object (function symbols and F-B 

relationships) and the objective parts (behaviors and states); 
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• To represent a function as an association of subjective concepts (function symbols) and 

objective concepts (behaviors) rather than just either of them; in other words, function 

relates subjective concepts and objective concepts; and 

• To represent a design object hierarchically to support a modeling process that details 

functional and behavioral descriptions concurrently. 

 

Wang and Nnaji [47] proposed the use of “modus” to model product functionality and 

form conceptualization.  They defined modus as the basic design operation unit that embodies 

functionality instead of feature or basic geometric elements such as lines, circles, etc.  This 

approach has a great limitation in modeling product functionality as a constraint and propagation 

of functionality to downstream design activities. 

Mukherjee et al. [16] proposed the use of representation methodology, sketching 

abstraction, as the schema for a CAD tool to support conceptual design of parts. The principle 

of the sketching abstraction is to use wireframe-based data structure to represent the 

functionally essential parts of the geometry, using features and workpiece face information. The 

remaining geometry is abstracted using a linkage system. The sketching abstraction is annotated 

with a set of primitives. They developed a grammar to extract canonical pairwise relationships 

between the functionally essential parts of the geometry. These relationships form the functional 

signature of the part.  Sketching abstractions have a close relationship with the part 

functionality. They developed a group technology (GT) based coding schema for representing 

functions and to enhance the retrieval of parts for the part library. Through the process of 

decomposition, the designer can select the most appropriate set of features from a library of 

features. The geometry is related to the functionality using data structures called function-form 
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matrices. The remaining geometry of the part is abstracted using a set of linkages to create the 

sketching abstraction. 

Establishing a function structure facilitates the discovery of solutions because it 

simplifies the general search for them and because solutions to sub-functions can be elaborated 

separately. A graphical display of this decomposition may also stimulate the creativity of the 

designer.  Most mechanical product functions are realized by selection of appropriate physical 

processes.  Hence, in conceptual design, physical processes and working principles are selected 

to accomplish mechanical functions. A physical process (realized by the selected physical effects 

and the determined geometric and material characteristics) results in a working relationship that 

fulfils the function in accordance with the task. 

 

Physical Effects 

Physical effects are described quantitatively by means of the physical laws governing the 

physical quantities involved.  For example, in Figure 12, the earth’s gravitational force (Fg) on 

an object of mass (m) is described by:  Fg = m . g, where g is the earth’s gravitational force 

constant.  Several physical effects may have to be combined in order to fulfill a sub-function.  

For example, the operation of a bi-metallic strip is the result of a combination of two effects, 

namely thermal expansion and elasticity.  A physical effect chosen for a particular sub-function, 

however, must be compatible with the physical effects of other, related sub-functions.   
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F = m . g 

Figure 12 Physical effect:  earth's gravitational pull on object, O 

 
 
Geometric and Material Characteristics 

The place where the physical process actually takes effect is the working location (active 

location).  A function is fulfilled by the physical effect, which is realized by the working 

geometry, i.e. the arrangement of working surfaces (or working spaces) and by the choice of 

working motions.  In addition, we need a general idea of the type of material with which the 

working surfaces are to be produced, for example, whether it is solid, liquid or gaseous; rigid or 

flexible; elastic or plastic.  A general idea of the final embodiment is often insufficient; the main 

material properties must be specified before the functional interrelationship can be formulated 

adequately. 
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Only the combination of the physical effect with functional entities (geometry and 

material characteristics) allows the principle of the solution to emerge.  This interrelationship is 

called the working principle, and it is the first concrete step in the implementation of the solution 

- conceptualization.  The combination of several working principles results in the working 

structure of a solution.  It is through this combination of working principles that the solution 

principle for fulfilling the overall task can be recognized.  The working structure derived from 

the function structure thus represents how the solution will work at the fundamental principle 

level. 

 

2.3 Spatial Relationship in Product Design 

 
Spatial relationships were proposed by Popplestone et al. [48,49,50,51] to express the relative 

positions of parts in a product's final state by specifying spatial relationships between features. A 

mathematical model is applied to transform a system of spatial relationships into equations, 

which are solved to determine the location of components in a product. Liu and Nnaji expanded 

the concept, and not only inferred the assembly position of parts but also captured designers' 

intent. [52, 53] There are six major types of spatial relationships (illustrated in Figure 10) defined 

as follows: 

 

• Against: the mating surfaces touch at some point. The against relationship is the most 

basic spatial relationships and applies to any parts assembly. Any combination of two 

features can possess this property. 
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• Parallel-offset: the parallel relation holds between planar faces, cylindrical and spherical 

features. In the case of two parallel planar faces, the outward normals are pointing in the 

same direction. This relationship exists without physical contact of two features with an 

offset distance. 

• Parax-offset: this relationship is similar to parallel-offset but the outward normals of the 

parallel planar faces are in opposite directions. 

• Aligned: two features are aligned if their centerlines are collinear.  

• Incline-offset: the inclination relation holds for an angle between two planar faces. The 

offset describes the distance from a planar face of a part to the intersection line of two 

faces which makes the include angle. 

• Include-angle: this is similar to incline-offset, but having an include angle between two 

planar faces in their positive normal direction. The rotation is clockwise with respect to a 

normal of a picking face. The rotational axis has to be parallel to the normals of above 

two planar faces. 

 

Each spatial relationship can be interpreted as a constraint imposed on the degrees of 

freedom between relative mating or interacting features. Given a set of combination of spatial 

relationships, the resultant degrees of freedom can be inferred by a rule-based reduction system. 

An example is adopted from [52] to illustrate the concept as shown in Figure 11.  
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Figure 13 Six types of spatial relationships: (a) against, (b) parallel-offset, (c) include -

angle, (d) parax-offset, (e) aligned, (f) incline-offset 
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Figure 14 An example of assembly by spatial relationships 
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2.4 Design Constraints 

 
 

Representation of constraints is a major challenge facing the design engineers. Due to the 

vital nature of constraints in design, their representation has received considerable attention in 

the design research community. Many researchers [54,55,56,57] believe that engineering design is a 

constraint-oriented process.  Some researchers argue that design process involves the 

recognition, formulation and satisfaction of constraints. [58] Stauffer and Slaughterbeck-Hyde  [59] 

defined constraints as a piece of information that limits design variables to a specific set of 

permissible values.  Van Hentenryck and Saraswat [60] considered a constraint to be a restriction 

on a space of possibilities. In summary, a constraint may be considered as either the bound on a 

single design parameter or the relation among a set of design parameters. Although the 

characteristics of constraints within the domain mapping process have been studied, no explicit 

representation scheme is available for modeling design constraints. 

Criteria and design knowledge include the preferences and constraints for evaluating 

design concepts. Consequently, constraints must be expressed explicitly with a systematic and 

consistent representation scheme. The constraints can then be examined and manipulated by 

engineers or computers with several advantages; [61] constraints can be checked for accuracy, 

sufficiency and completeness of decisions. 

Suh [62] discussed input constraints and system constraints in axiomatic design.  Input 

constraints are those given in design specifications, usually expressed as bounds on size, weight, 

materials, and cost. System constraints are imposed by the system in which the design solution 

must function.  
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Feature based design methods use geometric constraints to model the geometric 

relationship within a feature or among different features. [63] Although constraint modeling of 

features and geometry is well supported by the feature-based design methodology, it only 

models the results of a decision, not the constraints that govern the decision. Representation of 

constraints that affect design decisions is of great importance because a good decision should be 

based upon explicit and complete information. 

A single constraint can be expressed in different formats: domains, equalities, 

inequalities, or rules. A domain represents the bound of a design parameter, while equalities, 

inequalities and rules describe the relations among design parameters. [61]  

A set of constraints may be represented as: (1) the constraint network. (2) the constraint-

variable incidence matrix, and (3) the adjacency matrix. A constraint network is a collection of 

constraints that are interconnected by virtue of sharing variables. [64] Constraint networks are 

useful for constraint propagation and monitoring violations.  The purpose of a constraint 

variable incidence matrix is to study the relationships between constraints and variables. [65,66]  

In the matrix, rows represent constraints and columns represent variables. 

Three types of constraint-based design methods identified in the literature are: constraint 

monitoring, constraint satisfaction, and constrained optimization. Constraint monitoring uses 

constraints passively to check whether a decision satisfies all constraints. Constraint satisfaction 

uses constraints actively to derive some values of variables based on given input values of other 

variables. Constrained optimization, on the other hand, aims at finding the best solution from the 

alternatives to optimize the objective functions subject to constraints. 

Many researchers insist that constraint monitoring is more appropriate for concurrent 

engineering. [67] Bowen et al. [68] pointed out that a constraint satisfaction system tends to 
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automate the design process. Constraint monitoring takes advantage of the engineer's knowledge 

and intelligence.  In constraint monitoring, the engineer assigns values to variables, one after 

another. The algorithm propagates the values through the constraint network. If an assignment 

violates any constraint, the engineer has to provide a different value.  To use constraints actively, 

constraint satisfaction methods derive the values of some variables based on the given values of 

other variables.  To solve the constraint satisfaction problem in embodiment design, Thornton 

and Johnson [69] constructed a constraint violation function based on a set of non-linear and 

mixed equality and inequality constraints. If all constraints are satisfied, the value of this 

function is zero. If any constraint is violated, the function has a positive value. 

Some constraints, such as rules, cannot be expressed mathematically. One solution for 

considering both is to use the Constraint Logic Programming (CLP) paradigm. [70] Constraint 

Logic Programming is a merger of two declarative paradigms: constraint solving and logic 

programming. [71] Lakmazaheri and Rasdorf [70] used Constraint Logic Programming (CLP) 

successfully to perform the analysis and synthesis tasks in truss structure design. 

Although the methods discussed in this chapter have tried to model product functionality, 

there are limitations to the various approaches.  These limitations include:   

 

� A restriction to functions that are can be modeled as input and output flows.  

� The function models have generally been based on high-level approach providing little 

link to actual design elements or product parameters.  

� The models are too restrictive and not generic to support the design of variety of 

products.  
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� There is a lack of suitable propagation mechanism from conceptual design to 

downstream product development steps.   

 

The functionality-based design (FbD) methodology discussed in this thesis will address 

these issues. 
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3.0 PROPOSED FUNCTIONALITY-BASED DESIGN MODEL 
 
 
 

As earlier stated in Chapter 1, the objective of this research is to develop a scheme for 

mapping product functionality into mathematical relationships and constraints. This mapping 

process is known as functionality modeling.  The concept of functionality operation, operand, 

operator, relationship, coupling bonds, and constraints modeling is developed in this work to aid 

functionality-based product conceptualization and propagation to detailed design and analysis 

phases of product realization.  This approach allows for the description of a mechanical device 

such that functionality-based design can be supported.  Specifically, in order to realize the above 

objective, the following tasks were accomplished: 

 

� Functionality modeling to enable CAD systems to capture the designer’s intent during 

the conceptual design phase.  This involves the development of a scheme for 

representing, propagating, and enforcing the product functionality as design constraints. 

� Functionality data structure development to allow for the description of product 

functionality in a transparent manner. 

� Functionality relationship and mapping to develop the set of functionality relationships 

and mapping operations that enables the description and propagation of product 

functionalities to downstream design activities. 

� Description of functionality model for commonly used mechanical functionalities as a 

means of support for design repository of reusable product knowledge. 

� Development of computational tools to implement the above concepts in a CAD system.  

The computational tools developed in this research include: 
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o Functionality definition interface and tool kits; 

o Functionality object model; and 

o Functionality data representation in XML. 

 

The concerns of functionality modeling are best illustrated with an example.  Given the 

product (dumb-bell) in Figure 15, how can we describe the function of components P1, P2, and 

P3 in such a way that it captures all the functionality related issues in the design and operation of 

the product?  Also of interest is the question of how we describe the functionality relationship of 

components P1, P2, and P3 in the product a way that any proposed design can automatically be 

evaluated against such descriptions.  In addition, how such descriptions should be propagated to 

downstream design activities is of interest.  What formalism allows for such description to be 

entered in a computer to become part of design data?  Once a possible functionality model is 

defined, the physical structure of P1, P2 and P3 could be varied subject to the proposed 

functionality constraints. 

P1P2

P3

rf1 rf1

ff2

ff1

       

P 2  
P 3  

P 1   
 

(a) Component Description         (b) Assembled Sample Product 

 
Figure 15 Mechanical product sample – dumb-bell 

(Note: Dumb-bells are used as weights in fitness exercises.  Hence, the 
functionality of a dumb-bell is to provide the necessary load used to train the body 
muscles.) 
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Functional modeling has to ensure that two important model views are taken into 

considerations.  Hsu et al. identified the two model views as computer-oriented and human-

oriented models.(72)  The computer-oriented models ensure that computational reasoning and 

manipulations can be done in a very efficient manner.  Examples of computer-oriented models 

are structured languages, graphs, and mathematical models.  Human-oriented model on the other 

hand, provides conducive modeling techniques that aid the creativity of human designers.  

Examples of human-oriented models are images and natural languages. 

In general, constraints are restrictions on the design space (form or physical 

configuration).  The inclusion of design constraints reduces the available choice of design to 

satisfy the design objective.  The more constraints a problem has, the less solution space is 

available. Therefore, constraints must be expressed explicitly with a systematic and consistent 

representation scheme.  The geometry and functionality of a product are represented in terms of 

engineering constraints in a constraint based modeling system. Constraint definition and 

representation mechanism are hence required to model these engineering constraints that are 

imposed on the product design. The representation of product functionality as a design 

constraint ensures that the possible design space (or choices) is restricted to only design 

configurations that will satisfy the original product functionality. 

The strategy proposed for the functionality-based product model is described here.  The 

reason for the approach is also presented along with the justifications for the proposed 

methodology. 
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3.1 Modeling Scope 

 
The work developed in this research is limited to the class of designs that deal 

exclusively with mechanical devices governed by well-understood mathematical laws of physics 

such as Newton’s laws of motion.  A mechanical device is a piece of equipment, mechanical in 

nature, designed to serve a special purpose or perform a special function. [73] It generally consists 

of mechanical members connected by joints.  These members are so formed and connected that 

they transmit constrained motions by moving upon each other as mechanisms, or they transmit 

forces without any relative motion as structures.  By limiting to this class of products, it is 

believed that a solid foundation that result from this research might then be extended to other 

classes of engineering systems.  Previous researchers [25] have attempted to generalize this 

approach to all classes of products.  The assumption by some of these groups is the existence of 

a universal design theory that will apply to all classes of products – mechanical, electrical, 

chemical, and even biological.  This assumption is however still being debated. However, by 

focusing on a sub-set of products that are well understood, the chance of success is greatly 

increased by limiting the work to a level that is manageable to produce results that have practical 

application in the design of mechanical systems. 

Another major limitation or assumption in this work is that materials are restricted to 

idealized solids – rigid bodies – while energy consideration and modeling is restricted to 

mechanical energies comprising of force and torque.  The material restriction implies that fluids 

(gases and liquids) and highly deformable bodies are not implemented in the functionality 

model.  The system however provides a classification and makes room for possible extension 

that might include these material categories in future.  To accommodate other energy sources in 

this work, a functionality primitive – energy converter – is used to transform other energy 
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sources to mechanical form before being applied to the system.  This assumption is not too 

restrictive as the major source of energy in mechanical systems is mechanical energy 

(force/torque).  Another implication of the energy restriction is that functionality objects can be 

built to act as energy converters and used in a plug-an-play fashion in a fully deployed system.  

This is illustrated in Figure 16. 

 

 

Input Energy Output Energy 
ENERGY 

CONVERTER

Other Energy Source Mechanical Energy Source 

Other Energy Source Mechanical Energy Source 

 

Figure 16 Energy conversion functionality 

 
 

3.2 Major Challenges 

 
Product functionality modeling is a very challenging problem that involves the 

amalgamation of various engineering fields such as kinematics, artificial intelligence, feature 

and geometric reasoning, constraint reasoning, and domain specific knowledge such as material 

properties.  The major challenges involved in this research are highlighted below: 

 

� Mapping between function and structure: the connection between function and structure 

could be indirect in an artifact. 
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� Context dependency of product function:  a product that performs function “a” under 

condition “x”, may also perform function “b” under condition “y”. 

� Non-functional constraints: additional non-functional constraints (such as the physical 

processes e.g. energy storage in a compressed spring; and interactions e.g. friction on 

rubbing surfaces) are difficult to capture.  

� Adequate modeling structures: the existing product modeling techniques are inadequate for 

dealing with capturing functionality requirements during the conceptual design. 

� Design phase interoperability: lack of integration between conceptual design and detailed 

design phases in existing CAD packages. 

 

As pointed out earlier in the Chapter 2, many researchers have tried to model 

functionality.   The models proposed by these researchers have been very restrictive, and lack 

the robustness necessary to support functionality-driven design.  The key factors that have 

contributed to these inadequacies are:  

 

• Most of the models have only considered a particular aspect of functionality.  Functionality 

is a very broad and encompassing subject that is context dependent.  For example, a model 

that tries to view functionality as inputs and outputs will only result in a description of a 

particular view of functionality.  In this research, a model that tries to accommodate 

different views/descriptions of functionality is proposed. 

• Another major problem encountered by most researchers that have tried to generate form 

from function is the lack of a good functionality model that will aid the creativity of the 

designer.  In this work, a functionality representation model that supports the creativity of 
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the designer is described.  This is accomplished by making sure that two important model 

aspects are represented: computer-oriented model and human-oriented model.  For 

creativity to be simulated, the human model includes both text description and graphical 

representations. 

• One thing that is lacking in most of the previous work is the representation of the 

functionality model as a design constraint that allows a design to be tested transparently 

against those constraints. 

• A major problem faced by previous research models is the inability to support incremental 

design procedures.  That is, the ability to start conceptual design with scanty information 

as is usually the case in practice.  At the beginning of a design, complete product 

information is usually not available and is only provided or developed during the course of 

design process.  

 

3.3 Functionality Operations 

 
Engineering design process involves the mapping of specified product tasks unto a 

description of a realizable physical structure.  This specified task of the design is what its 

physical realization is supposed to do.  The physical structure is the actual physical parts out of 

which it is made, and the part-whole relationship among them.  Consequently, the functionality 

of an entity (or a product) is the general task it performs.  The entity may be either a physical 

artifact (e.g. the brake drum of a car wheel assembly) or an invisible object (e.g. the use of 

electro-magnetic forces to relocate a ferro-magnetic object).  An important attribute of 

functionality is the existence of an identifiable task that needs to be performed. 
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Typically, the need for a new design arises as a result of identification of a new 

functionality to be accomplished by the product.  Designs are conceptualized in terms of the 

functions they need to accomplish.  That is, design is functionality driven.  The physical 

realization of product functionality is hierarchical in nature.  That is product functionality can 

normally be described with an overall functionality by bringing together separate entities of sub-

functions and functional entities. Each sub-function, accomplishes a specific function that 

contributes towards the accomplishment of the overall function.  The sub-functions are in turn 

sub-divided into sub-functions and functional entities.   

A functionality operation is defined as the realization of a given task.  Where a task is 

the desired functionality of the entity.  Thus, an operation defines relationships and imposes 

constraints on functionality elements (operands and attributes).  The key element in the 

definition of a functionality operation is the existence of an object or entity configuration that 

performs the given task.  Hence, the functionality operation is the solution outcome of the 

functionality-modeling objective.  For example, consider the task of providing support to a beam 

structure by columns as shown in Figure 17.  The functionality and corresponding operations are 

as follows: 

 

� Functionality: support of a beam. 

� Functionality operation:  representation of the act of providing support to the beam. 
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Figure 17  Load bearing as an example of mechanical functionality 
 
 

In this work, mechanical functionality is considered as being composed of two 

components:  the operator and the operand.  These two entities are defined as follows: 

 

� An operand is a distinct element involved in the realization of a given functionality.  

Operands constitute the building block of mechanical functionalities.  They are 

entities that come together to accomplish any mechanical task.  For example (1) 

Transmission of force (operands: force and transmission medium)  (2) Transform of 

force to torque (operands: force, torque, and transmission medium)   

� An operator is the established relationship between operands in the performance of a 

functionality operation.   

 

The use of the term “flow” to model product functionality was proposed by previous 

researchers. [18, 23, 74] Many researchers [26, 27, 40, 43] on product functionality modeling have 

adopted this definition.  The definition of product functionality in terms of flow however, places 
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some restriction on the functions that can be modeled.  The two major limitations are 

highlighted below: 

 

• It assumes causality, which is cause and effect relationship, requiring the definition of 

mechanical elements as flows with inputs and outputs.  This assumption limits the possibility 

of functionality modeling to the class of functions with identifiable inputs and outputs. 

• The definition of functional flow includes a class for signals.  However, signal is a 

perception and hence not considered a basic mechanical operand.  A signal may be derived 

by a combination of other basic functional elements (see example in Section 4.0). 

 

The basic mechanical elements are modeled in this work by excluding signals and the 

flow restriction on the nature of mechanical elements.  The result of this is renamed operand. 

The term “operand” is borrowed from computer engineering where it is used to represent data 

component of a computer instruction code.  It represents the portion of the computer instruction 

that constitutes that actual values and parameters used in execution of an instruction.  Similarly, 

in the modeling of functionality, operand is used to represent the mechanical entity that is used 

to accomplish a general mechanical task. The term operand is used in this work because it 

captures the nature of the mechanical elements as the resources that are employed to achieve a 

particular function.  The operand may also be the result or output of a mechanical function.  The 

set of operands that are sufficient to describe the selected class [*] of mechanical functionality is 

the focus of this research. 

                                                 
* Scope of this research as described in Section 4.1 is limited to mechanical devices using non-deformable materials 
(excluding gases and liquids). 
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An important recognition from the above definitions is that mechanical functionality 

operation is realized by prescribing relationships at the linkage of operands.  This prescription is 

achieved by the operator of the mechanical functionality operation that needs to be performed.  

The operands are the entities the operator relates together for the actualization of a given task.  A 

more detailed description of the functionality operand is presented in Section 4.4 while that of 

the operator is presented in Section 4.5. 

A functionality model is composed of an aggregate of functionality operations.   

Functionality operation is classified according to the level of interaction complexity of its 

components.  Each functionality operation could be either basic or compound in nature. A basic 

functionality operation is defined as a mechanical operation in which a functionality operator 

relates only a set of operands together with their corresponding attributes.  On the other hand, a 

compound functionality operation corresponds to functionalities that are more complex by 

relating set of operands with other sub-functionality operations.   

         

 

 

3.3.1 Basic Functionality Operations (BOPN) 

Acts on only operands (with their corresponding attributes).  They represent basic 

mechanical functions. Basic functionality operation yields a special class of mechanical 

functionality operations that is referred to as primitive.  A subsequent combination of primitives 

yields functionalities that are more complex. Symbolically, we define a basic functionality 

operation as: 
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xBOPN:  {<opand 1 : attrib 1>, <opand 2 : attrib 2>, … <opand k : attrib k>} 

  where, 

  xBOPN = basic functionality operator  

<opand i>  = functionality operand i, i = 1, 2, .., k 

{attrib i }     = attributes of operand i   

 

A more detailed description of this representation and the corresponding example is 

provided in Chapter 4 of this thesis. 

 

3.3.2 Compound Functionality Operations (COPN) 

A subsequent combination of the functionality primitives and definition of their unique 

relationships and interactions yields a more complex functionality object that may be used to 

construct any mechanical function.   Acts on both operands and operations.  Compound 

functionality operation yields a special class of mechanical functionality operations that is 

referred to as functionality compound operations.  Symbolically, we define a compound 

functionality operation as: 

xCOPN:  {OPN1:[copand 1], OPN2:[copand 2], … OPNk:[copand k],  <opand 1 : 
attrib 1>, <opand 2 : attrib 2>, … <opand t : attrib t>} 

 Where, 

  xCOPN = compound functionality operator 

  OPNi            = functionality operator i, where i = 1, 2, …, k 

[copand i]   =  coupling operand set  i corresponding to OPNi 

<opand j>  = functionality operand j, j = 1, 2, .., k 

{attrib j }     = attributes of operand j   
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Using a more concise representation, a compound functionality operation can also be 

represented as: 

xCOPN:  {<OPN>  |  <OPAND>} 

 Where, 

  xCOPN = compound functionality operator 

  <OPN>     = set of lower functionality operations 

<OPAND>   = set of functionality operand 

 

 

3.3.3 Generic Functionality Model 

A generic functionality model will make it possible to impose functionality as a set of 

design constraints and preferences that may be used during the detailed design and analysis 

phase of the product.  In this research, new design representation formalism is developed to 

enable functionality-based design of mechanical products.  This methodology provides a 

framework that will allow a designer to carry out conceptual design with the aid of a computer.  

It also serves as an interface tool between the conceptual design phase and the detailed design 

phase of a product.   

In this research, the generic functionality model is presented as a scheme for mapping the 

functionality description into mathematical relationships and constraints.  This provides a means 

for representing, propagating, and enforcing product functionality as design constraints.  This 

functionality representation links product functions with the structural (physical) embodiment 

used to realize the functions.  This representation also offers support for recurring product 
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functionalities to be modeled as a functionality primitive, and used as a repository of reusable 

product knowledge that may be related to a particular form or geometric pattern.  A subsequent 

combination of the functionality primitives and definition of their unique relationships and 

interactions yields a more complex functionality operation that may be used to construct any 

mechanical function. 

Given a set of functionality objects (oij), with their corresponding attributes (aijk), we 

define a generic functionality model of a functionality operation (a modeling representation for 

both xBOPN and xCOPN) is defined by a ternary relation, Γi, given by Equation 2 

 
Γi =  {(r, s, f) | r ∈Ri, s ∈ Si, and f ∈ Fi}  

Equation 2 

Where, 
• i      =  functionality operation index 

• Ri   = a functionality operator, defines a set of relationships between 

functionality objects  

• Si    = a set of functionality states, defines state each object can assume. 

• Fi  = function-form mapping set, defines mappings between relationships and 

physical forms. 

 

Given a set of functionality objects, Oi in a functionality operation i, the functionality 

operator defines the relationship between these functionality objects, it can be represented 

mathematically as shown in Equation 3.  A functionality object (oiq) is either an operand or an 

interacting functionality operation (operand: material | energy and operation: lower level 

functionality operation).  A relation can assume any of the following forms: spatial; physical 

65 



 

aspect / processes; technological constraints; user preferences. A more detailed discussion on 

functionality relationships is presented in Section 4.5 

 
Ri = {rijk(oij, oik) | oij ∈ Oi, and oik ∈ Oi} 

Equation 3 
Where, 

 oiq = {aiqs | aiqs ∈ Aiq} =  object q in functionality operation i  

 Aiq = attribute set for functionality object oiq 

rijk = relation, mapped relationships between objects j and k. 

 j, k, q  =  functionality object indices 

i      =  functionality operation index 

 

Similarly, the state of a functionality object is defined by considering the various 

possible values its time-varying attributes might assume.  For instance, the possible states of a 

load-bearing structure could range from NO_LOAD to MAX_LOAD condition.  Hence, the state 

of a functionality object, q can be represented mathematically by a state set, Si as shown in 

Equation 4.  

 

Si = {siq |  siq ∈S } 

Equation 4 
 

Where i is the functionality operation index and siq is the state of objects q in 

functionality operation i. Hence, objects may have more than one functionality state. The 

functionality object state is given by Equation 5.   
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 siq = {(aiqs, viqs) | aiqs ∈ Aiq, viqs ∈ V[aiqs] } 

Equation 5 
Where  

Aiq = attribute set for functionality object oiq  

V[aiqs] =  set of possible values (range) of attribute aiqs  

Finally, the functionality-form mapping, Fi defines the mapping between the 

functionality relationship between the functionality model and the physical structure used to 

accomplish the given task.  This linkage is included in the functionality model to provide 

support from form conceptualization, propagations to detailed design tools, and design 

verification.  With this inclusion, each functionality description is attached to the physical form / 

structure as the design evolves.  A mathematical representation of this mapping is defined by 

Equation 6.  

Fi = {(rijk, fijkl) | rijk ∈ Ri,  fijkl ∈ FF}   

Equation 6 
Where, 

rijk (relation): mapped relationships between objects j and k.  

fijkl (form): conceptual forms mapped to relation rijk .  

FF    = set of functionality forms 

i      =  functionality operation index 

j, k  =  functionality object indices 

l  =   form index 

A more in-depth discussion of the various components of the functionality model is 

presented in chapters four and five.  A case study using FbD is discussed in chapter six. 
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4.0 FUNCTIONALITY OPERANDS 
 
 
 
 

An operand is a distinct element involved in the realization of a given functionality.  

Operands constitute the building block of mechanical functionalities.  They are entities that 

come together to accomplish any mechanical task.  An operand is the mechanical product 

functionality equivalent of “data” in computer systems.  Operands are classified into two broad 

categories: material and energy operands.  A material operand is any physical entity that has 

some mass and volume.  An energy operand on the other hand is the functionality component 

that effects some work outcome.  This classification is illustrated in Figure 18. 

 

 

 

Mechanical; Thermal; Electrical; 
Magnetic; Radioactive; Hydraulic; 

Pneumatic; etc 

ENERGY 

Solid; Liquid; Gas 

MATERIAL 

OPERAND 

 

Figure 18 Functionality operands 

 
 
 

The existence of an operand alone however, will not yield any meaningful functionality.  

The operator defines its context of operation by defining the governing relationships.  An 
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important recognition from the above definitions is that mechanical functionality operation is 

realized by prescribing relationships at the linkage of operands.  This prescription is achieved by 

the operator of the mechanical function operation that needs to be performed.  The operands are 

entities the operator relates together for the actualization of a given task.  For example, consider 

the functionality operation – transmission of force from one point (A) to another point (B) 

through a medium (see Figure 19).  The operands in this case are: the force and the transmission 

medium (note: that the medium is a solid bar).  The existence of force and medium does not 

provide any meaning or intelligence as to the purpose of these operands.  The presence of a 

transmission operator, however, defines the context and the relationship between the operands – 

force and medium.  A mathematical description of the operation as a primitive (basic) 

functionality can be represented as shown in Table 2. 

 

 

 B 

A 
FORCE 

 

MEDIUM

Figure 19 Transmission functionality operation illustrating the interaction between 

FORCE and MEDIUM operands:  transmission of force from point "A" to plate "B" 
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Table 2 Mathematical description of the transmission operation shown in Figure 19 

transmissionBOPN:  {<FORCE : attrib FORCE>, <MEDIUM : attrib MEDIUM>} 
where, 

Functionality item Description  
transmissionBOPN 

transmission basic functionality operator 
<FORCE> FORCE energy operand 
<MEDIUM> MEDIUM material operand 
{attrib FORCE } attribute set of FORCE operand 
{attrib MEDIUM } attribute set of MEDIUM operand 

 
 
 
A detailed functionality model for the transmission example is given in Section 6.32.  In 

the detailed model description, the operator defines the relationship between the attributes of the 

two operands.  For example, how is the magnitude of force related to the deformation or strain in 

the medium (assuming a solid medium)?   

Another example of a functionality operation is the transformation of FORCE to 

TORQUE (operands: force, torque, & transmission medium).  This example is illustrated in 

Figure 20 and modeled in Table 3. 

 

Table 3 Mathematical description of the transformation operation shown in Figure 20 

transformBOPN:  {<FORCE : attrib FORCE> <TORQUE : attrib TORQUE> 
<MEDIUM : attrib MEDIUM>} 
where, 
Functionality item 

Description  
transformBOPN 

transformation basic functionality operator 
<FORCE> FORCE energy operand 
<TORQUE> TORQUE energy operand 
<MEDIUM> MEDIUM material operand 
{attrib FORCE } attribute set of FORCE operand 
{attrib TORQUE } attribute set of TORQUE operand 
{attrib MEDIUM } attribute set of MEDIUM operand 
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The term flow has been used by some researchers to describe some aspects of the 

operand.  The term operand is used in this work because it captures the nature of the mechanical 

elements as the resources that are employed to achieve a particular function.  The operand may 

also be the result or output of a mechanical function.  The set of operands that are sufficient to 

describe the selected class [*] of mechanical functionality is the focus of this research.  

 

TORQUE
MEDIUM - SOLID

FORCE

turning
direction

 

Figure 20 FORCE to TORQUE transformation operation functionality 
 
 

Functionality operand is restricted to a selected set of materials and energy entities (see 

Figure 18).  This is a modification to the sub-set of flows defined by some previous researchers 

in the field of functional modeling. [18, 26, 27, 38, 39, 40, 41, 43]  The selected subset is sufficient to 

describe the class of mechanical systems considered in this research.  Each operand has its own 

set of attributes that are used in defining functionality relationships and constraints.  An 

important departure from the work of previous researchers [18, 38, 39, 40, 41, 43] is the lack of a 

                                                 
* Scope of this research as described in Section 4.1 is limited to mechanical devices using non-deformable materials 
(excluding gases and liquids). 
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primitive operand for the signals.  This is because signal is a perception and hence not 

considered a basic mechanical operand.  A signal may be derived by a combination of other 

primitive operations.  For example, in a voltmeter, a regulated displacement of a pointer attached 

to the magnetic coil over a graduated scale may be observed or interpreted as a measurement 

signal of the potential difference between two points in an electrical system. Szykman’s team 

considered signal as mostly composed of auditory, olfactory, tactile, taste, and visual signals, 

which is outside the realm of mechanical systems consideration of this work.  These signals are 

related to human sensory system and do not easily translate into physical mechanical design 

elements. 

The following subsections presents a more detailed description of each of the 

functionality operands employed in this work. 

 

4.1 Material Operand: Solid Operands 

 
A material operand is any physical entity that has some mass and volume.  Although 

there are three classes of materials: solids, gases, and liquids; this research is restricted to solids 

with the assumption that they exhibit the properties of an idealized mechanical body known as 

rigid body.  This restriction is to scope the model development to demonstrate the principles 

developed here which may then be extended to cover other types of materials.   

In this context, a solid material operand is defined as any object with mass having a 

definite shape and volume.  The definition of solid material operands in this work is restricted to 

“Rigid Bodies”, which includes any class of engineering material (metals, alloys, ceramics, 

polymers, composites, etc) in its solid phase.   The rigid body assumption allows us to neglect 
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highly deformable bodies in the development of solid material operand model. Figure 21 

illustrates the structure of a solid material operand.  The principal components of the solid 

operand are: functional features, physical property, degree of freedom, mass property, and 

material type. 

From Figure 21, it should be noted that a solid operand is modeled by: SOLID {FM, 

DoF, PyC, MP, MT}, where FM is the set of functional positional markers; DoF is the required 

degree of freedom of operand; PyC is the set of physical constraints on the operands; MP is the 

set of mass properties on the operands; and MT is the material type constraint.  Hence, the 

attributes of a solid operand is completely defined by FM, DoF, PyC, MP, and MT.  However, 

at the beginning of the design process (conceptualization) and functional definition, some of 

these information may not be known and hence incomplete.  The model is however defined by 

noting the unspecified (unknown) attributes and neglecting them (or using default values) for 

any intermediate reasoning or computation.  As design progresses, these attributes are defined. 
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Figure 21 Material operand structure illustrating a detailed attribute modeling of a solid 

material 
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4.1.1 Functional Position Marker 

Two related operands in a functionality operation do not make contact over their whole 

surface but only functional regions/point of each operand are in contact.  Hence, functional 

points/regions (markers) are geometric points, locations, or regions on solid operands, which are 

needed to relatively position the operands according to their coupling relations in the whole 

functionality operation or structure. They are primarily related to operand’s topology and 

geometry.  Each functional position marker must have: 

 

� Intra-functional marker constraints:  which describes the geometric shape and size, 

location, orientation, tolerance, and dimension of the functional marker. 

� Inter-functional marker constraints:  which describes the dependencies between 

functional marker within a solid operand, for example, position of functional point, 

orientation, feature adjacency, etc. 

 

In the assigning process of operand relationships, the functional points/regions are 

defined and extracted from the operands. For example, assigning a planar surface of one part 

against a planar surface of the other part, these two planar surfaces are the functional 

points/regions of interest in the operands coupled pair. In this fashion, the interpretation of 

functional markers/points will be mostly lower-level kinds of geometric entities. One reason for 

that is to easily extract functional points universally from operands, parts or pre-defined features, 

which are usually diverse because they are intent-oriented. From this point of view, the 

functional region/point of a material operand could be a point, a planar face, a centerline of a 
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cylinder or an edge of a face boundary, etc. Therefore, the functional markers/points are 

determined by the types of operand relationships being specified and the operand types (entities) 

being selected (see Figure 22).  In Figure 22, the functional point involved in coupling the two 

material operands (P1 and P2) are points A1 and A2.   

 

 

A1 

P2 

P1 

A2 P2 

P1

A1 

A2 coupling

(a) Before coupling (b) After coupling  

Figure 22  Operand coupling at the functional points, A1 and A2 

 
 

Solid Material operands can be idealized by modeling them as a wire-frame structure 

(Figure 23) with the regions of particular interest denoted as points on the wire-frame model.  

When more than two regions (points) are needed as functional point, additional lines may be 

extended from the existing ones to the new regions of interest. Figure 24 illustrates the concept 

where four functional points, A, B, C, and M, are identified on the solid operand.  The only 

major constraint imposed on the functional points by the parent solid material operand is that 

they are part of the same operand and maintain constant spatial relation between one another. To 

maintain a given relative position between functional points, a dimensional constraint (DC) is 

imposed on the functional points relative to a reference point known as datum point (M). 
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 A B

 

Figure 23 Wire-frame representation of a simple solid material operand 

 
 

 

C

B

M

A 

 

Figure 24  Wire-frame representation of multipoint solid material operand with four 

functional points A, B, C, and M 

 
 

In this work, to model functional points in solid material operands, the concept of 

markers is used to describe the position and spatial relations in the functionality model.  

 

Markers 

The term “marker” is adopted from Kramer [75] and Liu [22] with some modification to 

support modeling of functionality operands. A marker consists of a point (x, y, z) on the operand 

and two unit vectors (u, v), which emanate from this point. These markers are used to describe 

the geometric constraints of the spatial relationships between their functional marker/features 

and coupling operands. Examples of markers for the coupling features are shown in Figure 25. It 

is noted that these two unit vectors (u, v) are defined to be orthogonal in Kramer, [75] however 

that is not necessary in our application as long as these two vectors are not the same. These 
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markers are generated automatically by the system according to the operand function 

marker/feature pair. The system chooses or infers from existing functional features on the 

operands to form the marker. 

 

 
v

u

 p(x, y, z) u

v 

 p(x, y, z) 

Planar face Marker description:  
- p , u and v lie on planar face 
- u × v is parallel to face normal vector 

(a) 

Centerline Marker description: 
- p lies on centerline 
- u × v is aligned with centerline 

(b) 
 

Figure 25 The markers on functional coupling features 

 
 
A functional marker/feature is defined with markers using the following notation:   

 

M1: a point p1(x1, y1, z1) and a unit vector set (u1, v1). 

M2: a point p2(x2, y2, z2) and a unit vector set (u2, v2). 

wi : a unit vector which is obtained by  ui ×  vi. 

line(p, w): a line through p and parallel to vector w. 

plane(p, w): a plane through p and normal to vector w.  

surface_point({m: m∈M}): the surface fitting (interpolation) through the set of markers, M. 

surface_offset(constr M):  a revolved surface formed on marker set M. 

intersect_line(M1, M2, w1 × w2): the intersection line of plane(p1, w1) and plane(p2, w2), and 

w1 ×  w2 is the vector of this line. 
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From the above definitions, the basic set of functional marker/features of an operand 

includes the following: a point, a line (including intersect line), and a surface (including a plane 

as the simple case).   

 

Inter-Functional Marker Constraints 

These are geometric constraints that describe the dependencies between functional 

markers within a solid operand, for example, position of functional point, orientation, feature 

adjacency, etc.  The intra-functional feature constraint describes the geometric shape, dimension, 

and tolerance of the functional feature.  For example, the length of a line, area of a surface, and 

positional tolerance of a point.  The geometric constraint set can then be defined as: (see Figure 

26) 

 

• on_line(M1, M2, w2): p1 lies on the line(p2, w2). 

• on_plane(M1, M2, w2): p1 lies on the plane(p2, w2).  

• parallel(M1, M2, w): w1 is parallel to w2 and (w1 • w2) = 1. 

• parallel(M1, M2, -w): w1 is parallel to w2 and (w1 • w2) = -1.  

• angle_w(M1, M2, θ): the angle between w1 and w2 is θ. 

• dist(M1, M2, d): the distance from p1 to the projective point on plane(p2 , w2) is d. 

• dist(L1, L2, d): the perpendicular distance between line L1 and line L2 is d. 
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Figure 26 Inter-functional feature constraints representing geometric constraint set 

 

 
4.1.2 Degree of Freedom: Kinematic Constraints  

The degree of freedom of a solid material operand defines the allowable motions the 

operand may undertake in the realization of a functionality operation. In kinematics, a free rigid 

body has six degrees of freedom. However, the degrees of freedom of an assembled component 
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are reduced after spatial relationships are imposed. In other words, a spatial relationship can be 

seen as a constraint used for confining kinematic degrees of freedom of related components. The 

types of degrees of freedom which can result from spatial relationships are as follows: [53, 76] 

 

• lin_n: linear translation along n axis. 

• rot_n: rotation about n axis. 

• cir_n: translating along a circle with n axis. 

• plane_n, cyl_n, sph: translating along a planar, cylindrical and spherical surface 

respectively. 

• roll_lin_n: rolling along a corner. 

 

The degrees of freedom of a solid operand are expressed as {degrees of freedom of 

moving along the functional feature of relative coupling operand: degrees of freedom of moving 

the operand with respect to itself}, where the relative coupling operand is fixed. In Figure 10, 

the degrees of the freedom which remained after imposing aligned spatial relationship are {lin_z 

:: rot_z}. When there is more than one spatial relationship assigned on the component, a rule-

based system is applied to determine the intersection of degrees of freedom. A detailed 

description of these degrees of freedom reduction rules can be found in Liu. [53] 
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Figure 27 Aligned spatial relation specification example 

 
 
 
4.1.3 Physical Constraint Set 

This component of the solid operand includes the desired material physical properties of 

the operand.  This set in effect defines the physical composition of the solid.  A knowledge of 

this set of attribute can be used to infer the type of material suitable for the given functionality 

task.  The magnetic and optical properties of material are not included in this model.  These 

properties form part of the future extensions to this work.  This set of attributes include the 

following: 

 

• Strength attribute: measures the stress (load per unit area – N/m2) the operand is able to 

withstand under operating condition (includes tensile, compressive, torsion, and bending 

stress).  The components of stress are: proportionality limit, elastic limit, yield strength, 

ultimate strength, and fracture stress. While all the above stress specifications are 

component of the strength attribute in a realistic design example, most engineering solids 

are expected to operate well within the yield limit.   
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Design deals with allowable stresses, or reduced value of strength.  The allowable 

normal stress ( allσ ) and the allowable shear stress ( allτ ) for ferrous and nonferrous 

metals for various types of loading may be represented by: [77] 

o Tension:  yally SS 60.045.0 ≤≤ σ  
o Shear:   yall S40.0=τ  
o Bending:  yally SS 75.060.0 ≤≤ σ  
o Bearing:  yall S90.0=σ  

Where, Sy is the yield strength of the selected material.  The above equations may also be 

applied to polymers and ceramics if the ultimate strength at the break and fracture 

strength, respectively, are substituted for yield strength in the equations above. 

Consequently, in this model, the strength attribute refers to the allowable stress limit, 

which is well within the yield limit. 

• Elasticity attribute:   

o Axial and shear strains. Axial strain is the ratio of change in length to original 

length (i.e., 
0

0

l
ll −

=ε ). 

o Poisson’s ratio (ν ) relates the transverse strain ( avgt ,ε ) to the axial strain ( avga,ε ): 

avgaavgt ,, νεε −=  

• Ductility: measures the degree of plastic deformation sustained at fracture.  Specified by 

the percentage elongation (%EL) or  (%EL) = %100
0

0 ×






 −

l
ll fr

 ; where lfr is the length 

of the operand at fracture and l0 is the length of operand without load. Thus solids are 

grouped into two based on their ductility: ductile solids (%EL ≥ 5%) and brittle solids 

(%EL<5% ). 
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• Density:  this is a measure of mass per unit volume (kilograms per cubic meter – kg/m3) 

• Surface characteristics:  Tribology 

o Surface Friction: force resisting relative movement between surfaces in contact. 

� Force of static friction (Fs);  Force of dynamic friction (Fk); and Rolling 

friction (Fr). 

o Surface Roughness:  Centerline average or arithmetic average surface roughness 

Ra is given by: ∑
=

=
N

i
ia z

N
R

1

1 , where zi is the height from reference line and N is 

the number of height measurements taken. 

o Wear rate (Wr): this is the volume of material lost from one surface, per unit 

distance slid.  

• Thermal characteristics:   

o Thermal conductivity (Kt), unit - watts per meter-Celsius 

o Thermal expansion coefficient ( a ),  unit - (oC)-1 

o Specific heat capacity (Cp), unit – J/(kg-oC) 

• Electrical Properties: 

Resistance (R) – Although this is temperature dependant, the temperature effect is 

neglected in the functionality model developed in this work.   

 

 

4.1.4 Material Type 

Choosing the solid material is an important step in the design of a product.  Being able to 

exploit a material’s potential and characteristics is essential to ensuring that the best material is 
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used for a particular solid operand.  Therefore knowing the properties of solid materials is 

essential.  Engineering materials include metals, polymers, composites, ceramics, and wood.  

For each class of engineering material, wide ranges of types are available to a designer.  For 

example, in the metal class, we have iron and its derivatives, aluminum, copper, etc.  Even 

within a given type of metal, the property still varies depending on the grade of metal and 

treatment (e.g. thermal treatment) the metal is subjected to.  A broad classification of mechanical 

solid material types is as follows: 

 

• Metals: 

o Ferrous metals: carbon, alloy, stainless, and tool and die steels. 

o Nonferrous metals and alloys: aluminum, magnesium, copper, nickel, titanium, 

super-alloys, refractory metals, beryllium, zirconium, etc. 

• Plastics (Polymers): thermoplastics, thermosets, and elastomers. 

• Ceramics: glass ceramics, glasses, graphite, and diamond 

• Composite materials: reinforced plastics, metal-matrix and ceramic-matrix composites, 

and honeycomb structures 

• Wood:  laminated, hard wood, etc. 

 

Each type of material will have its own unique value for the following properties:  

ductility, strength, elasticity, conductivity, etc. as shown in Figure 28. 
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Figure 28  Material properties 

 
 
 

The most suitable type of material for a particular solid material operand must satisfy all 

the property set of the operand. Because of the diverse nature of engineering materials, the 

functionality model developed in this work only makes provision for inclusion of the name of 

the material assigned to a given operand.  The specific material properties are not included in 

this model and are expected to be obtained from a third party or engineering material reference 

library/manuals.  Once these properties are obtained, they should be tested against the target 

operand material properties as defined in the attribute set of the operand.  
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4.1.5 Mass Properties 

� Volume:  3-D Space occupied by solid operand. Computation depends on exact 

geometry. 

� Mass:  Density x Volume:  In Newton’s law of inertia, mass is a measure of a body’s 

inertia – of its resistance to change in motion. 

� Area:  Computation depends on exact geometry. 

� Moment of inertia (I): Computation depends on exact geometry.  This is a rotational 

analog of inertia; it depends not only on mass itself but also on the distribution of mass in 

relation to the rotation axis.  Unit – Kg.m2.   Rotational inertia depends on the mass of a 

body and on the distribution of mass about the rotation axis, and is given by: 

for a body consisting of discrete masses, and by ∑= 2
ii rmI ∫= dmrI 2  for a continuous 

distribution of matter. 

 

4.1.6 Topology 

During conceptual design, all solid operands assume a functionality bounding geometry 

consisting of functional points/regions. The functional points are located on the surface of the 

functionality boundary points. Functional points are equivalent to vertices, edges, or axis of 

solid components. To define the bounding geometry, the functional points are joined together to 

form a surface or wireframe of lines and end-points.  
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In this work, the initial product functionality is modeled using 2-D approach.  This 

approach allows us to demonstrate the concepts developed here, which can then be extended in 

future to cover functionality modeling in 3-D. 

 

Boundary Modeling (BM) Function: 

BM functions are used to add, delete, or modify the lower entities of a solid, such as 

vertices, edges, and faces, in order to manipulate it directly. Points are first created, then edges 

are created by connecting the points, and finally surfaces are defined by the bounding edges. 

Because of the tedious nature of this modeling process, its use in this work is restricted to 2-D, 

in the X-Y plane. 
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Figure 29  Boundary modeling in product conceptualization with functional points only 
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Figure 30  Boundary modeling in product conceptualization illustrating use of functional 

points (M1, M2, and M4), functional region (M3), and reference functional point (Mref) 

 
 
 

The creation of 2-D bounding surface of a solid operand is illustrated in Figure 29 and 

Figure 30.  In Figure 29, only functional points are used.  These functional points translate to 

actual vertices of the bounding surface.  These functional points are defined for the solid 

operand by defining the dimensional constraints on the points with respect to the reference point 

or to other existing functional points.  The bounding surface is created by joining all the 

functional and reference points to form a closed curve (i.e. surface).  Instead of functional 

points, a functionally active region might be used to define functionally relevant regions on the 

solid operand.  For example, in Figure 30, marker M3 is used to represent a circular region of 

radius R on the solid operand.  Such regions might be used to represent features such as holes, 

slots, pockets, or some other features that are functionally essential for the proper working of the 

operand.  The bounding surfaces and curves are generated by joining the functional points / 

regions to form the initial product form as shown in Figure 29 and Figure 30. 
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4.2 Energy Operand – Mechanical Energy Operand 

 
 

Energy is the functionality operand that effects some work outcome.  Energy may be 

from mechanical, thermal, electrical, magnetic, acoustic, radioactive, chemical, biological, 

optical, hydraulic, or pneumatic source.  To demonstrate the concepts developed in this work, it 

will be assumed that all the energy that impact mechanical product functionality is present in 

mechanical form.  For this assumption to hold, all energy sources (other than mechanical 

energy) are first applied to an energy converter, which transforms that energy into a mechanical 

form.  Thus, energy converter (a specialized transform operation) is used as a primitive 

operation in this work.  (see Figure 31) This assumption makes the system modular and 

extensible, each energy converter may easily be included in the system (as a functionality 

component) with all the applicable laws and principles that govern the transformation process. 

 

 

Input Energy Output Energy 
ENERGY 

CONVERTER

Other Energy Source Mechanical Energy Source 

Other Energy Source Mechanical Energy Source 

 

Figure 31 Mechanical energy converter 
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Some researchers [41] have considered energy as being composed of two components: 

effort and its corollary.  They stated that an effort is any component of energy used to 

accomplish an intended purpose, while the corollary is a natural consequence of or 

accompaniment of effort.  This model however will not support the view of energy as an 

operand in which its natural consequence can only be determined by the context under which it 

operates.  That is, other entities with which it interacts with.  These other operands together with 

the relevant relationships determine the context of the application.  Hence, the definition of 

energy operand follows the same pattern used in the material operand, by defining all its 

attributes and nature.  The effects of the operands (relationships) are considered under a different 

section that discusses the modeling of operand interactions. 

Mechanical energy is associated with the spatial displacement of a material operand 

(machine/component) or the strain energy associated with the loading state of a material 

operand.  For example, application of force at one end of a linkage in a cam mechanism results 

in a functional path being traced out at the other end of the linkage.  Or the energy associated 

with the rotation of the transmission shaft of a car.  Two forms of energy operands are 

associated with mechanical energy in the operation of mechanical systems.  The operands are 

FORCE and TORQUE operands as illustrated in Figure 32.  FORCE is classified as a primary 

operand as it is the primary energy associated with the functionality of mechanical systems.  

Hence, FORCE is the primary mechanical energy source in mechanical system. TORQUE 

operand on the other hand is secondary as it is derived from a FORCE operand.  Thus the 

availability of TORQUE presupposes the existence of a FORCE as the primary source.  Hence, 

TORQUE could by expressed in terms of the source force.  The use of TORQUE as an 
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independent operand is for simplification of some complex interactions involving FORCE, 

where rotational effect of force if of primary concern.    

 

MECHANICAL
ENERGY

Torque Operand
(rotational)

Force Operand
(generic)Primary Operand Level

Secondary Operand Level

 

Figure 32 Mechanical energy operands 

 
 
4.2.1 FORCE Operand 

Force causes change in motion and/or change in the spatial relation of internal 

components of an object (material operands) resulting in stress and strain.  In mechanical 

systems, varieties of forces are always acting on material operands.  The individual forces acting 

on an object is called interaction forces, because they always involve other objects interacting 

with the object in question.  For modeling and practical purposes, what matters is the net force 
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on an object, meaning the vector sum of all the interacting forces on an object.  The effect of 

force relevant to functionality modeling of mechanical devices will be considered in more detail 

in Chapter 5, Functionality Relationships.  

At present, physicists identify three basic forces – the gravitational force, the 

electroweak force, and the color force.  Each of these subsumes other forces once considered 

distinct.  There is still ongoing debate and research on the existence of a common unifying class 

for all forces.  A more detailed discussion on the subject is presented by Wolfson, et al. [78]  

 

• Gravitational force:  This attractive force acts between all matters.  The most relevant 

form of this force in mechanical devices if the attraction of all matters (material 

operands) by earth’s gravitational force in the form of the weight of objects.   Thus, all 

components of a mechanical product, having mass exhibit this kind of force. 

• Electroweak force:  This class of force subsumes electromagnetism and the so-called 

weak nuclear force.  Virtually all the non-gravitational forces we encounter in everyday 

life are electromagnetic, including contact forces, friction, tension forces, the forces in 

your muscles, and the forces that hold ordinary matter together at the atomic and 

molecular level. The weak force is less obvious, but is important in helping determine 

which atomic nuclei are stable and which are radioactive. 

• Color force:  Originally called the nuclear force and referred to as the force between 

individual protons and neutrons.  However, protons and neutrons are composed of 

simpler particles called quarks.  The force between the quarks is called the color forces.   
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The unit of force is Newton.  The data structure of the FORCE operand used in this work 

is as shown in Figure 33.  From the figure, it should be noted that a FORCE operand is modeled 

by: FORCE {<source | kind> <mag, angle, point> <nature>}, where source defines the 

source of force; kind defines the kind of force; nature defines the nature of force, while “mag” is 

the magnitude of force; and angle is the rotation from the Cartesian axis, and point is the 3-D 

coordinates of the point of application.  Hence, the attributes of a FORCE operand is completely 

defined by source, kind, mag, angle, point, and nature.  However, at the beginning of the 

design process (conceptualization) and functional definition, some of this information may not 

be known and hence incomplete.  The model is however defined by noting the unspecified 

(unknown) attributes and neglecting them (or using default values / approximations) for any 

intermediate reasoning or computation.  As design progress, these attributes are defined. 

 

94 



 

FORCE
Operand

Kind

Attribute
Set

Non-
Contact

Contact

Magnitude

Direction

Point of
Applic.

Nature

Impact

Static

Sustained
(Steady)

Cyclic

Medium

 

Figure 33  FORCE operand model 

 
 
a)  Kind of Force 

Although the three fundamental forces are at the heart of all that happens in the physical 

world, in our modeling of FORCE as a functionality operand on a macroscopic scale, we do not 
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consider force at such a fundamental level – with the important exception of gravity.  For the 

functionality model, force is classified into two:  contact force and action-at-a-distance force. 

 

• Contact force:  This is a force where one object exerts a force on another through direct 

contact.  Results from direct contact with another body. For example, the upward force 

of a chair on a human body or the friction between two objects.  An important 

implication of this is the existence of the transmission medium that exacts the force on 

the object. 

• Non-Contact (Action-at-a-distance force):  This is a force where the objects exert the 

force through seemingly non-contacting objects.  Bodies do not have to be in contact for 

these forces to act.  Examples of this class of force include gravitational forces, electric 

force, and magnetic force. 

 

b) Attribute Set and Vector Representation 

This component of the FORCE operand defines the quantitative composition of force.  A 

knowledge of this set of attribute can be used to infer the impact or effect of the force on other 

operands involved in the realization of a given functionality task.  Since force is a vector 

quantity, its set of attributes includes the following: direction, magnitude, and point of 

application. 

The projection of a vector on a line is called a component of the vector in the direction of 

the line.  In the rectangular coordinate system, these projections onto the major axis is called the 

rectangular components of the vectors, and are denoted by Ax, Ay, and Az for the vector A.  The 
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magnitude of a vector can be written in terms of the vector’s rectangular components.  The 

magnitude of vector A is given by: 

  222|| zyx AAAA ++=  

Similarly, the direction can be specified in terms of the rectangular components.  The 

angle between a force (A) and a line parallel to the x-axis is given by, 









= −

A
Ax1sinθ .  The 

representation of force operand using the unit vector convention enables the functionality model 

of force operand to relate to the conventional design space in Cartesian coordinate system. 

Two vectors defined to be equal if they have the same magnitude and the same direction.  

This definition is bound to introduce some ambiguity in the modeling of force operand for 

conceptual design systems.  This ambiguity is resolved by also defining the point of application 

(or the spatial relationship) the force operand has with the solid operand.  This definition is 

presented in Section 3.5, functionality relationships. 

 

c)  Nature 

Any applied force may be classified with respect to time in the following ways: 

• Static force – Force is gradually applied and equilibrium is reached in relatively short 

time.  The structure experiences no dynamic effects. 

• Sustained force – Force, such as the weight of a structure, is constant over a long time. 

• Impact force – Force is rapidly applied.  An impact force is usually attributed to an 

energy imparted to a system. 

• Cyclic force – Force can vary and even reverse itself in sign and has a characteristic 

period with respect to time. 
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4.2.2 TORQUE Operand 

This operand is the energy that results from rotation or torsion of a functionality object –

solid material.  In TORQUE energy operand, a component of the force causing rotation is 

inclined and at a distance from the axis of rotation.  For example, in the design of an automobile, 

the designer may be interested in the transmission of a rotational energy through the car axle to 

the wheels.  On the other hand, in the design of a power screwdriver, a designer may be 

interested in the transmission of rotational energy from the electric motor to the head of the 

screw/bolt through the spindle. For example, in Figure 18, rotational energy is transmitted 

through the shaft to the disc. 

 
 
 

Transmission Shaft

Direction of rotation

Direction of
resisting load

 

Figure 34  Rotational energy in a rotating shaft 

 
 
 

Although Newton’s second law, F = ma, governs all motion, a direct application of the 

law to every particle in a rotating object would be terribly cumbersome.  Instead, an analogous 

law that deals with rotational quantities is developed to describe rotational effect of force.  
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Hence, TORQUE, which is a force analogy to rotational motion, is the effectiveness of a force in 

bringing about changes in rotational motion.  Torque depends on the applied force and on how 

far from the rotation of the axis it’s applied.  Effectiveness of the force also depends on the 

direction in which it’s applied; application at right angles to the line from the rotation axis to the 

force application point is most effective. 

Based on the above considerations, torque (τ) is defined as the measure of the 

effectiveness of a given force in producing a change in rotational motion – as the product of the 

distance r from the rotation axis with the component of the force perpendicular to that axis.  This 

is given as: 

 

τ =  r F sin θ,  

 

θ is the angle between the force vector and the vector r from the rotation axis to the force 

application point.  The unit of torque is N-m. Torque, twisting force, is the rotational analog of 

force (or Newton’s second law) with corresponding law of inertia given as: 

τ = Iα , 

Where I is the rotational inertia or moment of inertia and α is the angular acceleration. 

 

The direction of torque (and corresponding angular velocity) is defined with the right-

hand-rule : if you curl the fingers of your right hand to follow the rotation, then your right 

thumb points in the direction of the torque and angular velocity.  This is illustrated in Figure 35.  

In vector notation, torque is given by the cross product of the force (F) and the vector r from the 

rotation axis of the force application point.  Torque is defined by: 
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 τ =  r x F 

The result of the equation completely defines torque as a vector.  The direction is 

perpendicular to both vectors F and r.  In modeling torque, it should be noted that both F and r 

are expressed in the unit vector format in the rectangular coordinate system.  Hence, torque τ is 

also defined in the unit vector format by τ = τxi + τyj + τzk , where τx, τy, and τz are the x, y, and 

z, components of τ respectively.  The magnitude of torque is given by  |τ| = τ =  r F sin θ 

 

F
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Figure 35  Direction of torque is given by the right hand rule 

 
 
 

For modeling purposes, the TORQUE operand has a structure similar to that of FORCE 

operand.  This structure is shown in Figure 36.  Thus, the TORQUE operand model is described 

by specifying the torque vector, source of force, axis of rotation, and nature of the torque.  The 

nature of the torque is directly related to the nature of the force that produces the torque.  Hence, 
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the nature of torque may be static, cyclic, steady, impact, or some combination of any of the 

four.   

From the figure, it should be noted that a TORQUE operand is modeled by: TORQUE 

{<source | kind> <mag, angle, axis> <nature> }, where source defines the source of torque; 

kind defines the kind of torque; nature defines the nature of torque, while mag is the magnitude 

of torque; and angle is the rotation from the Cartesian axis, and axis is the axis of rotation of the 

torque.  The kind attribute specifies whether the source force is a contact or a non-contact force.  

The attributes of a TORQUE operand is completely defined by source, kind, mag, angle, axis, 

and nature.  However, at the beginning of the design process (conceptualization) and functional 

definition, some of these information may not be known and hence incomplete.  The model is 

however defined by noting the unspecified (unknown) attributes and neglecting them (or using 

default values / approximations) for any intermediate reasoning or computation.  As design 

progress, these attributes are defined. 
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Figure 36  TORQUE operand model 
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5.0 FUNCTIONALITY RELATIONS AND STATES 
 
 
 

5.1 Functionality Relations 

 
 

To accomplish a mechanical function, a functionality operation must define functionality 

operand relationships and impose constraints on functionality operands, which may result in 

some additional implications.  The functionality operator accomplishes this.  Thus, the operator 

provides the needed intelligence that leads to the realization of a given task.  A functionality 

operator defines the relationship between operands in the performance of a functionality 

operation.  Hence, the operator defines how the attributes of the functionality operands are 

related. This is illustrated in Figure 37.   

 

 

OOPPEERRAATTOORR  

OOPPEERRAANNDD  22  

OOPPEERRAANNDD  33  OOPPEERRAANNDD  11  

OOPPEERRAANNDD  44  
 

Figure 37  Functionality operator linking four operands 

 
For example, consider a case where two solid material operands are in rubbing contact.  

The frictional coefficient and the surface wear rate, are some of the operators that related the 

surface attributes of the two solids in sliding contact.  The operands are the two solid materials 
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in contact: Operand-A, and Operand-B.  The functional regions of interest are the two rubbing 

surfaces.  The other attributes that are relevant in this interaction are the surface characteristics 

(which determines the coefficient of friction, µ) and the mass of the non-fixed operand 

(Operand-A).  The frictional force (F) between the two-sliding/rubbing surfaces is given by: 

 

F = µ•mg,  

 

where µ is the coefficient of surface friction that relates the two rubbing surfaces, m is 

the mass of the movable SOLID operand, and g is the gravitational constant.  In this work, the 

operators are defined by equations in the form of functionality relationships.  

  

 Operand-A:SOLID

Operand-B:SOLID

Surface: 
Functional Region

fixed 

force 

mg

Plane-X

 

Figure 38  Solid operands in sliding contact 

 
Other operators include spatial linkage operator, that must specify that the two surfaces 

must maintain an against relationship with B fixed and A allowed to have a plane-x DoF.  

Hence, the need to consider friction and wear-rate. The operator-operand-attribute listing (in 

Figure 39) shows the relevant interactions in the example of Figure 38. 
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Operand Attributes  Operators 

Operand-A: Position  (Internal constraints) 

 Surface   

 Mass  Spatial (against) 

   
Friction coeff.  (µ) 

Operand-B: Position  (Internal constraints) 

 Surface  
(µ)  Friction 

Force (static 
fric): 

Magnitude+
direction 

  

  

Figure 39 Operator-operand-attribute relation for sliding contact example 
 
 

One important development in this work is the realization that operands only interact 

through their attributes.  Hence, the attributes are the contact points between operands.  A 

functionality relationship can assume any of the following forms: spatial; physical aspect; 

technological constraints; or user preferences.  

•  Physical aspects:  the physical processes (e.g. energy storage in a compressed 

spring), interactions (e.g. friction on rubbing surfaces), properties or behavior of 

something (e.g. plastic deformation or elastic property of materials); 

• Spatial relations: location of objects in space (e.g. aligned relationship of two solid 

operands); 

• Technological constraints: tolerance (e.g. machining tolerance), surface finish, etc; 

and 

• User preferences: color, texture, etc. 
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It should be noted that complex functionalities could be formed by bringing together 

smaller (basic) functions.  This combination is realized by defining relationships between their 

interacting operands.  Sub-functionality operands that are involved in relationship or interaction 

with other functionalities are called coupling operands.  Sub-functionalities are also referred to 

as primitives.  They define how functionalities are combined to form compound functionalities.  

They are equivalent to mating features in feature-based design.    In defining the coupling 

relationships, no causal relationship is assumed.  Hence, a more generalized interaction can be 

described for the coupling operands.  Figure 40 depicts a compound functionality that is formed 

from three primitives, A, B, and C.  To form the compound functionality, primitive A is coupled 

to B and C separately.  This coupling is represented by the dashed lines.  However, coupling is 

only possible through functionality operand.  This inter-primitive coupling through coupling 

operands is illustrated in Figure 41.  This figure also illustrates an inter-operand coupling within 

each primitive structure.  It is through this maze of coupling operations that it is possible to form 

more complex mechanical functional structures.  This coupling is defined through the inter-

operand coupling matrix relations.  
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Figure 40 A compound functionality showing inter-primitive interaction 
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Figure 41  A compound functionality showing inter-primitive interaction between the 

coupling operands 
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5.1.1 Coupling Bond (CB) 

Engineering relations are constructed by specifying the functionality constraints and 

relationships between operands, after each operand has been defined with its associated attribute.  

Functional relationships are built between those attributes (including functional 

markers/features) on the operands by attaching some sort of linkage. This linkage defines the 

functionality engineering relations between operand and links separate functionalities together. 

Since the primary relations of concern at this step are the coupling relations, the concept 

of coupling bonds is introduced. A coupling bond (CB) is created once two coupling attributes 

on different operands are selected and linked with each other. In addition, the coupling 

conditions are attached during this linkage. The structure of coupling bonds is shown in Figure 

42.  

 

Coupling Bond

Coupling
ConditionCoupling Pair

Engineering
Constriants

Assigned Functional
RelationsDOFOperand 2Operand 1

Attribute Set 1

Functional
Points

Attribute Set 2

Functional
Points

Parent Functionality (2)Parent Functionality (1)

 

Figure 42 Functionality operand coupling bond 
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There are two dominant groups in one coupling bond: coupling pair and coupling 

conditions. Coupling pair contains two coupling operands involved in the relationship. The 

parental relation is used to record their parent functionalities. The functionality hierarchy and 

the connectivity graph of the whole product can then be created based on these operand-to-

operand connection relations. From coupling operands, the system traces back what are their 

original functionalities and inherits the implied attributes and constraints. 

The coupling condition defines the nature of interaction between operands.  It includes 

the type of assigned functional relationships, required degrees of freedom (DoF) and some other 

engineering constraints.   

 

� The functional relationship specifies the required relations that must be maintained 

between attributes of the interacting operands in order to satisfy the given 

functionality.  For instance, in the conversion of FORCE (F) to TORQUE (T), this 

relationship is defined by the perpendicular distance (l) between the point of 

application of force and the axis of rotation as defined in the following equation: T = 

F x l.  

� The DoF is the desired degree of freedom to be maintained by the involved operands 

in order to remain functionally correct.  The possible types of degree of freedom 

include:  

ª lin_n: linear translation along n axis (e.g. application of FORCE along an 

axis). 
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ª rot_n: rotation about n axis (e.g. rotation of a car wheel (SOLID operand) 

about an axle). 

ª cir_n: translating along a circle with n axis. 

ª plane_n, cyl_n, sph: translating along a planar, cylindrical and spherical 

surface respectively. 

ª roll_lin_n: rolling along a corner. 

 

� Engineering constraints are the constraints imposed on the operand attributes and 

relations to remain functionally correct.  For instance, in the case of conversion of 

FORCE to TORQUE example, if the perpendicular distance is constrained to be 

within a certain limit (e.g. 3.80 cm ≤ l ≤ 5.25 cm), this will fall within the 

engineering constraint coupling condition.  Engineering constraints could also be 

applied to attributes of operands.  For example, the mass (m) of a solid operand could 

be required to fall within a given limit (e.g. 15.25 g ≤ m ≤ 20.00 g). Other issues that 

fall within this category are the tolerance allowance, and physical effect/implication 

constraints. 

 

The concept of CB is illustrated with the example in Figure 43, showing two blocks in 

rubbing contact.  The DoF on block B is fixed while block A is allowed to have a plane-X 

degree of freedom.  The other components of the coupling bond between the two operands 

(Block A and Block B) are shown in Figure 44. 
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SOLID: Block A

SOLID: Block B

face A face B
Plane X-Y

F
(additional force)

W = mg

DoF: fix

DoF: plane X-Y

 

Figure 43 Two solid blocks in sliding contact 
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Coupling Bond:
SOLID contact

example

Coupling
ConditionCoupling Pair

Constraints:
surface :{flatness < 0.0001 mm}
geometric profile:
           {block A: solid block}
          {block B: solid block}
stress limit: { stress < 2000 N/m2}
strain: { strain < .002}
friction: {Fs < 2 N}
wear rate: {max rate < .0001 mm}

Functional Relations:
spatial: {planeA::planeB : against}
friction: {static:  Fs = u . (W+F)}
wear rate: {Wr = KA . p . A}
stress: {P/A or (W+F) / A}
strain: { (l - l0) / l0 }

…...

DOF:
Block B: {fixed}

Block A: {plane-X}

Block BBlock A

Attribute Set:
(Block A attrib)

Functional
Points:

(contact planeA)

Attribute Set:
(Block B attrib)

Functional
Points:

(contact planeB)

Parent: NULLParent: NULL

 

Figure 44 Coupling bond for the two solid blocks in sliding contact 

 
5.1.2 Representation of Functionality Relations 

Functionality relations are defined as a set of active interactions between functionality 

operands.  This interaction is realized using coupling bonds.  Given a set of operands (Oi) in a 

functionality operation with an index, i.  Each member of this operand set is given by: 

oiq  =  {aiqs | aiqs ∈ Aiq} 

Where  

• i  =  functionality operation index 

• q  =  functionality operand index 

• Aiq = attribute set for functionality operand oiq  
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With the above definition of operand set, functionality relationship is defined by a 

functional relationship set (Ri) as given in Equation 7. 

 

Ri = {rijk(oij, oik) | oij ∈ Oi, and oik ∈ Oi} 

Equation 7 

Where 

• Oi = set of operands in functionality operation i. 

• rijk = coupling bond between functionality operands j and k.  

• j, k  =  functionality operand indices 

 

Since the coupling bond (rijk) defines the active relationships between the functionality 

operands j and k, Ri is effectively a set of coupling bonds. The functionality operands (oiq) are 

the interacting functionality operands (including material and energy operands and the coupling 

operands in lower level functionality operation [i.e. sub-functionalities]).  An operand can 

interact with itself in what is defined as a recursive interaction/coupling. This interaction defines 

all the internal of self-constraints imposed on the operand.  That is rijj and rikk are the constraints 

on the attributes of the operand j and k respectively.   This extension allows us to provide a 

unique means of mapping every relation to downstream design activities. 

A matrix called the inter-operand relationship matrix is used to define the possible 

interactions between each set of operand.  The elements of the operand relationship matrices are 

defined by domain experts and stored in the knowledge base of the designer system or at design 

time by the designer.  Each element rij is a set of relationships that hold for an interaction 
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between items on the ith row and jth column. Each column of the operand relationship matrix is 

called an operand vector and it is used to derive the relationships of inter-item coupling in a 

functionality operation.  The derivation and operation of the operand vector is described below.  

 

Table 4 Inter-operand relationship matrix. 

Operand SOLID FORCE TORQUE 

SOLID friction, DoF restriction,  

force_transmission, 

spatial relation 

motion (acceleration, 

displacement, impulse, 

velocity); momentum; 

friction; stress; strain. 

 

moment; motion 

(acceleration, 

displacement, velocity); 

momentum; friction; 

stress; torsion. 

FORCE  resultant, orientation, 

transmission, effect, 

nature. 

resultant, orientation, 

effect, nature. 

TORQUE   resultant, orientation, 

transmission, effect, 

nature. 

 
 
 
 

5.1.3 Derivation of Functionality Relations 

Since functionality operations are accomplished through operand coupling, we can 

define the set of relationships and constraints for functionality operation by deriving its coupling 

relationships.  To derive the relationships of the operand couplings, we define the inter-operand 

coupling matrix corresponding to the functionality couplings. 

X  = inter-operand coupling bond matrix 
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In the X matrix, each element in the vector represents a set of valid relationships, 

constraints, and implications required in the coupling of an operand to other operands.  For 

example, assuming we are transforming force to torque, we might define the relationship 

between the input force and the output torque as T = F.l, where T = torque, F = force, and l = 

perpendicular distance between the force and the axis (as the relationship between T and F). 

In computer modeling, the relationship set is represented by a coupling bond matrix, 

functionality coupling bond (CB) matrix, Xmxn.  This functionality CB matrix is given by: 

 



















=

mnmm

n

n

mxn

xxx

xxx
xxx

X

L

MMMM

L

L

21

22221

11211

 

Where,  

xij = is the coupling bond between operands i and j.  

 

Since a combination/interaction need to be defined between an operand and every other 

operand, the number of columns and number of rows in relationship matrix are equal.  Hence, 

Xmxn is a square matrix of the functionality coupling bonds.  It is also symmetric with xjk = xkj, 

as they represent the same coupling.  This is because no causal relationship is assumed in the 

model, hence the operators are associative. The diagonal (x11, x22, …, xjj, … , xNN) are the 

functional constraints imposed on the attributes of operands (e.g. maximum strength or 

maximum mass)  The functional (inter-operand) relationship is between the operands within the 

same functionality operation.   
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The coupling bond has three components that constitute the coupling conditions: DoF, 

relations, and constraints.  The coupling bond is defined by including these three components in 

the coupling bond equation as shown in Equation 8. 

 

{ } ijijijijij ydcrx ⊗= ,,  

Equation 8 

Where 

rij = relation between operands i and j. 

cij = constraint on relation between operands i and j. 

dij = degree of freedom on relation between operands i and j. 








=

otherwise

jandioperandsbetweenexistcouplingif
yij

0

1
 

⊗  is an element multiplication, where given two matrices, [A] and [B}; 

[A] ⊗ [B] = [aij x bij], ∀ij, aij∈[A], and bij∈ [B]. 

 

The entire set of coupling bonds in a functionality operation can then be represented by 

the coupling bond matrix as follows:  

 

X = [xij], where i = 1, 2, 3, … , N; and j = 1, 2, 3, … , N 

Given as, 

R = [rij] and I = [yij]  

 subject to, C = [cij],  D = [dij]  
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X is called the coupling bond matrix, I the linkage matrix, R the relations matrix, C the 

constraint matrix, and D DoF matrix. The coupling bond matrix is modeled by an object 

representing the coupling bonds between operands. 

In a full matrix notation, X is given by: 
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














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xxx

xxx
xxx
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21

22221
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2
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21

 

Where: 

OPk  (k = 1, 2, .., N) are the functionality operands. 

xij (i,j = 1, 2, …, N) are the coupling bounds between operand OPi and operand OPj. 

 

I is a zero-one square linkage matrix representing the valid linkage interactions for the 

given coupling operation. The I (linkage matrix) is derived by entering a one for each matrix 

element where a valid coupling exists between the operands and a zero is entered otherwise.  

The I matrix is symmetric and hence is modeled in a computer by representing the upper triangle 

of the matrix by modifying the original definition of I as shown below: 
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





 ≥
=

otherwise

jiandjandioperandsbetweenexistcouplingif
I ij
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0
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Because of the above assumption of symmetry and subsequent modification of I to an 

upper triangular zero-one matrix, the coupling bond is also an upper triangular matrix as shown 

below. 
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R is the operand relations’ matrix defining all the valid cross-operand relationships and 

implications between operands in the functionality operation. The entries in R matrix are defined 

a priori (and stored in the system database or knowledge base) or as design progress by the 

designer with some knowledge on the possible interaction between operands.  During coupling, 

only the relevant entries are selected from the knowledge-base and added to those defined during 

design to form the relations matrix. 

The size of the I matrix is determined by the number of interacting operands.  For 

example, consider the functionality primitive depicted in Figure 45.  Since there are 3 interacting 

operands, I is a 3x3 square matrix.  The other variables in the equation are derived as follows for 

the example. 
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Figure 45  Functionality primitive A 

 

Primitive Functionality

OP1

OP3

OP2

 
The I matrix is derived by entering a one for each matrix element where a valid coupling 

exists between the operands and a zero is entered otherwise.  That is, 

 







 ≥
=

otherwise

jiandjandioperandsbetweenexistcouplingif
I ij

)()(

0

1
 

Hence, the I matrix is given by: 
















=

100
110
011

I   

 

The R matrix is formed by pulling all the valid relationships in the system involving 

operands a1, a2, and a3.  Thus, R is given by: 
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    where R
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R ij is the valid relationships involving operands i and j; i,j = 1, 

2, 3. 

The C matrix is formed by pulling all the valid constraints in the system involving 

operands i and j; i,j = 1, 2, 3.  Thus, C is given by: 

    Where, C
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C ij is the valid relationships involving operands i and j; i,j = 

1, 2, 3. 

The D matrix is formed by pulling all the valid DoF restrictions in the system involving 

operands i and j; i,j = 1, 2, 3.  Thus, D is given by: 

    Where D
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Thus, X matrix is given by: 
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Equation 9 

Note: the symbol “⊗” is an element multiplication operator (defined in Equation 8 on Page 

116). 
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Note that the matrix X in Equation 9 defines a set of coupling bonds that are involved in 

the functionality operation.  Thus, it gives the set of relationships, constraints, and DoF that must 

hold in the inter-operand coupling for the functionality to achieve the specified task. 

 

 

5.2 Functionality States 

 
 

In accomplishing a given task, a functionality operation might be expected to transition 

from one state to another.  A state is an instant manifestation of the functionality object’s 

condition in process of achieving the functional objective. This manifestation is described in 

terms of the instantaneous values of the operand attributes and the instantaneous coupling 

condition present in the functionality operation.  As an illustration, the possible states of a brake 

rotor are (assuming discrete states) shown in Figure 46.  In the example, the brake rotor is 

defined by the four distinct states they assume: brake idle; brake idle and wheel in motion; brake 

engaged and wheel stationary; and brake engaged and wheel in motion. 
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brake idle

brake engaged &
wheel in motion

brake engaged &
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brake idle & wheel in
motion

 

Figure 46 Brake rotor states 

 
 

Functionality states are important because they may be necessary in determining the 

exact nature of coupling relations between operands.  For instance, consider the pulley system 

shown in Figure 47.  The functionality of the system is accomplished when the support changes 

from NO_LOAD condition to MAX_LOAD condition corresponding to the load resting wholly 

on the support beam.  This change in state is accomplished by having a spatial change in the 

position of the loading component.  In the case of MAX_LOAD condition, the functionality 

operation has to contend with the stress-strain values imposed on the supporting beam.  At the 

same time, the tension (tug) in the rope is decreased. 
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Figure 47 A pulley system 
 
 
 

The state of a system may either be considered as continuous state or discrete state 

depending on the nature of the transition path.  In this work and in most engineering systems, 

discrete approximations is assumed.  This is necessary because of the complexity of some 

continuous systems. Usually a numerical approximation technique is used for this 

approximation.  A discrete system generally approaches the continuous state if the discretization 

interval (δ) is successively decreased, reaching continuous state at the limit δ → 0 (where δ is 

the discretization interval).  

The state of a functionality object is defined by considering the various possible values 

its time-varying attributes might assume.  For instance, the possible states of a load-bearing 
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structure  (such as support beam in Figure 47) could range from NO_LOAD to MAX_LOAD 

condition.  It is important to note that the system state is defined by the instantaneous values of 

attributes of its constituent components (operands). Consequently, the functionality state is 

defined by considering the states of each individual operand.  Hence, the state of a functionality 

operand, q can be represented mathematically by a state set, Si as shown in Equation 10.  

 

Si = {siq |  siq ∈S} 

Equation 10 
 

Where i is the functionality operation index and siq is the state of operand q in 

functionality operation i. Hence, operands may have more than one functionality state. The 

functionality operand state is given by Equation 11.   

 siq = {(aiqs, viqs) | aiqs ∈ Aiq, viqs ∈ V[aiqs] } 

Equation 11 
Where  

Aiq = attribute set for functionality operand oiq  

V[aiqs] =  set of possible values (range) of attribute aiqs  

 

In this work, attribute states are assumed discrete finite points including only upper and 

lower values.  Hence, each attribute can have only two states: upper bound and lower bound.  

Consequently, for each operand, an array of value sets corresponding to each attribute is defined 

during the design process.  These states are used as evaluation parameters during the design 

analysis and verification phases of product development. 
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In this work, the particular sequence or state transitions are neglected.  Emphasis is 

placed on a combination of states instead of the path (transition) taken to attain the state or 

events that trigger the attainment of such state.  Hence, states are modeled separately with 

transitions (i.e. causes of change of state) neglected. 

Consider a functionality operation consisting of three operands (A, B, and C) each with 

only one state variant attribute. See Figure 48.  If each operand can assume only two states: 

UPPER and LOWER states, the total number of possible states in the functionality operation is 

given by: 

 Number of states  = #SA * #SB * #SC  

  Where 

   #Si is the number of states in operand i 

 Hence, 

Number of functionality states = 2 * 2 * 2 

    = 8 distinct states 

The distinct states are listed in Table 5. 

 

OPA 

OPC

OPB

Functionality Operation

 
Figure 48 A three-operand functionality operation 
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Table 5 Listing of functionality operation states 
 Operand A Operand B Operand C 

State 1: L L L 

State 2: L L U 

State 3: L U L 

State 4: L U U 

State 5: U L L 

State 6: U L U 

State 7: U U L 

State 8: U U U 

*L = lower bound state and U = upper bound state 
 
 
 
Generally, in a functionality operation with operands having binary state (UPPER and 

LOWER limits) attribute value set, the number of possible system states is: 

Number of states  = 2A1 * 2A2 * … * 2An 

    =  where, A∏
=

n

i

Ai

1

2
i = attribute i, i is the attribute index. 

A more general expression for the number of functionality states in a system with an 

arbitrary number of states per attribute is given by: 
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 Number of states =  where, i is the attribute index and A∏
=

n

i
AiS

1
i is attribute i , SAi is 

the number of states of attribute Ai. 

In designing a product, each operand must have at least one or more states defined.  

However, in this work, a maximum of two states is allowed for each operand attribute.   

 

 

5.3 Functionality Modeling Repository 

 
 

To demonstrate the concept of knowledge reuse, a set of commonly used mechanical 

functionalities are described.  These mechanical functionalities are referred to as functionality 

primitives (primitives for short).  The primitives are BASIC mechanical functionalities located 

at the lowest level abstraction in the hierarchical decomposition of complex mechanical 

functionality operations.  Each primitive performs a specific mechanical function that 

contributes directly or indirectly (as in the case of sub-functions) towards the realization of the 

overall product function.   

While feature-based design is widely used in the industry and offers the possibility of 

design re-use and creation of design libraries, it presupposes that the designer has already 

accomplished the conceptual design phase and has already mapped certain functionality to 

features.  This assumption makes feature-based design inadequate for conceptual design (as it 

assumes that the designer understands the relationship between function and form).  To use the 
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tremendous advantage offered by modern computer tools to aid conceptual design, a more 

promising approach of functionality-based design (FbD) is proposed. 

The advantage of the approach developed in this research is that it offers a convenient 

way for design reuse.  This is because design intents can be modeled as functionality and stored 

in the design libraries for future reuse.  In addition, functionality operation may impose relevant 

downstream design consideration upfront during the design process.  Consequently, some 

benefits of concurrent engineering, design for manufacturing / assembly (DFM/A), and design 

for X (DFX) may be incorporated during the design conceptualization. For example, based on 

the available machining centers or company standards, one can impose a certain level of 

tolerance on the dimension of certain classes of operands such as SOLIDs. 

The functionality-based design approach intends to achieve a goal similar to that of 

feature-based design approach.  A set of desirable attributes can be offered by use of 

functionality primitive and functionality modeling knowledge reuse.  It offers the following 

convenient properties: 

 

• Recurring product functionalities can be modeled as a primitive, and used as a repository 

of reusable product knowledge that may be related to a particular form or geometric 

pattern. 

• Specific products can be modeled through their constituent functionality primitives, 

providing a more natural basis of interaction with the designer than mere geometric 

models by providing a direct relationship between form and function. 
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• Design and operational knowledge can be associated with functionality primitives, and 

accessed to determine the feasibility and producibility of functionality and the associated 

designed object or for planning its actual deployment. 

 

Nine commonly used mechanical functions are described as functionality primitives that 

may be deployed in a design repository system.  These primitives are fundamental in nature and 

may be used to build other complex functionality objects for mechanical devices.  These 

primitives are defined as “atomic mechanical functional element that operate on basic 

mechanical concepts without the invocation of any other functionality operation”.  The nine 

functionality primitives described in this research are:  transformation, transmission, joint, load 

bearing, energy converter, frictional, offset, channel, and block.  The definitions of these 

primitives are summarized in Table 6. A more detailed description of the nine primitives is 

given in Appendix B. 

A subsequent combination of the functionality primitives and definition of their unique 

relationships and interactions yields a more complex functionality operation that may be used to 

construct any mechanical function.  As an illustration (see Figure 49), a combination of offset 

and load bearing primitives will yield the support function in a trolley.  Additional refinement 

of this support functionality might then include joint functionality to hold the corresponding 

functionality artifacts together.  Similarly, motion sub-functionality may be achieved by 

combining force transmission and force-to-displacement transformation.  A subsequent 

combination of support and motion sub-functions will then yield a more complex function – 

transportation function.  
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Table 6 Functionality models of commonly used mechanical product functionality 

Primitive 
Operation 

Definition (Basic Form) Description 

Transformation 
 
 CA B

 

Converts one functionality operand to another, e.g., force to 
torque or deformation. 
A: Source Operand 
B: Target Operand 
C: Transform Operator:  A-B interaction 

Transmission 
 
 C

BA

 

Conveys an operand from one point to another, e.g., force 
transmission along a beam and torque transmission of a 
pump spindle. 
A: Source Operand 
B: Target Operand 
C: Transmission Operator: A-B interaction 

Joint 

CA B
 

Retains an absolute or relative position of functional 
elements achieved by exerting a retentive force on entity 
or/and resisting dissociating forces. 
A: First Operand 
B: Second Operand 
C: Joint Operator: A-B interaction 

Load bearing 

B

C

A

A B
C

 

Bear loads exerted by mechanical operands to maintain the 
equilibrium/stability of the mechanical elements. 
A: Source Operand (Load) 
B: Target Operand (Base) 
C: Load Bearer Operator: A-B interaction 

Energy 
Converter CA B

 

Stores or transforms energy from one form to another. 
A: Source Operand 
B: Target Operand 
C: Converter Operator: A-B interaction 

Frictional 
F

M
C1

B

A
C2

 

Describes frictional elements in mechanical systems. 
A: First Operand Å C1 
B: Second Operand Å C2  
C: Friction Operator: A-B-C1-C2-M-F interaction 

Offset A

B

C
A

C
B

 

Maintain a specified offset between entities by providing 
obstruction to disallowed position. 
A: First Operand 
B: Second Operand 
C: Offset Operator: A-B interaction 

Channel 

C

B

A

 

Provides a mechanical assistance to ensure that an entity 
assumes a desired spatial location. Constrains displacement 
along a pre-defined path, e.g., guide rails, chamfers for 
assembly. 
A is the channel, guide, or path enforcer. 
B is the guided or channeled operand. 
C is the channel Operator defining A-B interaction. 

Block 

B

C

A

 

Block: disallows non-permissible and expected 
entrance/motions, e.g., provision of insulation in electrical 
systems, guards in fans etc.  
A: First Operand 
B: Second Operand 
C: Block Operator: A-B interaction 
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Figure 49 Example of compound functionality in a cart 

 

The idea of functionality design is that form need not be known at the start of design.  

Only functions are needed.  The product in Figure 49 is included to help the reader understand 

the concept of compound functionality operation and functionality decomposition. 
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6.0 IMPLEMENTATION AND TESTING 
 
 
 
 

Since the scope of this work is to develop a methodology to support functionality-based 

design (FbD) in CAD systems, it is appropriate that a computer model is implemented to 

validate and demonstrate the concepts proposed in this work.  However, since the objective of 

this work is to develop a model that is applicable to mechanical systems, it is necessary to 

ensure that the computer implementation demonstrates all aspects of the functionality model as 

is applicable to mechanical systems.   

The implementation and testing is achieved by developing a functionality data model and 

the associated computer tools that are then applied to the design of a real product – space-frame 

sub-assembly.  The following computer tools were developed in this work: 

• Functionality modeling and definition tool. 

• Functionality constraint imposition tool. 

• Functionality data structure.  

• Functionality data propagation mechanism. 

 

 

6.1 Functionality Object Model 

 
 

The physical realization of product functionality is hierarchical in nature.  As illustrated 

in Figure 50, product functionality can normally be realized by bringing together separate 

entities of sub-functionalities and operands. Each sub-functionality accomplishes a specific 
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function that contributes towards the accomplishment of the overall function.  The sub-

functionalities are in turn sub-divided into sub-functionalities and operands.  The operand is the 

lowest level of this hierarchical decomposition.  Each operand has a specific functional purpose 

that contributes directly or indirectly (as in the case of sub-functionalities) toward the realization 

of the overall function.  This hierarchical organization gives the functionality-modeling problem 

a robust property that makes it possible to use object-oriented approach in functionality 

representation.  

 

 

Product
Functionality

Sub-functionality 1 Sub-functionality nSub-functionality 2 Operand 1 Operand mOperand 2
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Figure 50  Product functionality decomposition 
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In this work, unified modeling language [79] (UML) is used to model product 

functionalities.  This method employs object-oriented approach to describe product functionality 

as a collection of discrete objects that incorporate both data structure and behavior. The major 

four aspects of object-oriented approach are: identity, classification, polymorphism, and 

inheritance.  Identity means that data is quantized into discrete, distinguishable entities called 

objects.  Each object has its own inherent identity.  This implies that two objects are distinct 

even if all attribute values are identical.  Classification means that objects with the same data 

structure (attributes) and behavior (operation) are grouped into a class.  Each object is said to be 

an instance of a class.  Each instance of a class has its own values for each attribute but share the 

attribute names and operations with other instances of the class. Polymorphism means that the 

same operation may behave differently on different classes.  A specific implementation of an 

operation by a certain class is called a method.  Inheritance is the sharing of attributes and 

operations among classes based on a hierarchical relationship.  A class can be defined broadly 

and then refined into successively finer subclasses.  Each subclass incorporates, or inherits, all of 

the properties of its super-class and adds its own unique properties. 

In this research, object models are used to describe the static structure of functionality 

objects (operations) in a system and their relationships.  The object model is graphically 

represented with the object diagram.  An object diagram is a graph whose nodes are object 

classes and whose arcs are relationships among classes.   

The class diagram of the functionality object model developed in this work is shown in 

Figure 51.  This object diagram represents the product-level functionality model.  The 

components of the functionality object model include functionality operation, form, operand set, 
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coupling bond set, and state.  Taking this functionality modeling approach, a generic modeling 

engine is developed to represent product functionality. 

A quick comparison of this model with that of the product functionality decomposition 

(Figure 50) will help to illustrate how the inheritance property of the Object Oriented 

Programming System (OOPs) may be used.  In mechanical systems design, assemblies typically 

follow the same structure with components as objects.  Each assembly inherits all the properties 

of the components / sub-assemblies.  Lack of a uniform progression has been one of the major 

problems facing previous attempts by other researchers to model functionality.  The components 

of the functionality object model are described below. 
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Figure 51 Functionality class diagram 
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6.1.1 Functionality Operation 

The functionality operation class defines the mechanical task (function) to be realized.  

Each functionality object model includes this class in its implementation.  It acts like an object 

header that provides a reference point for all operations.  The attributes of the operation class 

are: name, id, type, unit of measure, and functionality description. 

 

Name and ID 

The name attribute is the name of the function.  It could be user assigned based on 

practice of the specific industry or company.  To enhance the re-use of product functionality 

knowledge, the naming convention should follow a well-defined convention in the 

industry/company.  For instance, in functionality primitive definition, the keyword is the 

functionality operator followed by the associated operands. This is also a good place to apply 

some of the naming conventions proposed by previous researcher (24) for example use of words 

formed from noun+verb.  In the functionality design repository, this convention is followed 

where the verb is the operator and the noun is composed of the key operands. For instance, 

consider the function named force_torque_transform.  This performs a transformation function 

that operates on force to produce torque.   

The id attribute is a unique identifier for the functionality operation.  This is the handle 

used to reference an operation by other entities (such as solid models and analysis models) in a 

CAD design model.  Every functionality operation in a product must have its own unique id. 

 
Type 

The type attribute is used to denote the functionality category that the function belongs 

to.  It defines a super-class for the functionality.  As an illustration, the functionality primitives 
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belong to the following types:  transformation, transmission, joint, load bearing, energy 

converter, frictional, offset, channel, and block.  A functionality that is defined as an object of a 

class inherits all its attributes hence makes modeling a lot easier. 

This is used to define as a new class that extends or uses (duplicates) the capability and 

attributes of an existing class.  It invokes the use of an existing functionality object model to 

modify its attributes and/or behavior by adding new operands, new sub-operations, or 

modification of their existing attributes. The selection of a functionality type invokes and 

constrains some of the functionality attributes and behaviors.  Functions with similar attributes 

invoke similar constraints and considerations.  For instance, the selection of a transmission 

functionality class will invoke and constrain all identifiers as described in the transmission 

primitive object.   

The type notation is used to build reusable functionality models.  For examples, it could 

form a repository of re-usable design knowledge base. A system user can create custom 

functionality classes that are derived from the existing functionality.  Thus, an extension of the 

existing behavior and attribute of the functionality library is possible.  If no type is provided in a 

functionality operation object, this attribute is blank (empty) and implies that a new or 

generative operation is being defined. 

 

 

6.1.2 Operand Set   

This is a set of all the functionality operands that are used in the functionality model.  

These operands are distinguished from other operands that do not have a child-parent 

relationship with the functionality operation.  These other categories of operands include the 
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coupling operands that are part of other sub-functionality operations.  An operand set is given 

by: 

 

OPERANDS: {A<attrib A>, B<attrib B>, C<attrib C>, … , K<attrib K>} 

 

Where, 

 

A, B, C, …, K are individual operands; and 

<attrib i> is the attribute set of operand i.  

 

Each operand provides a reference index attribute (form_tag) that is used to link it to 

specific geometric entities in the CAD solid model.  This tag is included in the XML data that is 

propagated to downstream design activities and used for design verification and functionality 

analysis. 

Based on the scope [*] of this work, operands are grouped into two categories: material 

(SOLID) and energy (FORCE and TORQUE).   

 

Operand Class  

{










TORQUE
FORCE

mechENERGY

SOLIDmaterial

 

The additional operand-specific attributes as described in Chapter 4 are: 

 
                                                 
* The scope of the operand modeling developed in this work is discussed in Chapter 4. 
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SOLID {FM, DoF, PyC, MP, MT},  

Where 

FM is the set of functional positional markers; 

DoF is the required degree of freedom of operand; 

PyC is the set of physical constraints on the operands; 

MP is the set of mass properties on the operands; and 

MT is the material type constraint. 

FORCE {<source | kind> <mag, angle, point> <nature>},  

Where  

source defines the source of force; 

kind defines the kind of force; 

nature defines the nature of force, 

mag, angle, and point, are the magnitude of force; the rotation from the 

Cartesian axis and the 3-D coordinates of the point of 

application of the force respectively. 

Similarly, TORQUE is modeled by: 

TORQUE {<source | kind> <mag, angle, axis> <nature>},  

Where   

source defines the source of force; 

kind defines the kind of force; 

nature defines the nature of force, 

mag, angle, and axis, are the magnitude of force; the rotation from the 

Cartesian axis, and the axis of rotation of the torque respectively. 
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6.1.3 Sub-Functionality Set 

The sub-functionality set defines the collection of other related functionality operations 

that interact with the function. This is used to link functionality cases where a function will 

invoke other cooperating functions in order to accomplish its objective.  For example, a friction 

reduction functionality object might be invoked by a motion functionality operation to reduce 

friction between moving parts / solids.  This linkage cooperation is used to realize the 

hierarchical structure of a functionality object as shown in Figure 50. 

Interaction specifies the cooperation among the entities while the functional invocation is 

used to actually instantiate the inclusion of the desired functionality object together with all it 

attributes.  The coupling operand is used to define the actual sub-functionality operand that 

interacts (or interfaces) to the main functionality operation.  The coupling operand includes the 

attributes and states that are used in the coupling bond. 

 

6.1.4 Form   

This describes any prior form or concept associated with a given functionality model.  

This approach is used to store information on physical embodiment or conceptual form 

associated with a predefined functionality operation.  The formIndex attribute is the index of the 

form while linkedGeometry is the actual linkage to the instance of the linked form. 
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6.1.5 Coupling Bond (CB) Set 

The coupling bond class defines the set of operators involved in the functionality 

operation.  This is a collection of all the active relations and constraints imposed on the 

functionality operands (including the coupling operands of the sub-functionality objects).  The 

CB class defines the context of operation and models the what-if and casual effects (input-

outputs) between operands. 

 

6.1.6 States 

This is a class of all the allowable distinct time-variant operand attribute combinations in 

the functionality operation.  The state class represents the time-variant attributes of the 

functionality object.  This class associates each time-variant attribute to an operand and defines 

the feasible value range.  This feasible value range is defined by the valueSet attribute. 

  

 

6.2 Computer Implementation 

 
 
 

The modeling and reasoning concepts proposed in this research are implemented for 

Pegasus, [80,81] an e-Product design and realization platform.  Pegasus system is a collaborative 

product design environment that allows for customers, designers, engineers, and other 

stakeholders to participate in product design. It provides a scalable, flexible, and efficient 

collaborative product design platform, which enables different stakeholders of design to work on 

product development concurrently. Various computational engineering tools make certain 
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services available to other design participants in a network-based distributed environment. These 

tools are called service providers. The services that are provided by different engineering tools 

are published by a service manager, and are available within this distributed environment.  The 

inclusion of functionality model in Pegasus will allow remote collaborators in a product design 

to remotely specify and propagate their functionality requirements to other remote collaborators 

and downstream design activities / tools. 

An interactive graphic user interface (GUI) is developed in this research to serve as the 

designer’s interface during product design.  This interface ensures that a human oriented 

description of the function (specifications – preferences, constraints, and needs) is translated into 

the appropriate functionality data structure for reasoning and propagation in a computer system. 

The functionality-based design interface tool is implemented in computer system using 

Microsoft Visio 2002 graphics engine. [82] The implementation uses an object-oriented data 

structure for the representation and propagation of functionality as design constraints.  This data 

structure serves as an interface during the functional requirement definition phase of design.  It 

is used to capture the designer’s intent (functional requirements) during the conceptual design 

phase.   

The modeling scope of this computer implementation is limited to functionality 

operations that can be modeled and conceptualized in two-dimensional coordinate system.  The 

2-D models developed in this functionality engine are converted to 3-D solid models in CAD 

systems.  The computational tools developed in this work include: 

� Functionality Definition Interface and Tool Kits  

� Functionality Object Model  

� Data Representation in XML 
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A more detailed description of the various computational tools is provided in the 

following sub-sections. 

 

6.2.1 Functionality-Based Design Procedure 

The implementation of functionality-based design procedure in a CAD environment 

involves four distinct steps.  The flow chart for this functionality-based design procedure is 

shown in Figure 52.  A more detailed description of the activities involved in each step is 

described in the remainder of this section. 

 

1) Problem definition and specification 

This is the design task identification step.  It involves the identification of the need and 

design task that a product is to accomplish.  Hence, the inputs to the system include the 

perceived needs in the form of problem statements, constraints, and preferences.  It is important 

that the designer identify all the needs that should be realized by the system.  This is necessary 

because any need that is neglected at this stage cannot be captured by the functionality model 

and hence will not be realized by the final design.  Example of the problem identification might 

be the identification of need for a means of transforming a linear motion into rotational motion 

as in a slider-crank mechanism of an internal combustion engine of a car. 
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Figure 52 Functionality-based design flow chart 

 
 
2) Functional requirement analysis 

At this stage, the design tasks and needs identified in step 1 are mapped into functional 

requirements that the designed product must have to perform successfully.  This mapping is 

illustrated in Figure 53. 
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Figure 53 Mapping from design task to functional requirement 
 
 
 
 The designer should at this stage ensure that all the known factors that might influence 

the product are clearly identified.  Functional requirement analysis leads to the identification of 

the functional elements necessary for the realization of the design task.  That is this step 

identifies the functional composition necessary for the task.  The specific items identified at this 

stage include: 

 

� The functionality structure and hierarchy. 

� Required functionality operands and their corresponding attributes including functional 

markers. 

� Any required sub-functionality operations. 

� The nature of interaction between operands. 

� Functional constraints. 
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3) Functionality Modeling 

In the modeling step, the functional requirements identified during the analysis phase are 

translated into object instances in the functionality model.  Hence, the identified operands and 

their corresponding attributes are modeled in a computer system.  The inter-operand interactions 

are defined as relations using operand-coupling bonds.  In building the functionality model, the 

designer is made to consider some factors (such as operand attribute) that may have been 

neglected during functional requirement analysis.  The mapping from “functional requirement” 

to functionality model is illustrated in Figure 54. 
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Functionality 
Model 

mapping 

 

Figure 54 Mapping from functional requirement to functionality model 

 
 
 
4) Propagation of functionality model 

The model developed in step 3 is now represented in an XML data file (forming what is 

called the functionality signature).  This XML file is then propagated to the detailed design 
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phase, where the complete solid CAD model is developed and then evaluated against the 

functionality constraints embedded in the XML data file. 

 

 

6.2.2 Functionality-Based Design (FbD) Architecture 

The functionality flow diagram for the evolution of design in an FbD design environment 

is shown in Figure 55.  The input to the system is functional specification in the form of problem 

statement, constraints, and preferences.  These inputs are used in the functional definition and 

modeling of the product functionality.  At the functionality modeling stage, the designer is 

allowed to define all the functionally relevant attributes of the product.  Such description 

involves the specification of the known operands, operators, and coupling bonds involved in the 

functionality operation. 

The output of the functionality modeling stage of the FbD system is the functionality 

signature.  The functionality signature consists of: operand set and coupling bond set together 

with all the constraints, relations, and required degrees of freedom.  The signature also contains 

a pointer or a link to any proposed geometric form defining or/and satisfying the given 

functionality constraints or corresponding to specific operands in the model.  These geometric 

links are embedded in the form of an XML tag pointing to the CAD model represented by the 

functionality component.  Additional extrinsic constraints may also be imposed on the 

functionality model by other factors external to the functionality object.  These constraints might 

include some technological and physical restrictions on possible values a functionality parameter 

might assume. 
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Figure 55 Functionality-based design flow diagram for the evolution of design 

 
 
 

The linked concepts and artifact describes any prior form or concept associated with a 

given functionality description.  This approach is used to store information on physical 

embodiment or conceptual form associated with a predefined functionality operation.  When 

new products are designed using functionality-based approach, the design (conceptual form / 

artifact) and the associated functionality description are stored in the functionality knowledge 

base.  These descriptions form part of the design repository of reusable designs that may be used 

in future functionality reasoning. 
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The functionality signature is propagated to the form conceptualization and detailed 

design phases.  This signature serves as our design objective and is a standard against which all 

design proposals must be evaluated.  Such functionality model may now be used in the 

conceptualization of design parameters to satisfy the functionality constraints.  In the detailed 

design phase, the constraints are used to evaluate design proposals to ensure that they satisfy the 

original product functionality.  Hence, an automated and transparent functionality verification of 

designs is possible. 

In an intelligent design environment, the functionality signature is used to retrieve 

acceptable design structures from the knowledge base during the form generation stage.  It 

presents a template for matching functions to stored knowledge when available. Otherwise, they 

serve as a trigger flags signaling the geometric models that need to be defined or associated to 

functionality entities.  They may also be used in the transformation of functionality 

representation to a creative graphic (wire-frame) representation to aid the creativity of the 

designer.  This concept is illustrated in Figure 56 for a shaft transmission example Figure 56(a).  

Figure 56(b) illustrates the use of wire-frame model to represent the transmission shaft example.  

In the figure, points A and B are the functional markers while the line A-B represents the 

transmission axis.  

 

Transmission Shaft

Direction of rotation

Direction of
resisting load

            

A B

Functional element

(a)       (b)  
Figure 56 Sample transmission design 
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6.2.3 XML Functionality Data Format 

XML stands for EXtensible Markup Language. Tags enclosed in “<” and “>” characters 

are used to define the structure and data elements of an XML text or string.  These tags are not 

predefined in XML. Hence, one is required to define custom tags for new implementations.  

XML uses a Document Type Definition (DTD) or a Schema to describe the data. A DTD or 

Schema is designed to be self-descriptive. 

The primary and sole purpose of XML is to carry data. XML was designed to describe 

data and to focus on what data is. It is created to structure, store, and to exchange information.  It 

is a cross-platform, software and hardware independent tool for transmitting information. This 

makes it particularly applicable to represent functionality data that may be exchanged between 

different CAD platforms and systems. 

The following example is an XML description of an operand attribute, mass.  

<?xml version="1.0" encoding="ISO-8859-1"?> 
<attribute> 

<name>mass</name> 
<unit>kg</unit> 
<value>37.25</value> 

</attribute>  
 

With XML, data can be stored in separate XML files and exchanged as texts between 

incompatible systems.   Since XML data is stored in plain text format, it provides a software- 

and hardware-independent way of sharing data. This makes it much easier to create data that 

different applications can work with. It also makes it easier to expand or upgrade a system to 

new operating systems, servers, applications, and new browsers. In the CAD world, designer 
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packages contain data in incompatible formats. One of the most time-consuming challenges for 

developers has been to exchange data between such systems.  The use of XML data format in 

functionality representation and propagation can greatly reduce this complexity and create data 

that can be read by many different types of applications.  Hence, help to overcome inter-

operability problems associated with traditional CAD systems. 

Plain text files can be used to store data XML formatted functionality information in 

databases and also be used in a collaborative design environment where data is transmitted to 

distributed design participants at remote locations. 

 

a)  XML Syntax 

The syntax rules of XML are very simple and very strict. XML documents use a self-

describing and simple syntax. The first line in the document - the XML declaration - defines the 

XML version and the character encoding used in the document. In the above example on 

attribute representation, the document conforms to the 1.0 specification of XML and uses the 

ISO-8859-1 (Latin-1/West European) character set.  

The first tag in an XML document is the root tag. In the above example, the next line 

describes the root element of the document (like it was saying: "this document is an attribute"):  

<attribute>.  All XML documents must contain a single tag pair to define the root element. All 

other elements must be nested within the root element. All elements can have sub elements 

(children). Sub elements must be correctly nested within their parent element. The next four 

lines describe four child elements of the root (name, unit, and value). In XML, all elements must 

have a closing tag. In the example, the last line defines the end of the root element:  </attribute >  
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An XML Parser is used to read and update - create and manipulate - an XML document.  

Loading an XML files into the parser extracts the data embedded in the XML file.  A function 

(code) written in VBA is used to accomplish the parser function.  This parser function is used to 

perform both read from and write to file operations. 

 

b)  Functionality XML data format 

The XML schema for the functionality model is listed below:  A brief description of each 

tag is given below. 

<?xml version= "1.0" ?> 
<!-- Pegasus Functionality Definition !--> 
<functionality-operation> 
 <info></info> 
 <opand-set></opand-set> 
 <state></state> 
 <coupling-bond-set></coupling-bond-set> 
 <sub-fxn-set></sub-fxn-set> 
 <form></form> 
</functionality-operation> 

 

The XML declaration 
The first line in the document (<?xml version= "1.0" ?>) is the XML declaration. It 

defines the XML version used in the document. In the functionality model above, the document 

conforms to the 1.0 specification of XML.  The statement enclosed within “<!--“ and “!-->” are 

comments. 

 

The root tag 
The first tag (<functionality-operation>) is the root tag. It describes the root element of 

the document (like it was saying: "this document is a functionality operation").  It begins the 

definition of an instance of the functionality model in XML.  The last line defines the end of the 
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root element:  </functionality-operation>.  It marks the end of the XML data of the functionality 

operation.  All the other information concerning the functionality operation must be enclosed 

within the opening and closing tags. 

 

The info tag 
This tag (<info></info>) contains the general information about the functionality 

operation.  This information consists of: id, name, type, unit, and description of the functionality 

operation.  The schema for this information is shown below. 

 

Functionality information XML Schema: 

<info> 
<id></id> 

 <name></name> 
 <type></type> 
 <unit></unit> 
 <description></description> 
</info> 

 

The opand-set tag 
This tag (<opand-set></opand-set>) contains the set of operands included in the 

functionality model.  Information about each operand is contained inside its own operand 

opening and closing tags: <opand></opand>.  Operand specific information include:  opand-id; 

opand-name; opand-type; opand-form-tag; opand-description; and attrib-set (for solid, this 

includes functional markers, physical property attributes, mass property, DoF, and mass 

properties). The schema for this information is shown below. 
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Functionality operand set XML Schema: 

<opand-set> 
 <opand> 
  <opand-id></opand-id> 
  <opand-name></opand-name> 
  <opand-type></opand-type> 
  <opand-form-tag></opand-form-tag> 
  <opand-description></opand-description> 
  <attrib-set> 
   <attrib-name></attrib-name> 
   <attrib-value></attrib-value> 
  </attrib-set> 
 </opand> 
 ...... 
 <opand> 
 </opand>   
</opand-set> 

 

The state tag 
This tag (<state></state>) contains information on the possible state of the functionality 

operands. 

 

Functionality state XML Schema: 

<state> 
 <opand-attrib> 

 <value-set>  
  <lower> </lower> 
  <upper> </upper> 
 </value-set> 
 </opand-attrib> 

</state> 

 

The coupling-bond-set 
This tag (<coupling-bond-set></coupling-bond-set>) contains information on the 

coupling bond set of the functionality operation. 
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Functionality coupling bond set XML Schema: 

<coupling-bond-set> 
 <coupling-bond> 
  <id></id> 
  <name></name> 
  <type></type> 
  <form-tag></form-tag> 
  <description></description> 
  <pair> 
   <opand-1>  
    <id></id> 
    <name></name> 
    <coupling-attrib-set> 
     <attrib-name></attrib-name> 
    </coupling-attrib-set> 
   </opand-1> 
   <opand-2>  
    <id></id> 
    <name></name> 
    <coupling-attrib-set> 
     <attrib-name></attrib-name> 
    </coupling-attrib-set> 
   </opand-2> 
  </pair> 
  <condition> 

<fxnal-rel-set> 
<f-relation> 

<id></id> 
<factor-1></factor-1> 
<rel></rel> 
<factor-2></factor-2> 

 </f-relation> 
 </fxnal-rel-set> 
<fxnal-constr-set> 

<f-constr> 
<id></id> 
<factor></factor> 
<rel></rel> 
<const></const> 

 </f-constr> 
 </fxnal-constr-set> 

   <dof-set> 
    <dof> 
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     <id></id> 
<type></type> 

     <ref-frame></ref-frame> 
    </dof> 
   </dof-set> 
  </condition>  
 </coupling-bond> 
 
 <coupling-bond> 
 </coupling-bond> 
</coupling-bond-set> 

 

The XML representation of the functionality markers (POINT, LINE, and ARC) is 

shown below. 

 

Functional Markers XML Schema: 

<fxnal-marker-set> 
 <f-point> 
  <id></id> 
  <name></name> 
  <x></x><y></y><z></z> 
 </f-point> 
 <f-line> 
  <id></id> 
  <name></name> 
  <type> fixLen or infLen </type> 
  <begin> 
   <x></x><y></y><z></z> 
  </begin> 
  <end> 
   <x></x><y></y><z></z> 
  </end> 
  <side> 
   <lS1></lS1> 
   <lS2></lS2> 
  </side> 
 </f-line> 
 <f-arc> 
  <id></id> 
  <name></name> 
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  <type> circ or elsp </type> 
  <begin> 
   <x></x><y></y><z></z> 
  </begin> 
  <end> 
   <x></x><y></y><z></z> 
  </end> 
  <bow-dim></bow-dim> 
  <side> 
   <aS1></aS1> 
   <aS2></aS2> 
  </side> 
 </f-arc> 
</fxnal-marker-set> 

 

The sub-fxn-set tag 
This tag (<sub-fxn-set></sub-fxn-set>) contains information on the sub-functionality 

operations included in the functionality operation. 

 

Functionality sub-functionality operation set XML Schema: 

<sub-fxn-set> 
 <sub-fxn> 
  <fxn-id>   </fxn-id> 
  <fxn-name>   </fxn-name> 
  <coupling-opand>  
   <opand-id>   </opand-id> 
   <opand-name>   </opand-name> 
   <opand-type>   </opand-type> 
   <opand-form-tag>  </opand-form-tag> 
   <opand-description>  </opand-description> 
   <opand-attributes> 
    <attrib-name> </attrib-name> 
    <attrib-value>  </attrib-value> 
   </opand-attributes> 
  </coupling-opand> 
 </sub-fxn> 
 ........ 
 <sub-fxn> 
 </sub-fxn> 
</sub-fxn-set> 
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The form tag 
This tag (<form></form>) contains information that links the functionality operation 

model to a specific CAD geometric model. 

 

Functionality form XML Schema: 

<form> 
 <tag></tag> 
 <geometric-index></geometric-index> 
</form> 

 

 
6.2.4 Graphic User Interface and General Capability 

The Graphic User Interface (GUI) is implemented in a customized Microsoft Visio 2002 

environment.  A customized functionality drawing template was created as a model drawing for 

functionality objects.  This template includes the necessary functionality stencil containing 

master shapes for the various components of the functionality-based design process.  Stencils 

were developed to automate the various activities involved in definition of functionality model.  

Most of the drawing activities were automated by programs written in Microsoft Visual Basic 

for Application (VBA). 

A stencil is like a software library in which one can collect the shapes you build for later 

reuse.  Masters are customized shapes stored in a stencil for future reuse.  A master is a shape, 

multiple shapes, a group, or an object from another application that is saved on a stencil, which 

can be opened in other drawings.  The master represents basic functionality elements such as 

operands and coupling bond.  Connections and functional marker shapes are also saved as 
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masters.  When a designer drags a master from the stencil onto a drawing page, the Visio engine 

creates a copy of that master on the drawing’s document stencil and creates an instance of the 

master on the drawing page.  An instance is linked to the copy of its master on the document 

stencil and inherits its behavior and appearance from that master.  Because a stencil contains the 

shapes from which users of the functionality solution will construct a drawing, it is a primary 

user interface element in this drawing solution. 

A template opens particular functionality stencils and specifies page settings, layer 

information, style, shapes, pre-drawn elements and functionality macros, which makes it simple 

to deliver a custom solution to users. 

To develop a functionality model, the designer opens the customized Visio functionality 

template, which brings up the basic functionality stencil containing all the basic modeling 

objects as master shapes.  These set of masters in the stencil are called the functionality toolkit 

as they provide the basic tools needed to model product functionality.  On startup of the 

functionality package, a user interface containing the initial toolset similar to that shown in 

Figure 57 is displayed on the screen.  In the case of a new design, the dialog box shown in 

Figure 58 is also displayed to collect function –level information such as name, type, 

description, unit of measure, and an internally generated functionality operation ID.  The 

components of the various functionality stencils are described below. 
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Solid Operand  
Stencil 

Functionality 
modeling drawing 

page 

Page name 

Functionality components: 
Master shapes 

 

Figure 57  Functionality modeling interface using Microsoft Visio 
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Figure 58 Functionality operation start-up definition dialog box 
 
 
 

a)  Basic Functionality Stencil 

The basic functionality stencil is used to define the operands, coupling bonds, states, and 

sub-functionalities that make up a functionality operation.  The behavior of each of the 

component is determined by the VBA codes embedded in the basic functionality stencil. For 

instance, double clicking or dropping a master from the stencil will instantiate an action in the 

modeling of the functionality operation.  Some of the masters such as operands also trigger 

events that results in the addition or/and opening of a detailing page for the clicked operand.  

Each of the masters in this stencil also has its own unique user form to enable customization of 

the properties of the corresponding functionality component.  A brief description of each of the 

basic functionality operand is listed in Table 7. 

 

 

162 



 

Table 7 Summary of the master shapes in the basic functionality stencil 

Master Symbolic Shape Description 
Solid Operand 
master 

SOLID OPAND

Solid  

• Represents an instance solid of operand in the 
functionality model. 

• Double clicking this object brings up the 
operand detail page corresponding to this solid. 
It also opens the appropriate toolkit (solid 
operand stencils) needed for the editing. 

• The definition dialog box (shown in Figure 64) 
is also opened to guide the user in the creation 
of the solid operand.  

Force operand 
master 

FORCE OPAND

Force  

• Represents an instance of force operand in the 
functionality model. 

• Double clicking this object brings up the 
operand detail page corresponding to this 
force. It also opens the appropriate toolkit 
(energy operand stencils) needed for the 
editing. 

• The definition dialog box (shown in Figure 65) 
is also opened to guide the user in the creation 
of the force operand. 

Torque operand 
master 

TORQUE OPAND

Torque  

• Represents an instance of torque operand in the 
functionality model. 

• Double clicking this object brings up the 
operand detail page corresponding to this 
torque. It also opens the appropriate toolkit 
(energy operand stencils) needed for the 
editing. 

• The definition dialog box (shown in Figure 66) 
is also opened to guide the user in the creation 
of the torque operand. 

Coupling operand 
master Coupling Bond

 

• Represents an instance of the coupling bond in 
the functionality model. 

• Double clicking this object brings up the 
coupling detail page corresponding to this CB.  

• The definition dialog box (shown in Figure 67) 
is also opened to guide the user in the creation 
of the coupling bond. 

• The two operands to be coupled are then 
selected in the CB user form interface. 

• In addition, all the coupling attributes, 
relations, constraints, and DoF are defined in 
this interface. 
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Table 7 (continued). 

Functionality State 
master 

OPAND STATES

 

• Represents an instance of operand state in the 
functionality model. 

• Double clicking this objects brings up the 
definition dialog box is also opened to guide 
the user in the creation of the operand states. 

• The user selects operands and coupling bond 
in which state is a relevant factor.  The 
selected operands together with their 
respective attributes are then defined as time 
variant functionality components. 

• These time variant components attributes 
define the different states the system can 
assume and hence are considered during the 
design verification / analysis phase.  

Sub-functionality 
master SUB-FXN. OBJ.

 

• Represents an instance of a sub-functionality 
operation included in the model. 

• Double clicking this object brings up the 
corresponding operation detail page together 
with the user form with which the designer 
selects the operands that are used in coupling 
bond with the other operands in the super-
functionality operation. 

Connector master 

 

• Represents an instance of component 
connector in the functionality model 
drawing. 

• It links components (operands and CBs) 
together. 

• It performs no action and is only used to 
pictorially link components together. 

 

b)  Solid Operand Stencil 

The solid operand stencil is used to define the attributes and functional markers of a 

given solid operand.  It is invoked whenever a solid operand detail page is opened or a solid 

operand is double clicked for editing purposes.  The opening of the solid operand page also 

invokes the “solid operand user form” shown in Figure 64.  This form is used to guide the user 

in the definition of the attributes of the solid operand. 
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The actual Visio implementation of the functional markers is limited to points, line, and 

circular arcs.  The point is defined by the coordinates of its points in two dimensions: x and y 

coordinates.  The line on the other hand is defined by the begin and end points together with the 

sides (side 1 and side 2) as shown in Figure 59. 

 

 

Side 2: y < mx + c

Side 1: y > mx + c
line: y = mx + c

y

x

begin

end

c

 

Figure 59 Modeling of functional line in Visio 

 
 

The circular arc is defined by begin and end points of the arc together with the bow of 

the arc (see Figure 60).  The magnitude of the bow is the distance from the midpoint of the 

chord to the midpoint of the arc.  The bow’s value is positive if the arc is drawn in the 

counterclockwise direction; otherwise, it is negative. The radius or the parent circle is related to 

the magnitude of the bow as follows: 

 |Bow| = radius * (1 – COS(angle/2)) 

 Where, “radius” is the radius of the arc; and “angle” is the angle that the arc subtends at 

the center of the circle. If the bow is zero, the arc is a straight line. 
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Figure 60 Modeling of functional arc in Visio 

 
 

The behavior of each of the masters in this stencil is determined by the VBA codes 

embedded in the solid operand stencil. For instance, double clicking or dropping a master from 

the stencil will instantiate an action in the modeling of the functionality operation.  Each of the 

masters in this stencil also has its own unique user form to enable customization of the 

properties of the corresponding functional marker.  A brief description of each of the solid 

operand stencil masters is listed in Table 8. 

 

Table 8 Summary of the master shapes in the solid operand stencil 
Master Symbolic FM Shape Description 
FPoint master  • Represents a functional point (marker) in a 

solid operand. 
• It is placed on the detail page of a solid 

operand to denote a point that is functionally 
important for the operand. 

• Double clicking this object brings up the 
“FPoint” user form (Figure 61) with which the 
designer can define the parameters of the 
functional point. 
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Table 8 (continued). 

Fline master  • Represents a functional line (marker) in a 
solid operand. 

• It is placed on the detail page of a solid 
operand to denote a line / axis that is 
functionally important for the operand. 

• Double clicking this object brings up the 
“FLoint” user form (Figure 62) with which 
the designer can define the parameters of the 
functional line. 

FArc master 
 

• Represents a functional arc (marker) in a 
solid operand. 

• It is placed on the detail page of a solid 
operand to denote an arc that is functionally 
important for the operand. 

• Double clicking this object brings up the 
“FArc” user form (Figure 63) with which the 
designer can define the parameters of the 
functional arc. 

FrectArea master  • Represents a functional rectangular region 
(marker) in a solid operand. 

• It is placed on the detail page of a solid 
operand to denote a rectangular region that is 
functionally important for the operand. 

FCirArea master 

 

• Represents a functional circular region 
(marker) in a solid operand. 

• It is placed on the detail page of a solid 
operand to denote a circular region that is 
functionally important for the operand. 

DimConstraint 
master  

• Represents an instance dimensional 
constraint between the functional markers in 
a solid operand. 

• Double clicking this object brings up the 
coupling definition dialog box to guide the 
user in the creation of the dimensional 
constraint. 

• The two functional markers to be related are 
then selected in the DimConstraint user form 
interface.  The value of the dimensional 
constraint is also specified. 
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Figure 61 Functional point user form 
 

 

Figure 62 Functional line user form 
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Figure 63 Functional arc user form 
 

 

 

Figure 64 Solid operand definition user form 
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c)  Energy Operand Stencil 

The energy operand stencil is used to define the attributes and the functional markers of a 

given energy operand.  It is invoked whenever an energy operand detail page is opened or an 

energy operand is double clicked for editing purposes.  The opening of the energy operand page 

also invokes the “energy operand user form” shown in Figure 65 (force) and Figure 66 (torque).  

This form is used to guide the user in the definition of the attributes of the energy operand. 

The behavior of each of the masters in this stencil is determined by the VBA codes 

embedded in the energy operand stencil. For instance, double clicking or dropping a master from 

the stencil will instantiate an action in the modeling of the functionality operation.  Each of the 

masters in this stencil also has its own unique user form to enable customization of the 

properties of the corresponding functional marker.  A brief description of each of the energy 

operand stencil masters is listed in Table 9. 

 

Table 9 Summary of the master shapes in the energy operand stencil 
Master Symbolic Shape Description 
EPoint master  • Represents an instance of a functional point (marker) 

in the energy operand. 
• It is placed on the detail page of an energy operand to 

denote a point that is functionally important for the 
operand. 

• Double clicking this object brings up the “EPoint” 
user form with which the designer can define the 
parameters of the functional point. 

EVector master 

 

• Represents a vector instance of the energy operand. 
• It is placed on the detail page of an energy operand to 

denote an energy vector (magnitude and direction) that 
is functionally important for the operand. 

• Double clicking this object brings up the “EVector” 
user form with which the designer can define the 
parameters of the energy vector. 
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Figure 65 Force operand definition user form 
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Figure 66 Torque operand definition user form 
 
 
 
d)  Coupling Bond Definition 

Dropping a master of the coupling bond from the toolkit (stencil) creates an instance of 

coupling bond master.  Double clicking an instance of the coupling bond opens up the coupling 

bond definition user form (shown in Figure 67).  This form is used to define the elements of the 

coupling bond.  It provides a means for the designer to specify the functional relations, degrees 
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of freedom, and the constraints present at the interaction of the coupling pair (operands).  The 

coupling pair is defined by selecting from the available set of operands in the functionality 

operation.  A form tag number is also specified to link the coupling bond to a solid CAD model. 

 

 

 

Figure 67 Coupling bond definition user form 
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Functional Relations 

A general functional relation is given by the expression shown in Equation 12. In the 

expression, the FACTOR EXPRESSION consists of operators (opt) and relational entities 

[attribute values (AValue), and user defined constants (Const)].  Note that Const must be 

defined before use by either assigning it a specific value or assigning it to a physical 

functionality attribute. 

 

FACTOR EXPRESSION A <rel> FACTOR EXPRESSION B  

Equation 12 

The “relator” is represented symbolically by “<rel>” and is defined as the mathematical 

relationship operator between two functional expressions.  Functional relators are classified into 

two groups: qualitative and quantitative relator.  

 

• Qualitative: in this implementation, the qualitative relator are limited to spatial 

relations between functional markers of an attribute. This set includes the following 

relations: against, aligned, coincident, etc. 

• Quantitative: the qualitative relator defines a relation between the magnitude of the 

attributes or FACTORs of operands.  The implementation of this is restricted to the 

following set: equality (=) and inequalities (≥ and  ≤). 

 

The functional relation operator co-joins attribute values and constants to form a single 

functional factor. Operator set includes: multiplication (*), division (/), addition (+), and 

subtraction (-). 
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The relational entities are attribute values of operands (AValue) or relational constants 

(Const) defined by the designer. Relational constants must be defined before use by either 

assigning it a specific value or assigning it to a physical functionality attribute. The user form 

used to define quantitative functional relations is shown in Figure 68, while that used to specify 

spatial (qualitative relations) is shown in Figure 69.   

 

 
Figure 68 Quantitative functional relations definition user form 
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       (a)       (b) 

Spetial relations user form             Entities (functional markers) selction form 
 

Figure 69 Spatial relations definition interface 

 

 
Constraint representation: 

Engineering constraints are special form of functional relations where the right hand side 

(RHS) is assigned to a constant (Const) value.  They are used to restrict the limit an operand 

attribute or functional parameter can assume.  Hence, it defines the value range or limits on 

relational entities (attribute values and constants).  For instance, the weight limit of an operand 

may be given as follows:  mass * gravity ≤ maxStrength , where mass is the value of the mass 

attribute, gravity is the earth gravitational constant, and maxStrength is a user defined constant 
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for the maximum weight limit on the object.  The maxStrength may be related to the maximum 

strength of a load bearing operand connected to the operand with the given mass. Unlike in the 

case of functional relators, the relator set for constraints is limited to quantitative relators: 

equality (=) and inequalities (≥ and  ≤).  The operators are also restricted to qualitative operators: 

multiplication (*), division (/), addition (+), and subtraction (-).  The user form used to define 

engineering constraints is shown in Figure 70. 

 

 

Figure 70 Quantitative constraints definition user form 

 

 

Degree of Freedom 

The degree of freedom (DoF) defines the required restriction on the allowable motions of 

an operand. The DoF specification applies to oparands as an entity not just to a single attribute 

or operand component.  A reference (<ref>) defines a reference axis, marker, or datum used in 

the DoF specification.  It might refer to an axis, plane, or surface. The DoF is defined during the 

specification of the spatial relations.  Hence, the input form used here is the same as that used in 

spatial relations specification (Figure 69).  
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6.3 Testing and Validation 

 
 
 

The principles developed in this work are tested and validated using a case study: the 

design of a sub-assembly of an automotive space-frame.  The primary activity involved in the 

validation of the work is answering the question, does the work accomplish the research 

objectives defined at the beginning of this work.  To answer this question, it is important to re-

emphasize the objective of a design in general and the objective of functionality modeling in 

particular.  How is a design judged as being good or bad?  In this work, a design is considered as 

being good if it performs successfully the task for wish it was designed.  The functionality-

modeling tool developed in this work is used to specify the desired task (functionality) to be 

accomplished by a product.  Hence, the models developed in this work can be validated by 

evaluating how efficiently they capture the functional requirements of the product. 

To evaluate this modeling efficiency, the following procedure is followed. 

 

• Selection of a case study comprising of a problem that require the use of a 

mechanical device. 

• Definition of the need and design objective. 

• Functional analysis of the selected product. 

• Development of functionality model using FbD methodology. 

• Evaluation of performance in the case, highlighting the benefits and limitations of the 

methodology. 
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6.3.1 Functionality-based Design (FbD) Procedure 

Before applying the FbD concepts, the general FbD modeling steps identified in Section 

6.2.1 is expanded to illustrate the specific design actions that are involved when using the 

method and computer tools developed in this work.  The process flow associated with these 

steps is illustrated by the flow chart of Figure 71.  This FbD algorithm is described below. 

 

1. Identify the needs and specification of the proposed mechanical product. 

2. Perform the functional requirement analysis of the problem (need) to identify the 

relevant: 

• Functionality operands and their corresponding attributes. 

• Functionality relations and constraints including both qualitative and quantitative 

coupling relations. 

3. Start the functionality design toolkit. 

4. Instantiate the functionality operation – define functionality NAME, TYPE, UNIT, and 

DESCRIPTION. 

5. Define a new operand: 

• Click and drag from toolkit and drop in the drawing page. 

• Specify known attributes of operand including the functional markers for SOLID 

operands. 

• Define attribute value set if known. 

6. If new operand required: 

• Repeat STEP 5. 

7. Else, define coupling bond between operands: 
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� Select the coupling operand pair.  

� Define coupling constraints 

� Define inter-operand relations (both qualitative and quantitative relations need to be 

specified) 

� Define the degree of freedom restriction on the coupling pair. 

8. If sub-functionalities required: 

� Define a new sub-functionality  (from re-usable KB if available) 

� Specify known attributes 

� Specify coupling operands 

� Specify linkage to external functionality operands and operations (coupling bond) 

9. If new sub-functionality required: 

� Repeat sub-functionality inclusion step 9 

10. Generate XML representation of functionality 

11. Map functionality to conceptual form (tag XML to form as the functionality constraint). 

12. Save and propagate XML data file for use in the detail design phase. 

 

The above algorithm is applied to the functionality modeling of the car frame selected as 

a case study product.  The actual FbD modeling steps are described in Section 6.3.2, while the 

evaluation of the methodology is discussed in Section 6.3.3. 
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Figure 71 Functionality modeling flow diagram 
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2-D Approximation of Functional Markers 

 

The demonstration of the FbD concept is restricted to two dimensions.  Consequently, 

the functional markers described in Section 4.1.1 are modified for 2D application as follows.  A 

functional feature is defined with markers using the following notation:   

 

M1: a point p1(x1, y1). 

M2: a point p2(x2, y2). 

M3: a point p3(x3, y3). 

L: line(p1, p2): a line through p1 and p2. 

P: plane(p1, p2, p3): a plane through p1, p2, and p3. 

 

From the above definitions, the basic set of functional markers for the 2D operand 

approximation includes the following: a point, a line, and a plane.  Inter-functional marker 

constraints are geometric constraints that describe the dependencies between functional markers 

within or between solid operands.  The functional marker geometric constraint set simplified for 

2D modeling application is summarized in Table 10. 
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Table 10 Inter-functional feature constraints representing geometric constraint set 

Constraint Figure 
on_line(M1, L): p1 lies on the line L. M1 L  
on_plane(M1, P): p1 lies on the plane P. 

M1

P

 
parallel(L1, L2): line L1 is parallel to line L2. 

L1 L2 
angle_w(L1, L2, θ): the angle between L1 and 
L2 is θ. 

L2

L1

angle

 
dist(M1, M2): the distance from p1 to p2 is d. d M2

M1

 
dist(M1, L, d): the distance from p1 to the 
projective point on line L is d. 

d

L

M1

 
dist(L1, L2, d): the perpendicular distance 
between line L1 and line L2 is d. 

L1

d

L2
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6.3.2 Functionality Modeling of an Automotive Space-Frame Sub-assembly 

Space-frames are metal skeletons on which the body panels of a car are hung. A sample 

space-frame is shown in Figure 72. [83] The body panels are hung about the hard points, adding 

extra strength as well as making the structure aerodynamic and keeping the wind off the driver. 

Most of the space frame structure is formed from hollow section extrusions with wall 

thicknesses that vary to distribute stresses evenly. These components are extruded and bent into 

the required shape, before being assembled. Their exact form depends on how they are used, 

parts of the roof frame for example are shaped differently from the door pillars.  

 

 

Figure 72 Space-frame of a car 

 

The sample product used to evaluate the principles developed in this work is a sub-

assembly of an automotive space-frame.  This case study is evaluated by first, developing a 

functionality model of the frame sub-assembly using the four-step process outlined in Section 
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6.2.1.  The functionality model is then evaluated to illustrate its goodness or deficiencies.  This 

case evaluation is restriction to 2-dimesional analysis as defined in the scope of this research. [*] 

For the analysis on the space frame, it is assumed that the exact geometric shape (or 

form) of the sub-assembly is not known at the beginning of the design process. This assumption 

makes it possible to demonstrate the design steps involved in evolving a generic product design 

using FbD methodology. 

 

STEP I: Problem definition 

The purpose of this step is to define the problem and the engineering task that the frame 

needs to accomplish.  In a typical design scenario, this is provided by the customer or the target 

user of the product.  Hence, it forms a unique interface between the engineering function of 

design and the customer.  It is important that the proper tasks and or problems are identified at 

this stage of product development. A poorly defined problem will yield a product that has poor 

performance as it is ill-conceived with incomplete or even wrong design (engineering) 

objectives or goals.  

The primary engineering tasks of the auto-frame are to: 

• Maintain the structural integrity of the entire automotive assembly (including the 

body, engine assembly, wheels, transmission system, passenger sits, etc); 

• Provide support for other components of the car (that is, to provide a base to which 

other components of the car can be mounted to); and  

• Provide load bearing functionality for the car assembly (including weight of other 

components), its passengers, and cargoes 

                                                 
* The scope of this work is defined in Section 3.1.  Computer implementation is restricted to 2-D.  Material 
operands is limited to solids with rigid body. 

185 



 

 

STEP II: Functional requirement analysis 

The identified engineering tasks of step I implies some functional requirements for their 

satisfaction.  The first step in functional requirement analysis is the use of quality function 

deployment (QFD) (84, 85) matrix tool to identify the key functional features of the required 

product.  This tool lists the engineering tasks (identified in step I) as row headings while the 

column headings are the functional features or attributes of the product.  This is illustrated in 

Table 11.  This table does not provide information about detailed engineering specifications, but 

merely identifies the set of engineering features that correspond to the required product tasks. 

In implementing the functionality-based design, the first step is to translate the 

functionality (engineering task) into functional requirements and subsequently constraints that 

need to be satisfied.  For the space-frame sub-assembly, the functional requirements as shown in 

Table 11 include the following: 

 

• Operand set; 

• Strength requirement; 

• Stability requirement; 

• Spatial relation of the various components; and 

• Material compatibility. 
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Table 11 Task - functional features QFD for the car frame 

 Operand Strength Stability Spatial 

relation 

Material 

Compatibility 

Maintain Structural 
Integrity 

⊕ ⊕ ⊕ ⊕  

Provide Support ⊕ ⊕ ⊕ ⊕ ⊕ 

Provide Load Bearing  ⊕ ⊕ ⊕ ⊕  

 

The “⊕” symbol in Table 11 shows the perceived interrelations between the tasks and the 

identified functional features.  In other to provide the above engineering tasks, the product must 

satisfy its set of functional requirements.  Hence, the next step in the functional requirement 

analysis is the translation of the functional features into identifiable set of operands and 

operators (as elements of the coupling bond).  The functional requirements need to be translated 

into functionality constraints.  A satisfaction of all the functionality constraints will guarantee 

that under operation, the final design will meet all the initial functional requirements. 

Having identified the functional requirements, the next step is to map these requirements 

to basic functionality design elements - operands together with their corresponding coupling 

bonds.  The specific operands and their corresponding attributes required to achieve the design 

tasks are obtained by mapping the functional features to actual functionality elements 

(operands). 

 

Operands and Spatial Relation: 

Given the nature of the task that need to be performed and the context of operation, the 

identifiable operand are SOLID material and FORCE energy operands.  The SOLID operand 

consists of the actual physical components that make up the product.  The FORCE operand on 
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the other hand, is the set of external forces that represent the resultant impact of other 

components of the car assembly on the sub-frame.   

 

 

Material operands: 

The context of operation of the frame requires that a topological structure similar to that 

shown in Figure 73 be evolved for the product.  This topology is dictated by the fact that other 

components of the car need to fit with this frame for it to provide the support and load bearing 

functionality.  The markers (line X and points A, B, C) are used as attachment nodes to other 

components of the car.  As can be seen from the figure, three key points are functionally needed 

by the context of operation as the point of attachment to other components of the car.  Points A, 

B, and C are at a fixed distance apart and are required to maintain this constant spatial relation.  

Another requirement for this SOLID operand is that points A and B should be at the end of a 

straight line, line X.   

 

pt. A

pt. B

line X

pt. C

800 mm

650 mm

1180 mm

 

Figure 73 Solid operand features of the frame 
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With the above requirements in mind, points A, B, and C, and line X could all form one 

rigid SOLID component or they can be split into separate components and then joined (coupled) 

together.  The SOLID operand is split into two smaller solids: {A, B, X} and {C}.  The two 

solids can assume any specific form provided that they satisfy the requirements of providing 

features A, B, C, and line X, while maintaining the required spatial relation.  It is intuitive to 

conceptualize SOLID{A, B, and X} as a beam with points A and B as end points as shown in 

wireframe model of Figure 74.  On the other hand, SOLID{C} may assume any form (option 1, 

option 2, or option 3) as shown in Figure 74 or it may be formed by the union of all the options 

to form a planer structure.  The exact form of SOLID{C} is determined by other factors such as 

strength, weight, cost, and designer’s preference.  For the initial functionality model, SOLID{C} 

is assumed to be a solid beam with point C as one of its end.  The other end (JC) is connected to 

the AB beam. 

 

pt. A

pt. B

line X

pt. C

form set: SOLID{C}

Option3:
SOLID{C}

Option1:
SOLID{C}

Option2:
SOLID{C}

 

Figure 74 Solid operands: SOLID{A, B, X} and SOLID{C} 
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Consequently, SOLID operands for the space-frame functionality model is composed of 

two solids: 

• SOLID{A, B, X}: referred to as the Cross-beam (CROSSBEAM) 

• SOLID{C}: referred to as the Tee-beam (TEEBEAM) 

 

Energy operands: 

The second type of operand that is required for this model is the FORCE energy operand.  

All vehicles are subject to both static and dynamic loads, which cause stresses.  The static 

analysis of the structure gives, on one hand, the internal loads in the structural elements making 

up the structure (e.g., the direct loads, normal loads, bending moments, and torque) due to the 

instantaneous external loads, and on the other hand, the internal and external displacements 

caused by the load system.  The following list of static loads, which should be taken as stressing 

cases, includes maximum dynamic loads, which only occur infrequently. 

 

� Static load of stationary vehicle (including weight of components attached to the frame) 

� Braking 

� Acceleration 

� Cornering 

� Torsion 

� Maximum load on front axle 

� Maximum load on rear axle 

� Drawbar loads 
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The values for the individual load cases are taken from the expected service conditions of 

the particular vehicle.  The worst-case loading conditions (distribution of load) as well as 

overloading are assumed for static load case.  The braking and acceleration cases are determined 

by the possible driving conditions.  The lateral acceleration in cornering will be determined by 

the tire forces available, or a tilt test may be specified. 

In practice, it is sufficient to use a lumped mass approximation, with simple statically 

equivalent masses concentrated at selected nodal points. [86] Discrete attached masses are 

connected to the structure at the nodal points.  Hence, the equivalent assumed maximum loads at 

the node points are F1, F2, … , F6 as shown in Figure 75.  The values used for F1, F2, … , F6 are 

approximate worst case forces that might impact the space-frame sub-assembly. It is important 

to note that the use of lumped masses is only an approximation of the real loading situation, 

where the loading is distributed over the entire region of the solid operand.  However, in such 

cases, other complex methods of analysis as discussed in  [Beermann 1989] [86] may be used to 

analyze the loads. 
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Figure 75 Resultant loading forces on the frame structure 

 
 

The loading forces determine the strength and optimum spatial configuration for the load 

bearing components (the SOLID operands). 

 

Strength: 

The strength functional feature specifies the maximum deformation and stress that the 

space-frame should withstand.  Under operational condition, a car is usually subjected to 

different kinds of forces including impact, steady, and random forces as earlier discussed under 

energy operands.  The frame structure should be designed in such a way that it can withstand 

such forces.  Hence, the strength functional feature refers to the following attributes of the 

SOLID operands: the allowable normal stress and the allowable shear stress.  In this work, rigid 
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body solids are assumed; hence, the strain of the solid operands is neglected.  This strength 

requirement must be specified for the entire solid frame including any joint that is required to 

maintain a fixed spatial relation between solid operands.   

  

Stability: 

The stability feature ensures that the design yields a product that is stable while in 

operation.  It stipulates that the internal forces acting on the product are balanced.  The internal 

forces are because of the SOLID operand’s reaction to the external forces (F1, F2, F3, F4, F5, F6).  

For this stability requirement to be satisfied, the strength of the SOLID operand must be 

sufficiently high to withstand the external loading forces.  An extension of this stability 

requirement is that the effect of the external forces all must cancel out as a necessary condition 

for equilibrium. 

 

Material Compatibility: 

Since other materials need to be attached to this frame, it has to be compatible with those 

components to avoid any negative compatibility issues.  The components to be attached to this 

frame are all metals – STEEL and ALUMINUM.  Hence, any compatible metal or material may 

be selected for the frame, subject to the satisfaction of other factors such as strength, weight, and 

cost.  In this case study, aluminum appears to satisfy this requirement, hence ALUMINUM is 

proposed as an initial material type in the functionality model.  It should be noted that the 

designer is at liberty to change the material type at any time during the design process. 
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STEP III: Functionality modeling  

In building a functionality model, the functional features are instantiated as design 

objects with their corresponding attributes.  This case study demonstrates how the generic 

functionality model discussed in Section 3.3.3 is used to map the functionality description of the 

car frame into mathematical relationships and constraints.  It provides a means for representing, 

propagating, and enforcing car frame functionality as design constraints.  The generic 

functionality model of the functionality operation (a modeling representation for frameBOPN) 

is defined by the ternary relation, Γi, given by Equation 13. 

Γi =  {(x, s, f) | x ∈Xi, s ∈ Si, and f ∈ Fi}  

Equation 13 

Where, 
• i      =  functionality operation index 

• Xi   = a functionality operator  

• Si    = a set of functionality states 

• Fi  = function-form mapping set 

 

Operands and attributes 

Given a set of operands (Oi) in a functionality operation with an index, i.  Each member 

of this operand set is given by: 

oiq  =  {aiqs | aiqs ∈ Aiq} 

Where  

• i  =  functionality operation index 

• q  =  functionality operand indix 

• Aiq = attribute set for functionality operand oiq  
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As identified in Step II of the FbD procedure, the operands involved in the space-frame 

functionality operation are listed below: 

j Operand Name Operand Type 
1 Cross-beam SOLID 
2 Tee-beam SOLID 
3 F1 FORCE 
4 F2 FORCE 
5 F3 FORCE 
6 F4 FORCE 
7 F5 FORCE 
8 F6 FORCE 

 

A detailed description of these operands and their corresponding attributes is shown in 

Table 12 - Table 19.  In the tables, a question mark (?) is used to denote the operand attributes 

whose “absolute” value is either not known at conceptualization or is determined by other 

factors during operand coupling.  This is especially true for designs in which values of attributes 

are not known during initial problem definition and functional requirement analysis.  This 

procedure supports incremental decision making in design. 

The strength of a solid operand depends on both the type of material, treatment, and 

geometry of the solid and on the type of loading the operand will experience.  This allowable 

stress constitutes a set of strength constraint on the SOLID operands.  By knowing the loading 

condition (type and magnitude of force) and the required strength (yield strength) on the SOLID, 

the geometric configuration that satisfies this strength requirement can then be determined from 

the strength constraint set.  In a simple SOLID with uniform cross-sectional area, the stress is 

given by F/A, where F = applied force and A = cross-sectional area.  Given a material with yield 
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strength, Sy, the allowable stress as discussed in Section 5.1.3 is given by the following 

constraints.   

• Allowable normal stress (N/m2): 

yNy SSS 60.045.0 ≤≤  

• Allowable shear stress (N/m2): 

yS SS 40.0=  

 

Coupling relation is given as FSy ≥ F.  This relation implies that the force required to 

attain the yield stress of Sy must be greater than applied external loading force (F).  This force 

(FSy) is however dependent on the geometry of the solid. 

 

Table 12 Functionality attributes of cross-beam solid operand 

Type Fline - SOLID operand Value 
• Begin point markers A 
• End point marker B 
• Joint point marker  JAB 

on_line(AB)  

Functional markers 

Intra-FM coupling dist(A, JAB, d) [0.00,1180.00] mm 
Length dist(A, B, d)  1180 mm 

Normal (Tensile & Compression) 0.6 Sy Strength 
Shear 0.4 Sy 
Mass ? 
Area ? 

Mass properties 

Volume ? 
Material type Compatible with Aluminum and Steel ALUMINUM 
DoF  Fixed 

 

 

 

196 



 

Table 13 Functionality attributes of tee-beam solid operand 

Type Fline - SOLID operand Value 
• Begin point markers C 
• End point marker JC 

Functional markers 

• Joint point marker  JC 
Length dist(C, JC, d)  [650.00, 1030.78] mm 

Normal (Tensile & Compression) 0.6 Sy Strength 
Shear 0.4 Sy 
Mass ? 
Area ? 

Mass properties 

Volume ? 
Material type Compatible with Aluminum and Steel ALUMINUM 
DoF  Fixed 

 

 

 

In computing the value of the external loading forces, the impact forces (as a result of 

crash) were neglected.  The space-frame is subjected to only steady/static loading. This 

restriction is necessary as the models developed here are based solely on the assumption of rigid 

bodies.  Inclusion of impact forces (say from a crash) will necessitate an extension of the model 

to consider energy-absorbing beams, subject to deformation.  It is believed that this 

approximation is sufficient to demonstrate the application of the concepts developed in this 

work. The attributes of the loading forces are shown Table 14 – Table 19.  The magnitudes of 

the forces are only approximate estimations (since the impact forces are excluded) large enough 

to illustrate application of FbD methodology. 
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Table 14 Functionality attributes of F1 force-energy operand 

Type FEnergy – ENERGY FORCE operand  
Magnitude |F1| 50,000 N 
Direction A Æ B; 

|| to FlineAB. 
[def@coupling with 
reference to cross-
beam] 

Point of contact Point B on Crossbeam [def@coupling with 
reference to cross-
beam] 

Source  External loads  External loads and 
components 
assembled to the 
frame. 

Nature External forces operands Steady 
DoF  Fixed 

 

 

Table 15 Functionality attributes of F4 force-energy operand 

Type FEnergy – ENERGY FORCE operand  
Magnitude |F4| 50,000 N 
Direction A Æ B; 

|| to FlineAB 
[def@coupling with 
reference to cross-
beam] 

Point of contact Point B on Crossbeam [def@coupling with 
reference to cross-
beam] 

Source  External loads  External loads and 
components 
assembled to the 
frame. 

Nature External forces operands Steady 
DoF  Fixed 
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Table 16 Functionality attributes of F2 force-energy operand 

Type FEnergy – ENERGY FORCE operand  
Magnitude |F2| 50,000 N 
Direction From side 1; 

⊥ to FlineAB 
[def@coupling with 
reference to cross-
beam] 

Point of contact Point A on Crossbeam [def@coupling with 
reference to cross-
beam] 

Source  External loads  External loads and 
components 
assembled to the 
frame. 

Nature External forces operands Steady 
DoF  Fixed 

 

 
 

Table 17 Functionality attributes of F3 force-energy operand 

Type FEnergy – ENERGY FORCE operand  
Magnitude |F3| 50,000 N 
Direction From side 1; 

⊥ to FlineAB. 
[def@coupling with 
reference to cross-
beam] 

Point of contact Point B on Crossbeam [def@coupling with 
reference to cross-
beam] 

Source  External loads  External loads and 
components 
assembled to the 
frame. 

Nature External forces operands Steady 
DoF  Fixed 
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Table 18 Functionality attributes of F5 force-energy operand 

Type FEnergy – ENERGY FORCE operand  
Magnitude |F5| 50,000 N 
Direction From side 2; 

⊥ to FlineAB 
[def@coupling with 
reference to cross-
beam and tee-beam] 

Point of contact Point C on Teebeam [def@coupling with 
reference to tee-beam] 

Source  External loads  External loads and 
components 
assembled to the 
frame. 

Nature External forces operands Steady 
DoF  Fixed 

 

 

 

Table 19 Functionality attributes of F6 force-energy operand 

Type FEnergy – ENERGY FORCE operand  
Magnitude |F6| 50,000 N 
Direction From side 2; 

⊥ to FlineAB 
[def@coupling with 
reference to cross-
beam and tee-beam] 

Point of contact Point C on Teebeam [def@coupling with 
reference to tee-beam] 

Source  External loads  External loads and 
components 
assembled to the 
frame. 

Nature External forces operands Steady 
DoF  Fixed 
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Coupling bonds (CB) 

Having identified the operands in the sub-frame, the next task is to define the interaction 

between them to yield the space-frame functionality identified in Step I.  Using the notation 

presented in Section 4.3, this functionality is symbolically represented as: 

 

frameBOPN:  {<o1 : a1>,<o1 : a2>, <oi : aj>, …  <o8 : a8> } 

  where, 

  frameBOPN = space-frame functionality operator  

<oj>  = functionality operand j, 

{aj }     = attributes of operand j   

i, j  = 1, 2, .., 8 (operand indices) 

 

The operand indices and corresponding operands are listed below.  These indices will be 

used to refer to each operand in the remainder of this case study. 

j Operand name 
1 Cross-beam 
2 Tee-beam 
3 F1 
4 F2 
5 F3 
6 F4 
7 F5 
8 F6 

 

 

201 



 

With the operand set known, the functionality relationship is defined by a functional 

relationship set (Xi) as given in Equation 14. 

Xi = {xijk(oij, oik) | oij ∈ Oi, and oik ∈ Oi} 

Equation 14 

Where 

• Oi = set of operands in functionality operation i. 

• xijk = coupling bond between functionality operands j and k.  

• j, k  =  functionality operand indices 

 

The coupling bond (xijk) defines the active relationships between the functionality 

operands j and k. It is the coupling condition that describes the nature of interaction between 

operands. 

In computer modeling, the relationship set (Xi) is represented by a matrix, functionality 

coupling bond (CB) matrix, Xmxn.  Since there are eight operands in the space-frame 

functionality, the dimension of CB matrix is 8 by 8. The coupling bond has three components 

that constitute the coupling conditions: DoF, relations, and constraints.  Thus, it gives the set of 

relationships, constraints, and DoF that must hold in the inter-operand coupling for the 

functionality to achieve the specified task.  The coupling bond is defined by including these 

three components in the coupling bond equation as shown in Equation 8. 

 

{ } ijijijijij ydcrx ⊗= ,,  

Equation 15 
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Where 

rij = relation between operands i and j. 

cij = constraint on relation between operands i and j. 

dij = degree of freedom on relation between operands i and j. 







 ≥
=

otherwise

jiandjandioperandsbetweenexistcouplingif
yij

)()(

0

1
 

 

The entire set of coupling bonds in a functionality operation is represented by the 

coupling bond matrix as follows:  

 

[ ]ijxX = , where i = 1, 2, 3, … , 8; and j = 1, 2, 3, … , 8 

given that, 

[ ]ijrR =  and [ ]ijyI =  

 subject to, 

[ ]ijcC =  

[ ]ijdD =  

 

In a full matrix notation, X is given by: 
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Where: 

OPk  (k = 1, 2, .., 8) are the functionality operands. 

xij (i,j = 1, 2, …, 8) are the coupling bounds between operand OPi and operand OPj. 

 

I is a zero-one square linkage matrix representing the valid linkage interactions for the 

given coupling operation. The I (linkage matrix) is derived by entering a one for each matrix 

element where a valid coupling exists between the operands and a zero is entered otherwise.  

The size of the I matrix is determined by the number of interacting operands.  For the space-

frame, the functionality interaction graph is depicted in Figure 76.  Since there are eight 

interacting operands, I is a 8x8 square matrix.  Hence the I matrix is given by: 


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Figure 76 Car frame operand interaction graph 

(Note: Shaded FORCE operands are involved in a global coupling to ensure the stability of the system)* 

 

 

The other variables in the equation are derived as follows for the example.  Applying the linkage 

matrix, I, gives the X matrix as: 

 

                                                 
* For equilibrium, sum of forces must equal zero and sum of moments must equal zero. 
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Where, the diagonal elements, x11, x22, x33, x44, x55, x66, x77, and x88, are the intra-operand 

constraints and relations.  They include the constraints on the attributes of the corresponding 

operands; degree of freedom restriction on the functional markers and attributes of the operands, 

and finally relations between attributes of the operand.  Some of the known attribute values for 

the space-frame are specified in Table 12 to Table 19 while others that are dependant on other 

operands are defined during coupling.  The meaning of the other non-zero elements of the 

coupling bond matrix is described in Table 20. 

 

Table 20 Coupling bond elements 

CB 
element 

x12 SOLID-SOLID Crossbeam – Teebeam Joint Table 21 
x13 SOLID-FORCE Crossbeam – F1 Compression Table 22 
x14 SOLID-FORCE Crossbeam – F2 Shear Table 23 
x15 SOLID-FORCE Crossbeam – F3 Shear Table 24 
x16 SOLID-FORCE Crossbeam – F4 Compression Table 25 
x27 SOLID-FORCE Teebeam – F5 Compression Table 26 
x28 SOLID-FORCE Teebeam – F6 Shear Table 27 

global FORCE-FORCE F1, F2, F3, F4, F5, F6 Equilibrium Table 28 
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The CB matrix (X) for the automobile sub-frame can be expanded in terms of R, C, and 

D as follows.  The R matrix is formed by pulling all the valid relationships in the system 

involving operands OP1 to OP8.  Similarly, C and D matrices are formed by pulling all the valid 

constraints and DoF restrictions respectively in the system involving operands OP1 to OP8.   

Hence,  
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A detailed listing of the CB components (xij) for the car frame is listed in Table 21 to 

Table 27. Figure 77 and Figure 78 illustrates the effect of coupling bond (CB) relations on the 

conceptual form of the space-frame.  Figure 79(a)-(b) is the three members of the possible form 

set of the space frame. [*] For evaluation purposes, the form shown in Figure 79 (b) is selected. 

 

Table 21 Joint operation: crossbeam-teebeam coupling bond (x12) 

Functionality 
Entity 

Entity 1 
(j=1) 

Entity 2 
(k = 2) 

Coupling Pair 
(O1q) 

O11  = SOLID: Crossbeam  O12  = SOLID: Teebeam  

Attributes (A1q) A111 = length, 
A112 = FM set  
A113 = material type 

A121 = length 
A122 = FM set  
A123 = material type 

Functional Constraints 
C1  = {dist(A, C, d1) = 752.93 mm} 
C2  = {dist(B, C, d2) = 1030.78 mm} 
C3  = {C on side2} 
C4  = {dist(A, JAB, d3) = fixed} 
C5  = {strength_joint ≥ min_strength(crossbeam, 
teebeam)} 

The effect of C1, 
C2, and C3 is 
shown in Figure 77. 

Functional Relations 
R1  = {JAB coincident JC} 
R2  = {JAB on_line(AB)} 

The effect of C1, 
C2, and C3 is 
shown in Figure 78. 

Degree of Freedom 

Coupling Bond 
Relations (X1) 

D1 = {JAB : fix}  
D2 = {crossbeam : fix} 
D3 = {teebeam : fix} 

 

Functionality-
form Mapping 
(F1) 

F1  =  {(r112, f112l) | FFl=1, FF l=2, … }, l = 1, 2, 3. 
 

Member elements shown in Figure 79. 
 

                                                 
* It is possible to expand the form set to include form conceptual form by considering the continuous nature of the 
possible location of marker JAB on the cross-beam. 
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pt. A

pt. C

pt. B

|BC| = 1030.78 mm

|AC| = 752.93 mm

Locus of
|AC| = fixed

Locus of
|BC| = fixed

side2side1

 

Figure 77 Application of constraints on functional markers A, B, and C 
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pt. A

pt. C

pt. B

side2side1

JC

JAB

Joint Relation:
{Coincident: JAB <-> JC}

Joint Relation:
{on-line: JAB on FlineAB}

 

Figure 78 Application of constraint on joint location 

 

 

 pt. A

pt. B

line X

pt. C
Option1:

SOLID{C}

pt. A

pt. B

line X

pt. COption2:
SOLID{C}

pt. A

pt. B

line X

pt. C

Option3:
SOLID{C}

l = 1 

(a) 

l = 2 

(b) 

l = 3 

(c)  

Figure 79 Conceptual form set for joint operation (l = 1, 2, 3) 
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Table 22 to Table 27 shows the coupling bond for the various loading forces on the cross 

and tee beams.  It should be recalled that stress is given as a ratio of force to cross-sectional area.  

Since stress depends on cross-sectional area, for a solid operand with varying cross-section, the 

stress varies along the loading axis.  Hence, to ensure the satisfaction of the stress requirement, 

the instantaneous internal forces (as a result of the stress) along the operand must be greater than 

the applied load.   

 

Let 

Finternal  = instantaneous internal force; 

Fapplied  = loading force; 

A = cross-sectional area; and 

σ  = normal stress. 

The normal strength requirement of the solid operand require that the following 

constraint be satisfied:  

Finternal ≥ Fapplied 

Where,  Finternal = A x σ 

 

For a given material of known yield stress (Sy), the allowable stress σallow = 0.65Sy. 

Consequently, the maximum allowable internal force (FSy) in the solid operand if given by 

substituting this into the constraints to yields: 

 

FSy = A x σallow  ≥ Fapplied 
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Hence, the strength coupling constraint between a solid and force operand is given as FSy 

≥ Fapplied.  This relation implies that the force required to attain the allowable stress of σallow must 

be greater than applied external loading force (Fapplied).  This force (FSy) is however dependent 

on the geometry of the solid. 

In the following tables, normal_strength_operand refers to the design limit of maximum 

internal forces (FSy) in the solid operands under normal loading condition.  Similarly, 

shear_strength_operand refers to the design limit of maximum internal forces in the solid 

operands under shear loading condition. 

 

Table 22 Load bearing: crossbeam-F1 coupling bond (x13) 

Functionality 
Entity 

Entity 1 
(k = 1) 

Entity 2 
(j=3) 

Coupling Pair 
(O1q) 

O12  = SOLID: Crossbeam O11  = FORCE: F1 

Attributes (A1q) A121 = length 
A122 = normal_strength 
A123 = FM: A 

A111 = |F1| 
A112 = dir(F1)  
A113 = nature  
A114 = <applic point> 

Coupling Bond 
Relations (X1) 

Constraints: 
C1  = {normal_strength_crossbeam ≥ |F1|} 

Relations: 
R1  = {<applic point> coincident A} 
R2  = {dir(F1) parallel AB)} 

DoF: 
D1 = {<A>: fix}  
D2 = {dir(F1) : fix} 
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Table 23 Load bearing: crossbeam-F2 coupling bond (x14) 

Functionality 
Entity 

Entity 1 
(j = 1) 

Entity 2 
(k =3) 

Coupling Pair 
(O1q) 

O12  = SOLID: Crossbeam O11  = FORCE: F2 

Attributes (A1q) A121 = length 
A122 = shear_strength 
A123 = FM: A 

A111 = |F2| 
A112 = dir(F2)  
A113 = nature  
A114 = <applic point> 

Coupling Bond 
Relations (X1) 

Constraints: 
C1  = {shear_strength_crossbeam ≥ |F2|} 

Relations: 
R1  = {<applic point> coincident A} 
R2  = {angle_w(dir(F2), AB, 90)} 

DoF: 
D1 = {<A>: fix}  
D2 = {dir(F2) : fix} 

 

 

Table 24 Load bearing: crossbeam-F3 coupling bond (x15) 

Functionality 
Entity 

Entity 1 
(j = 1) 

Entity 2 
(k =5) 

Coupling Pair 
(O1q) 

O12  = SOLID: Crossbeam O11  = FORCE: F3 

Attributes (A1q) A121 = length 
A122 = shear_strength 
A123 = FM: B 

A111 = |F3| 
A112 = dir(F3)  
A113 = nature  
A114 = <applic point> 

Coupling Bond 
Relations (X1) 

Constraints: 
C1  = {shear_strength_crossbeam ≥ |F3|} 

Relations: 
R1  = {<applic point> coincident B} 
R2  = {angle_w(dir(F3), AB, 90)} 

DoF: 
D1 = {<B>: fix}  
D2 = {dir(F3) : fix} 
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Table 25 Load bearing: crossbeam-F4 coupling bond (x16) 

Functionality 
Entity 

Entity 1  
(j = 1) 

Entity 2 
(k=6) 

Coupling Pair 
(O1q) 

O12  = SOLID: Crossbeam O11  = FORCE: F4 

Attributes (A1q) A121 = length 
A122 = normal_strength 
A123 = FM: A 

A111 = |F4| 
A112 = dir(F4)  
A113 = nature  
A114 = <applic point> 

Coupling Bond 
Relations (X1) 

Constraints: 
C1  = {normal_strength_crossbeam ≥ |F4|} 

Relations: 
R1  = {<applic point> coincident B} 
R2  = {dir(F4) parallel AB)} 

DoF: 
D1 = {<B>: fix}  
D2 = {dir(F4) : fix} 

 

 

Table 26 Load bearing: teebeam-F5 coupling bond (x27) 

Functionality 
Entity 

Entity 1 
(j = 2) 

Entity 2 
(k=4) 

Coupling Pair 
(O1q) 

O12  = SOLID: Teebeam  O11  = FORCE: F5 

Attributes (A1q) A121 = length 
A122 = normal_strength 
A123 = shear_strength 
A124 = FM: C 

A111 = |F5| 
A112 = dir(F5)  
A113 = nature  
A114 = <applic point> 

Relation (R1) Constraints: 
C1  = {normal_strength_teebeam ≥ |F5|normal} 
C2  = {shear_strength_teebeam ≥ |F5|shear} 

Relations: 
R1  = {<applic point> coincident C} 
R2  = {angle_w(dir(F5), AB, 90)} 

DoF: 
D1 = {<C>: fix}  
D2 = {dir(F5) : fix} 
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Table 27 Load bearing: teebeam-F6 coupling bond (x28) 

Functionality 
Entity 

Entity 1 
(j = 2) 

Entity 2 
(k=5) 

Coupling Pair 
(O1j) 

O12  = SOLID: Teebeam  O11  = FORCE: F6 

Attributes (A1q) A121 = length 
A122 = normal_strength 
A123 = shear_strength 
A124 = FM: C 

A111 = |F6| 
A112 = dir(F6)  
A113 = nature  
A114 = <applic point> 

Relation (R1) Constraints: 
C1  = {normal_strength_teebeam ≥ |F6|normal} 
C2  = {shear_strength_teebeam ≥ |F6|shear} 

Relations: 
R1  = {<applic point> coincident C} 
R2  = {dir(F6) parallel AB)} 

DoF: 
D1 = {<C>: fix}  
D2 = {dir(F6) : fix} 

 

 

FORCE-FORCE coupling bonds 

Force-force coupling is necessary for stability and equilibrium of the frame.  However, 

since these forces are external to the frame, they are related to each other with reference to other 

coupled operands that serve as source to these forces.  The actual sources of these forces are 

neglected in this coupling. 

The aim of a static analysis is to determine the internal loads of a structure when 

subjected to external loads.  The basis for this analysis is that the equilibrium of forces shall be 

maintained at all points in the structure.  The conditions of equilibrium are sufficient for the 

direct analysis and guarantee of equilibrium of statically determinate structures. The equilibrium 

conditions for the forces Fk in the coordinate directions and the moments Mk acting about these 

coordinates give: 
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0;0 == ∑∑
∀∀ y
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k FF  

0;0 == ∑∑
∀∀ y

k
x

k MM  

Where, 

k (=1, 2, 3) are the nodal points (corresponding to A, B, and C functional 

markers). 

It is preferable to define these forces at the nodal points or the joints. This results in the 

forces being defined at the ends of the beams.  The analysis finds the internal loads at any point 

along the beam.  The internal loads are given as stress distributions in the cross section of the 

beam.   

In the case of the space-frame, the structure breaks up naturally into beam elements with 

the ends as nodes (Figure 75).  At each node, there are two forces and two moments (2D 

coordinate system assumed).  These forces and moments are referred to as the loads at a node.  

For the kth node the loads are arranged in column matrices: 

 

fk = {Xk Yk Mxk Myk} 

 

And for the complete structure  

 

f = { f1 f2 … fk … } 
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To ensure the stability of the space-frame, all the external loading forces are coupled 

through a global coupling bond that defines the equilibrium conditions as constraints on the 

product functionality.  This coupling bond is shown in Table 28. 

 

Table 28 Equilibrium constraint: global coupling (F1, F2, F3, F4, F5, F6) 

Functionality Entity 
Coupling 
operands (O1j) 

O11  =  (F1); O12  =  (F2); O13  =  (F3); O14  =  (F4); O15  =  (F5); O16  =  
(F6) 

Attributes (A1q) A1i1 = |F|, A1i2 = dir, A1i4 = applic point 
Coupling Bond 
Relations (X1) 

Force Constraints: 
C1 : = { 0=∑

∀X
kF  |  0532 =++ FFF } 

C2 : = { 0=∑
∀Y

kF  |  0641 =++ FFF } 

Moment Constraints: 
C3 : =  { }∑∑∑∑ ==== 0;0;0|0 CBAk MMMM   

Functionality-
form Mapping 
(F1) 

 

 

 

Computer implementation 

Screen captures of the computer implementation of the functionality model for the space-

frame structure is shown in Figure 80 to Figure 83.  Figure 80 is the start-up screen of the Visio 

interface for inputting the name of the functionality operation.  .  Figure 81 is a screen capture of 

a wire frame model of the Crossbeam solid operand.  Figure 82 is a screen capture of the 

operand interaction graph of the space-frame. Figure 83 is a screen capture of a wire frame 

model of the coupled solid operands. 
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Figure 80 Dialog box showing the start-up screen of the Visio interface 
 
 
 

 

Figure 81 Screen capture of a wireframe model of the crossbeam solid operand 
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Figure 82 Screen capture of the space-frame operand interaction graph 
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Figure 83 Screen capture of a wireframe model of the coupled solid operands 

 
 

STEP IV: Propagation of functionality model to detailed design 

The model developed in Step III is now represented in an XML data file (forming what 

is called the functionality signature).  This XML file (containing information on the conceptual 

form and functionality constraints) is propagated to the detail design phase.  In the detail design 

system, where the complete solid CAD model is developed and then evaluated against the 

functionality constraints embedded in the XML data file. 
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6.3.3 Evaluation of Application of Methodology 

The functionality-based design (FbD) methodology developed in this research is used to 

specify the desired product task (functionality) to be accomplished by a designed product.  

These tasks were defined (in terms of required resources (operands) and functionality constraints 

and engineering relations as shown) in Table 12 through Table 28.  The model developed for the 

space-frame is validated by evaluating how efficiently it captures the original functional 

objectives of the product. To accomplish this, the set of functionalities of the space-frame is 

examined.  Each of these functionalities is evaluated against the propagated functionality 

constraints to demonstrate that the satisfaction of the constraints will guarantee the 

accomplishment of the design goal as captured by the functionality definition. 

 

1. Maintain structural integrity; 

2. Provide support; and  

3. Provide load bearing. 

 

Maintenance of structural integrity 

The structural integrity of the space frame is realized only if the conditions of 

equilibrium (stability) are satisfied.  This condition implies the following functional 

requirements: 

 

• the beams (solid operands) used in the design should have enough strength to withstand 

all the external forces that impact the space frame;  

• that the sum of all the external forces and moments on the space frame is zero. 
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To guarantee a satisfaction of the above functional requirements, the following specific 

constraints were developed during the functionality modeling and then propagated to the 

detailed design phase through the XML data. 

 

• The various coupling bonds between FORCE and SOLID operands (x13, x14, x15, x16, x27, 

x28) stipulate that the strength of any selected material and the corresponding geometric 

feature must exceed the required internal forces necessary to overcome the impacting 

external forces (F1, F2, F3, F4, F5, F6).  Since this requirement is modeled as a constraint 

and propagated to the detail design phase, it is available to the design system in a 

transparent manner, ensuring that its satisfaction will guarantee the realization of 

functional requirement #1. 

• The global coupling bond on the external forces (F1, F2, F3, F4, F5, F6) has as its 

coupling constraint that the equilibrium conditions are met.  This condition states that the 

equilibrium conditions for the forces FX and FY in the coordinate directions and the 

moments Mx and My acting about these coordinates give: 

∑∑ == ;0;0 YX FF  

∑∑ == ;0;0 yx MM  

 

As these constraints are also propagated to the downstream design stage, there 

satisfaction will guarantee the realization of the structural integrity functionality objective of the 

space-frame. 
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Provision of support as in mounting points 

The functionality of providing support for other components of the car is realized is only 

if acceptable mounting points are provided in the final design. This functionality implies that the 

space frame is made of a suitable material that is compatible with the attached components and 

that the mounting points are properly positioned to support the mounts. 

To guarantee a satisfaction of the above functional requirements, the following specific 

constraints were developed during the functionality modeling and then propagated to the detail 

design phase. 

 

• Two solid operands (cross-beam and tee-beam) coupled are used to provide the 

mounting points.  These operands correspond to actual physical rigid bodies to which the 

components are attached.  Appropriate constraints imposed on the possible forms of the 

solids are expressed in the form of constraints (Table 12, Table 13, Table 21 – Table 27). 

• The mounting points are defined as functional markers in the SOLID operands 

corresponding constraints imposed on their position and orientation to guarantee that the 

correct spatial relationships are maintained by the final design for the support of the 

mounts. 

• To ensure that the selected material is compatible to the mounts, a material type 

constraint is imposed on the solid operands.  This constraint restricts the material type to 

ALUMINIUM. 
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Since these constraints are also propagated to the downstream design stage, there 

satisfaction will guarantee the realization of the support functionality objective of the space 

frame component. 

 

Provision of load bearing task. 

The load bearing functionality is realized is only if acceptable stress bearing components 

with appropriate support points are provided in the final design. This functionality implies that 

the space frame is made of a suitable material that is capable of withstanding any external load it 

is subjected to.  Analysis of the external forces (Table 14 - Table 19) shows that the maximum 

expected resultant external force ranges from 0 N (F1) to 50,000 N (F4). 

To guarantee a satisfaction of the above functional requirements, the following specific 

constraints were developed during the functionality modeling and then propagated to the 

detailed design phase through the XML data exchange. 

 

• The strength of the various SOLID operands where expressed as constraints for both the 

normal and shear stresses of the operands.  However, since the stress specification of a 

solid is related to the geometry (cross-sectional area), this requirement is hence defined 

as a constraint related to the specific geometric form of the product.  The internal forces 

are as a result of reaction to external forces (F1, F2, F3, F4, F5, F6) on the solid operands. 

• Another constraint that ensures that the load bearing is achieved is the spatial 

relationship requirement that specifies the orientation and location of the load bearing 

components.  This constraint is expressed as coupling relations imposed on the 

functional markers and joint coupling operation. 
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Since these constraints are also propagated to the downstream design stage, there 

satisfaction will automatically guarantee the realization of the support functionality objective of 

the space frame component. 

An experiment is designed to validate and demonstrate how functionality constraint can 

be used to verify design parameters in an integrated product development environment. This 

experiment involves the use of ANSYS analysis package to perform finite element analysis on 

sample designs to verify that the normal strength constraints are satisfied by the proposed 

design.   

The procedure used for this analysis is to subject two designs (each with different design 

parameter – beam thickness) to the expected maximum normal loading forces to determine its 

compliance to the strength functionality constraint.  The CAD model of the test model is shown 

in Figure 84.  The first variation of the design is referred to as Design I, while the second design 

is referred to as Design II.  The two beams (cross-beam and tee-beam) have uniform cross-

sectional areas.  Design I has a beam thickness of 2.5 mm and cross-sectional area of 675 mm2.  

Design II has a beam thickness of 0.75 mm and cross-sectional area of 207.75 mm2.   

Both beams are designed with aluminum alloy material.  The yield strength (Sy) of this 

material under normal loading is 280.00 N/mm2.  Using the functionality strength constraint 

listed in Table 12 and Table 13, the maximum allowable normal stress (Sallow) for the two 

designs is given by: 

 

Sallow  = 0.6 Sy 

 = 0.0 x 280 = 168 N/mm2 
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Figure 84 CAD model of test design 

 

 

Consequently, the normal stress in the beams should not exceed this value (168 N/mm ) 

for the design to be functionally acceptable.  The ANSYS finite element analysis (FEA) package 

is used in the analysis of the normal stresses.  Each design is tested under three different loading 

conditions to evaluate the resulting normal stress distribution in the beams.  The loading 

conditions are shown in Appendices A.1 – A.4. 

2
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The ANSYS result shown in Table 29 shows the maximum normal stress on the beams.  

The result of the ANSYS analysis in shows that while Design I was able to sustain the maximum 

expected external load, Design II exceeds the defined stress limit (might breakdown under this 

loading condition) under test condition #3.  A complete listing of the result of this analysis is 

shown in Appendix A. 

 

 

Table 29 ANSYS test result showing maximum normal stress in space-frame 

Design Test condition #1 Test condition #2 Test condition #3 

Design 1  

(max stress – N/mm2) 
40.41 39.30 92.41 

Design 2  

(max stress – N/mm2) 
124.73 121.11 279.23 

 

 

While this demonstration is manual, an integration of the functionality-based design 

procedure developed in this research in to CAD and analysis packages can help provide support 

for an automated verification of product functionality, which is not presently supported in CAD 

systems. 

 

Benefits compared to the commercial CAD packages 

The commercial CAD systems have evolved into powerful designer aid in the 

development of mechanical products.  The common CAD systems including AutoCad, 
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Solidworks, ProE, and Catia, are considered as the state-of-the-art in the product design 

community.  These CAD systems are compared to the capabilities of an FbD-based system as 

outlined in Section 6.3.2 for evaluation and validation of the functionality modeling 

methodology.  The result of this comparison is summarized in Table 30.  The tabulation shows 

that the FbD methodology provides support for the modeling and propagation of product 

functionality as constraints through its XML file propagation system.  This support allows down 

stream design systems to access product functionality data for better integration and decision-

making purposes.   

 

Table 30 FbD capability versus Existing Commercial CAD Systems 

Comparison measure Commercial CAD systems 
(AutoCAD, Solidworks, ProE, 
and Catia) 

FbD Methodology 

Mathematical representation of 
product function 

Not available Supported  

Function to concept bridge Limited support (QFD, axiomatic 
design, etc) 

Supported 

Functionality constraint 
representation 

Limited support (e.g. feature-
based design) 

Supported 

Link between function and form Not supported Supported 
Propagation of function to detail 
design 

Not supported Supported 

Transition from concept to detail Limited support (e.g. Pro-D from 
PTC) 

Supported 

Provision of mechanism + data 
for automatic function 
verification and enforcement. 

Not supported Supported (through 
XML data) 
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7.0   CONCLUSION AND FUTURE WORK 
 

7.1 Conclusion 

 

This research provides a methodology to support computer-aided conceptual design.  It 

provides a methodology for mapping product needs in the form of problem statements and 

preferences through functional requirement analysis into a functionality model describing all the 

functional aspects of a design that could solve the original problems.  The functionality model 

provides a description of the product in the form of functionality relations and constraints 

imposed on the physical resources used in the realization of the given task.  New modeling 

concepts in the form of operands and coupling bonds were introduced in the modeling of 

product functionality.  The resources required to accomplish a function have been described in 

the form of functionality operands.  The relations and constraints are defined in terms of 

coupling bonds.  A generic model of product functionality has been developed to describe 

functionality in a mathematical form. 

The concepts developed in this work have been demonstrated in a computer system. This 

demonstration was accomplished by building a customized functionality-modeling engine in a 

Microsoft Visio platform.  Specifically, the following computer tools have been developed to 

support functionality-based design for mechanically engineered products:  

 

• Functionality modeling toolkit implemented by customizing and automating master 

shapes, stencils and drawing functions in a Visio graphic design environment. 

• Special graphic user interfaces were developed to provide an interactive environment for 

the modeling of product functionality. 
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• Functionality constraint modeling tools were developed to extract constraint information 

from the functionality components. 

• Functionality data structure was created using object modeling approach.  This data 

modeling approach provides an easy and flexible means of managing functionality 

information.  

• Functionality data propagation to downstream design activities has been enabled by the 

use of an XML data representation schema developed in this work for functionality 

propagation and exchange. 

 

The methodology developed in this research allows CAD systems to capture and model 

product functionality during conceptualization.  Hence, it possible to impose product 

functionality as a set of design constraints that may be used during the detailed design and 

analysis phase of the product.  This work will help designers to ensure that the original design 

intents are maintained throughout the design process. It also serves as an interface tool between 

the conceptual design phase and detailed design phase of a product. 

The integration of the functionality-based design tool with CAD systems (solid 

modelers) will support the re-use of past design experiences and knowledge. The development 

of functionality-based design system will significantly reduce the product development time and 

the associated costs.  This is possible because the functionality constraints propagated to detail 

design phase can be used to evaluate design proposals in a transparent manner, thereby avoiding 

the need for the usual iterative design and analysis process and the associated overhead cost and 

time. 
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Functionality modeling can support product issues such as safety and reliability.  The 

reliability of a product requires that it perform the primary task without failures.  Safety, on the 

other hand, ensures that the operation of the product does not result in an injury to its operators, 

users, or other people. The inclusion of operational requirements of a product as functionality 

constraints in the functionality model ensures that a reliable and safe design is produced, as it 

must satisfy the functionality constraints that guarantee the desired level of reliability and safety.  

Reliability and safety inclusion in the functional requirement, however, would require an 

understanding of factors that impact product reliability and safety.  These factors are then 

mapped into functionality elements in terms of operands (and corresponding attributes) and 

coupling relations (coupling bonds). 

The proposed functionality-based design procedure provides a framework that allows a 

designer to carry out conceptual design with the aid of a computer.  It will also serve as an 

interface tool between the conceptual design phase and detailed design phase of a product.  The 

result of this research will be integrated into the Pegasus [10] designer platform. 

 

7.2 Future Work 

 

This research provides the basic structure and methodology for functionality-based 

design. Future research will extend the set of operands developed in this work to include all 

material and energy operands.  It is also possible to extend the result of this work to the design 

of other engineering products (other than the current restriction to mechanical devices).  The 

proposed functionality verification scheme can be incorporated into solid CAD modelers.  This 
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verification scheme may be extended and used for decision-making in the selection of 

competing design proposals from bidders (say in a supply chain environment). 

The computer implementation has been used to demonstrate the concepts developed in 

this work.  There are obvious limitations on the computer toolkit developed in this work.  It is 

restricted to modeling product functionalities that may be captured in 2-dimentional coordinate 

modeling environments.  Future work on this project may extend this to capture 3-dimensional 

objects.  Other possible extensions include the provision of functionality state modeling tools 

and the provision of more functional markers (to cover shapes such as rectangles, circles, etc) 

instead of the current implementation that is restricted to points, lines, and curves. 

Functionality states were not included in the computer implementation of this work.  A 

future extension of this work will extend the scope of the operand states covered from two to 

continuous states.  A computer implementation to support functionality states will also be part of 

the future extension of this work. 

Finally, another possible extension of this work is the provision of real design repository 

in computer system covering the basic mechanical primitives discussed in this work.  This 

extension will actualize the proposed advantages of reusable design knowledge. 

 

 

7.2.1 Integration with CAD System 

The functionality-modeling support may be integrated into commercial CAD systems by 

the use of attribute XML form tags.  These form tags are unique attribute identification number 

(attribute ID) assigned to each functionality model element (including, coupling bonds, operand 

and associated functional markers).  These numbers when propagated to a CAD system informs 
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the detailed CAD system of the solid components and their corresponding features that need to 

be instantiated to build a solid model for the propagated functionality model.  The detailed CAD 

system (designer) creates solid models that correspond to each of the propagated attribute ID.  

Hence, the “attribute IDs” are incorporated into the XML data file that is propagated to the 

CAD. 

For instance, the implementation of this in ACIS kernel would require the use of a 

special customization feature provided in ACIS [87] architecture to support definition of user 

assigned attributes. ACIS is an object-oriented three-dimensional (3D) geometric modeling 

engine from Spatial Technology Inc. [88] It is designed for use as the geometric foundation 

within virtually any end user 3D modeling application. The ACIS model representation consists 

of various geometric and topologic entities, as well as attributes that may be attached to the 

entities.  The model is implemented in C++ using a hierarchy of classes. All geometric entities 

specified in the XML data are linked to solid model. In ACIS solid model, attribute ID is used as 

a linkage tag. This functionality model’s XML data goes together with geometric data (solid 

model) in functionality data transitions. It allows functionality information to be persistently 

captured in a CAD design environment.      

Hence, functionality is attached to the solid components as attributes just as geometric 

information is done. During design verification, the system may simply invoke the attributes and 

compare them with that of the actual designed product (solid CAD model). 
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7.2.2 Extension to Commercial Product Level 

The work in this research has been focused on the development of modeling concepts 

necessary for the representation of product functionality in CAD systems.  The implementation 

has been restricted to demonstration of the concepts developed in this research.  To advance the 

functionality-modeling tool to a commercial product level, the following additional 

improvements need to be performed. 

 

• A special API to handle the use of XML tags as means of propagating functionality 

information to CAD systems needs to be developed to enable integration with other design 

tools. 

• The FbD tools need to be integrated [*] with existing CAD and analysis systems in such a 

way that transparent functionality verification and propagation are supported. A standard 

communication protocol needs to be developed to enable interoperability of the design 

tools. 

• Support for functionality states should be implemented in computer system for all types of 

states ranging from discrete to continuous states. 

• The computer implementation of the functionality-modeling tool should be extended to 

support three-dimensional (3-D) models. 

• An extension of the supported operands is necessary to cover operands such as gases, 

liquids, electrical, chemical, thermal, electrical, magnetic, acoustic, radioactive, chemical, 

biological, optical, hydraulic, or pneumatic energy source. In addition, the solid operand 

should be extended to cover deformable solids. 

                                                 
* See discussion on FbD – CAD integration, Section 7.2.1. 
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• There is a need to develop a verification mechanism to be supported by existing analysis 

packages such as ANSYS, [89] ADINA, [90] CFX, [91] etc.  For this to be accomplished, it is 

necessary to work in collaboration with the software companies that developed these 

packages to evolve a standard specification mechanism to allow for transparent analysis of 

product functions. 

• The computer graphic capability needs to be improved by implementing the system as an 

independent package (that is outside of Visio environment).  Alternatively, its capability in 

Microsoft Visio 2002 may be improved by working in close collaboration with Microsoft 

Inc. to achieve extensive customization without compromising the processing speed. 

• Provision of a design repository to serve as a knowledge-base containing prototype 

functionality models from which as user may select objects and then customize them for 

their specific needs. 

• Inclusion of decision-making support will enable the system to suggest design alternatives 

in case of design violation during functionality verification. 
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APPENDIX A 
 
 
 
 

ANSYS FINITE ELEMENT ANALYSIS RESULT 
 

Software Used: ANYSIS DesignSpace 6.1  
 

A.1 Definition of Aluminum Alloy 

Table 31 "Aluminum alloy" properties 

Name Type Value Temperature 

Modulus of Elasticity Temperature-Independent 71,000.0 MPa   

Poisson's Ratio Temperature-Independent 0.33   

Mass Density Temperature-Independent 2.77×10-6 kg/mm³   

Coefficient of Thermal Expansion Temperature-Independent 1.7×10-5 1/°C   

Thermal Conductivity Temperature-Dependent 0.11 W/mm·°C -100.0 °C 

Thermal Conductivity Temperature-Dependent 0.14 W/mm·°C 0.0 °C 

Thermal Conductivity Temperature-Dependent 0.17 W/mm·°C 100.0 °C 

Thermal Conductivity Temperature-Dependent 0.18 W/mm·°C 200.0 °C 

 

Table 32  "Aluminum alloy" stress limits 

Name Type Value 

Tensile Yield Strength Temperature-Independent 280.0 MPa 

Tensile Ultimate Strength Temperature-Independent 310.0 MPa 

Compressive Yield Strength Temperature-Independent 280.0 MPa 

Compressive Ultimate Strength Temperature-Independent 0.0 MPa 

Description: "6061-T6 aluminum. Fatigue properties come from MIL-HDBK-5H, page 3-277."  
"Aluminum Alloy" contains nonlinear data for thermal conductivity. 
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A.2 Test Condition 1 

Table 33 Model : parts 

Name Material Bounding Box (mm) 

"Part 1" "Aluminum Alloy" 70.0, 70.0, 1,180.0 

"Part 2" "Aluminum Alloy" 650.0, 70.0, 70.0 

 

Table 34 Contact conditions 

Name Behavior Associated Parts 

"Contact Region" Bonded "Part 2" and "Part 1" 

 

 
Figure 85 Loading condition for test condition 1 

Table 35 Structural loading 

Name Type Magnitude Associated Parts 

"Force" Surface Force 50,000.0 N "Part 1" 

Table 36 Structural supports 

Name Type Associated Parts 

"Fixed Support" Fixed Surface "Part 1" 

"Fixed Support 2" Fixed Surface "Part 2" 
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A.3 Test Condition 2 

Table 37 Model : parts 

Name Material Bounding Box (mm) 

"Part 1" "Aluminum Alloy" 70.0, 70.0, 1,180.0 

"Part 2" "Aluminum Alloy" 650.0, 70.0, 70.0 

Table 38 Contact conditions 

Name Behavior Associated Parts 

"Contact Region" Bonded "Part 2" and "Part 1" 

 
 

 
Figure 86 Loading condition for test condition 2 

Table 39 Structural loading 

Name Type Magnitude Associated Parts 

"Force" Surface Force 50,000.0 N "Part 1" 

Table 40 Structural supports 

Name Type Associated Parts 

"Fixed Support" Fixed Surface "Part 1" 

"Fixed Support 2" Fixed Surface "Part 2" 
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A.4 Test Condition 3 

Table 41 Model : parts 

Name Material Bounding Box (mm) 

"Part 1" "Aluminum Alloy" 70.0, 70.0, 1,180.0 

"Part 2" "Aluminum Alloy" 650.0, 70.0, 70.0 

Table 42 Contact conditions 

Name Behavior Associated Parts 

"Contact Region" Bonded "Part 2" and "Part 1" 

 

 
Figure 87 Loading condition for test condition 3 

 

Table 43 Structural loading 

Name Type Magnitude Associated Parts 

"Force" Surface Force 50,000.0 N "Part 2" 

Table 44 Structural supports 

Name Type Associated Parts 

"Fixed Support" Fixed Surface "Part 1" 

"Fixed Support 2" Fixed Surface "Part 1" 

"Fixed Support 3" Fixed Surface "Part 1" 
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A.5 Result of Design 1, Test condition 1 

 
 

 
Figure 88 Normal stress distributions for design 1, test condition 1 

 
 

Table 45 Structural results 

Name Scope Orientation Minimum Maximum Alert Criteria 

      

"Normal Stress" All Parts In "Model" World X Axis -40.41 MPa  25.74 MPa  None 
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A.6 Result of Design 1, Test condition 2 

 

 
Figure 89 Normal stress distributions for design 1, test condition 2 

 
 

Table 46 Structural results 

Name Scope Orientation Minimum Maximum Alert Criteria 

      

"Normal Stress" All Parts In "Model" World X Axis -39.3 MPa  14.71 MPa  None 
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A.7 Result of Design 1, Test condition 3 

 

 
Figure 90 Normal stress distributions for design 1, test condition 3 

 
 
 

Table 47 Structural results 

Name Scope Orientation Minimum Maximum Alert Criteria 

      

"Normal Stress" All Parts In "Model" World X Axis -92.41 MPa  0.0 MPa  None 
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A.8 Result of Design 2, Test condition 1 

 
 

 
Figure 91 Normal stress distributions for design 2, test condition 1 

 
 
 
 

Table 48 Structural results 

Name Scope Orientation Minimum Maximum Alert Criteria 

      

"Normal Stress" All Parts In "Model" World X Axis -124.73 MPa  86.51 MPa  None 
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A.9 Result of Design 2, Test condition 2 

 
 

 
Figure 92 Normal stress distributions for design 2, test condition 2 

 
 
 
 

Table 49 Structural results 

Name Scope Orientation Minimum Alert Criteria 

      

"Normal Stress" All Parts In "Model" World X Axis -121.11 MPa  48.46 MPa  None 

Maximum 
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A.10 Result of Design 2, Test condition 3 

 

 
Figure 93 Normal stress distributions for design 2, test condition 3 

 

Table 50 Structural results 

Name Scope Orientation Minimum Maximum Alert Criteria 

      

"Normal Stress" All Parts In "Model" World X Axis -279.23 MPa  0.0 MPa  None 
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APPENDIX B 
 
 
 
 

MODELING WITH FUNCTIONALITY PRIMITIVES 
 
 

B.1 Transformation Operation 

This functionality operation transforms or converts one mechanical operand (such as: 

force, torque, pressure, heat, etc) to another mechanical operand.  For example, force to torque, 

force to deformation/strain (effect), force to linear displacement, and torque to angular 

displacement. The transform operation has three components (A, B, and C) as shown in Figure 

94. 

• A is the Source Operand 

• B is the Target Operand 

• C is the Transform Operator defining the nature of A-B interaction 

These components and their corresponding attributes are identified during the initial 

requirement analysis of the function.  

CA B
 

Figure 94 Transform operation 
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The source and target operands identified during the functional requirement phase are 

specified at design time by selecting from any of the functionality oparands.  Hence, one might 

select FORCE as the source operand and TORQUE as the target operand.  This decision will 

automatically invoke the attributes corresponding to FORCE and TORQUE operands.  This 

approach thus ensures that the designer is aware of all the relevant factors that might influence 

the functionality of the design. 

The transform operator defines the relevant coupling bond necessary to achieve the A-to-

B transformation operation.  This coupling bond includes the set of DoFs, constraints, and the 

functional relations necessary to achieve the desired transformation task.  The designer is 

allowed to also define some custom relations involving the attributes and the functional features 

of the operands.   

Additional operands that might be required to achieve the transformation are also defined 

for the operation.  For the case of FORCE to TORQUE transformation, a MATERIAL 

MEDIUM is necessary to realize this functionality as shown in Figure 95 and Table 51. 

 

TORQUE
MEDIUM - SOLID

FORCE

turning
direction

 

Figure 95 FORCE to TORQUE transformation functionality operation 
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Table 51 Force to torque transformation functionality operation 
<source operand> FORCE Attributes of FORCE. 
<target operand> TORQUE Attributes of TORQUE. 
<operator> <additional operands> MEDIUM - SOLID 
 <relations>  

 
T = F x L; where, L is MEDIUM attribute;  
Spatial relations between operands. 

 <constraint>  {MEDIUM: strength, functional markers, 
length}{FORCE: magnitude, direction}{TORQUE: 
magnitude, direction} 

 <dof> Defines movement restrictions on: MEDIUM, FORCE, 
TORQUE 

 

B.2 Transmission Operation 

This functionality operation conveys a mechanical operand from one point to another.  

This primitive has a positional component associated with it.  It does not change the nature of an 

operand, but merely changes its spatial location in space.  Examples include: force transmission 

along a beam, power transmission of an automobile shaft, torque transmission of a pump 

spindle, and pressure transmission in a pipe.  Other examples that are outside the scope of this 

work include: electromagnetic transmission, sound transmission, and thermal transmission. The 

transmission operation has three components (A, B, and C) as shown in Figure 96. 

A: Source Operand 

B: Target Operand 

C: Transmission Operator:  A-B interaction 
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C
BA

 

Figure 96 Transmission operation functionality 

 
 

The components of transmission functionality together with their corresponding 

attributes are identified during the initial functional requirement analysis of the function.  The 

source and target operands are specified at design time by selecting from any of the 

functionality oparands.  Hence, one might select FORCE as the source operand and FORCE′ as 

the target operand.  This decision will automatically invoke the attributes corresponding to 

FORCE and FORCE′ operands.  This approach thus ensures that the designer is aware of all the 

relevant factors that might influence the functionality of the design. 

The transmission operator defines the relevant coupling bond necessary to achieve the 

A-to-B transmission operation.  The coupling bond includes the set of DoFs, constraints, and the 

functional relations necessary to achieve the desired transformation task.  The designer is 

allowed to also define some custom relations involving the attributes and the functional features 

of the operands.   

Additional operands that might be required to achieve the transformation are also defined 

for the operation.  For the case of FORCE-to-FORCE′ transformation, a MATERIAL MEDIUM 

is usually necessary to realize this functionality.  Force transmission results in displacement, 

loading, stress, strain, pressure, etc.  For each transmission element, the system invokes the 

corresponding attributes that may be imposed as constraints.  Consequently, for a force 

250 



 

transmission element, we will have attributes such as mode of application, point of application, 

nature of force (impact, steady, or random loading), and associated transformation. 

As an illustration, consider as case of MATERIAL-to-MATERIAL transmission 

functionality operation.  This transmission operation conveys or relocates a MATERIAL 

operand from one point to another.  Thus, it effects the spatial displacement of a material.  This 

material transmission functionality is commonly known as motion function.  For example, 

Figure 97 (and Table 52) shows a SOLID material BLOCK conveyed from point A1 to point 

A2. 

 

BLOCKA2BLOCKA1

XYZ

Point A1 Point A2
 

Figure 97 Solid transmission functionality example 

 
 

Table 52 Solid transmission functionality operation example 
<source operand> SOLID: BLOCK Attributes of BLOCK solid operand. 
<target operand> SOLID: BLOCK Attributes of BLOCK solid operand. 
<operator> <additional operands> - FORCE (weight, friction and applied forces) 

- MEDIUM / trajectory. 
 <relations>  

 

 <constraint>  {MEDIUM - trajectory: strength, length}{FORCE: 
magnitude, direction}{BLOCK: solid material attributes} 

 <dof> Defines movement restrictions on: MEDIUM, FORCE, 
BLOCK 

• Force and motion equations; 
• Frictional relations; and  
• Spatial relations 
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B.3 Joint Operation 

Retains/maintains an absolute or relative position of functionality operands (holds two or 

more entities in relative position).  This is usually achieved by exerting a retentive (restricting) 

force on operand or/and resisting dissociating forces.  The joint operation has three components 

(A, B, and C) as shown in Figure 98. 

A: First Operand 

B: Second Operand 

C: Joint Operator: A-B interaction 

 

CA B
 

Figure 98 Joint functionality operation 

 

The components and their corresponding attributes are identified during the initial 

functional requirement analysis phase of the function.  The first and second operands need to be 

specified at design time by selecting from any of the operands.  These operands are usually 

SOLID material operands that need to maintain a given spatial relation with each other.  It is 

possible to extend the concept of joint functionality beyond MATERIAL operands to include 

energy operands.  However, in this work description of joint operation is limited to SOLID 

operands.  Hence, one might select two solid operands as the A and B components of the joint 

functionality.  The selection of A and B operand will automatically invoke the attributes 

corresponding to selected solid operands. 
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The joint operator defines the relevant coupling bond necessary to achieve the A-to-B 

joint operation.  The coupling bond includes the set of DoFs, constraints, and the functional 

relations necessary to achieve the desired joint task.  The designer is allowed to also define some 

custom relations involving the attributes and the functional features of the operands.   

Additional operands that might be required to achieve the joint operation are also defined 

for the operation.  A joint functionality is usually realized by the inclusion of some additional 

operand or operand mechanisms necessary to spatially maintain the specified DoF. 

Some functional considerations necessary for the definition of the joint functionality 

design are: 

 

� Consideration of the type of loading, such as shear and tension, to which the structure 

will be subjected and the size and spacing of holes. 

� Compatibility of the fastener material with the components to be joined is important.  

Incompatibility may lead to galvanic corrosion and crevice corrosion. 

� Nature of expected dissociating forces:  steady, random, vibration, impulsive, etc. 

In specifying the joint functionality operation, the class or type of joint required is 

usually determined by the desired spatial relation and degree of freedom of the operands 

(coupling components).  Two broad classes of joints are available: hard and soft joints. 

� Resistance force: effect and reaction of force 

� Desired spatial relation and the degree of freedom restriction requirements. 
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� Hard joint from hard fastening:  A fixed DoF is maintained between the coupled 

operands.  Hence, no relative motion is allowed between the fastened parts.  Examples of 

hard joints are formed by welding, screw, glue, and rivets processes. 

� Soft joint from soft fastening:  When a fixed DoF is not necessary between the operands, 

a soft joint option is an option.  Here, operands are joined together so that relative motion 

between these two parts is consistent.  Soft joints are used to create movable joints, such 

as hinges, sliding mechanisms for drawers and doors, and adjustable components and 

fixtures.  Examples of such joints include revolute joint, cylindrical joint, spherical joint, 

prismatic joint, helix, and plane joints. 

 

In terms of reversibility of the joint operation, two classes of joints are available: 

o Permanent / Semi-Permanent joint:  welding, glue, rivets, etc. 

o Reversible (fastening) Joint: Used to join two or more components in such a way 

that they can be taken apart sometime during the product’s service life.  

Examples: clips, threaded fasteners, rivets, metal stitching, seaming, crimping, 

and clamping. 

As an illustration of joint functionality operation, consider as case where two SOLID 

operands (steel beams) are brought together to form a tee-joint using the joint functionality 

operation.  This joint operation maintains the two operands in a fixed spatial relation with 

respect to each other.  Thus, it maintains the spatial location of the material operands. 
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B.4 Load bearing Operation 

Bear loads exerted by mechanical operands by resisting displacement/deformation forces 

without exceeding a maximum deformation limit, thus maintains a state of stability for the 

mechanical operands.  The load bearing functionality operation has three components (A, B, and 

C) as shown in Figure 99. 

A: Source Operand (Load) 

B: Target Operand (Base) 

C: Load bearer Operator: A-B interaction 

 

B

C

A

 

Figure 99 Load bearing functionality operation 
 

The source operand (A) is the operand that provides the load that needs to be resisted.  

Load is expressed in terms of force.  This source of loading force could be because of the weight 

of a solid (material) operand or as a result of application of an external force.  Whatever the 

nature of this force, its attribute is captured by its properties and any associated solid operands.  

Other issues that need to be considered include: 

� Nature of loading: steady, impulse, random, vibration 

� Position and orientation of load (vertical, horizontal, or inclined) 
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The target operand (B) is the operand that provides the resistance to the applied loading.  

Hence, it provides conditions necessary to maintain stability or equilibrium.  In this work, this 

operand is limited to SOLID operands.  A future extension of this set could include the use of 

energy operands such as the forces provided by electromagnetic systems to bear load.  The usual 

attribute set of SOLID materials needs to be defined for this operand.  In particular, the strength 

and elastic properties should be such that it can withstand the type of loading it is subjected to.  

The load-bearing operator defines the relevant coupling bond necessary to achieve the A-

to-B load bearing operation.  The coupling bond includes the set of DoFs, constraints, and the 

functional relations necessary to achieve the desired load-bearing task.  The designer is allowed 

to also define some custom relations involving the attributes and the functional features of the 

operands. Spatial relations need to be defined with respect to operands A and B.  This spatial 

relation determines some other factors such as: nature of the load (tensile, compressive, 

torsional, and shear loading), bending moments, stress, strain.  In addition, the required DoF of 

the load and its interaction with the base defines the issues related to support and stability. 

As an example, consider the design of a shelf that supports stacks of books by providing 

a load bearing functionality operation.  This functionality operation ensures that the books 

placed in the shelf are retained by resisting the weight (loading force) exerted by the books. In 

this example, component A is the stack of books, component B is the shelf (SOLID operand) 

that served as a base, and component C is the interaction (coupling bond) A and B. This load 

bearing operation maintains the two operands in a fixed spatial relation with respect to each 

other. 
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B.5 Energy Converter Operation 

This is a special type of transformation functionality operation occasioned by the scope 

of this work.  In this work, it is assumed that all the energy that impact mechanical product 

functionality is present in mechanical form.  For this assumption to hold, all energy sources, 

other than mechanical energy, are first applied to an energy converter, which transforms that 

energy into a mechanical form.  Thus, energy converter (a specialized transformation operation) 

is used as a primitive operation in the functionality model. 

Consequently, the energy converter transforms energy from one form to another. It has 

three components (A, B, and C) as shown in Figure 100. 

A: Source Operand: Input Energy 

B: Target Operand: Output Energy 

C: Converter Operator: A-B interaction 

CA B
 

Figure 100  Energy converter functionality operation 

 

Although energy may assume any form (mechanical, electromagnetic, etc), the only form 

that is modeled in this work is the mechanical energy (FORCE and TORQUE).  Although A and 

B components may assume any form, the scope of this work is such that either A or B 

(depending on the one directly in contact with the rest of the functionality model) must be in a 

mechanical form (FORCE or TORQUE). 
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Converter operator (C):  A lot of work has been done by physicists in determining the 

relation between various forms of energy.  In this work, no attempt is made to include the detail 

of this relation in the model.  The designer is at liberty to define the details of such relations.  

The only relevant factor in this work is an accurate description of the mechanical energy 

components (FORCE / TORQUE) that is in direct contact with the rest of the functionality 

model.  This description will typically include all the attributes of a FORCE / TORQUE operand 

(magnitude, direction, and spatial relations). 

 

B.6 Frictional Operation 

This is functionality primitive that manages frictional relations between surfaces of 

operands in mechanical systems.  It may reduce, increase or maintain mechanical friction.  The 

joint operation has three components (A, B, and C) as shown in Figure 101. 

A: First Surface (C1): functional Region of SOLID operand A 

B: Second Surface: (C2):  functional Region of SOLID operand B 

C: Friction Operator: A-B-C -F interaction 1-C2-M

Where, F is the frictional force and M is the normal load on surface C2 

F

M
C1

B

A
C2

 

Figure 101 Frictional functionality operation 
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The First and Second entities (C1 of A and C2 of B) need to be specified at design time 

by selecting two surfaces (as a functional region) from the functional marker set of any of the 

solid oparands already included in the functionality model.  The operands (A and B) are SOLID 

material operands that involve some sliding motion on the contacting surfaces.  It is possible to 

extend the concept of frictional functionality beyond SOLID MATERIAL operands to include 

GASEOUS and LIQUID operands.  However, in this work, description of frictional operation is 

limited to SOLID operands.  Hence, one might select two SOLID operands as the A and B 

components of the frictional functionality.  The selection of A and B operand will automatically 

invoke the attributes corresponding to selected solid operands.  This approach thus ensures that 

the designer is aware of all the relevant factors that might influence the functionality of the 

design. 

The friction operator defines the relevant coupling bond necessary to achieve the A-to-B 

frictional operation.  The coupling bond includes the set of DoFs, constraints (including 

frictional forces), and the functional relations necessary to achieve the desired frictional task.  

The designer is allowed to also define some custom relations involving the attributes and the 

functional features of the operands.   

� 

Additional operands or tasks (example polishing, ball bearing, lubrication, etc) that 

might be required to achieve the desired friction level are also defined for the operation.  Some 

additional functional considerations necessary for the definition of the joint functionality design 

are: 

 

� Nature of expected forces:  steady, random, vibration, or impulsive. 

Desired spatial relation and the degree of freedom restriction requirements. 
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� Frictional Heat: In sliding friction, if the frictional force F is collinear with the direction 

of the velocity V of the point of application, the amount of the friction heat generated 

while the force was applied from time t1 to t2 is: 

∫ ⋅= 2

1

t

t
VdtFQ  

If the force and velocity remain constant in time, 

 ( ) sFttFVQ ∆=−= 12  

  Where, 

      ∆s is the distance traveled at constant velocity 

� Amonton’s law demands that friction force is: 

nFF µ=  

where, 

Fn = normal force compressing the two rubbing solids 

µ =  constant (friction coefficient, depends only on material and surface) 

 
Similarly, if constant friction torque T is applied to a solid rotating at an angular velocity 

w, during a time interval t ∆θ = w(t2 – t1 or angle of rotation 2 – t1), the heat generated is: 

( ) θ∆=−= TttTwQ 12  

 

B.7 Offset Operation 

Maintain a specified offset (distance) between entities by providing obstruction to 

disallowed motion. This might invoke sub-functions such as fastening and load-bearing 

functionalities. This is usually achieved by exerting a retentive (restricting) force on entity 
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or/and resisting dissociating forces.  The offset operation has three components (A, B, and C) as 

shown in Figure 102. 

A: First Operand 

B: Second Operand 

C: Offset Operator: A-B interaction 

 

A B
C

 
Figure 102 Offset functionality operation 

 
 
The First and Second operands are specified at design time by selecting from any of the 

operands already included in the design tool.  These operands are usually material operands that 

need to maintain a given spatial offset relation with each other.  It is possible to extend the 

concept of offset functionality beyond MATERIAL operands to include energy operands.  

However, in this work, description of offset operation is limited to SOLID operands.  Hence, 

one might select two material operands as the A and B components of the offset functionality.  

The selection of A and B operand will automatically invoke the attributes corresponding to 

selected solid operands. 

The offset operator defines the relevant coupling bond necessary to achieve the A-to-B 

offset operation.  The coupling bond includes the set of DoFs, constraints, and the functional 

relations (including spatial relations) necessary to achieve the desired offset task.  The designer 
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is allowed to define some custom relations involving the attributes and the functional features of 

the operands.   

Additional operands that might be required to achieve the offset operation are also 

defined for the operation.  An offset functionality is usually realized by the inclusion of some 

additional operand or operand mechanisms necessary (as separators) to spatially maintain the 

necessary offset. 

Some functional considerations necessary for the definition of the offset functionality 

design are: 

 

B.8 Channel Operation 

� Consideration of the type of loading that might be present, such as shear and tension, to 

which the offsetting operator will be subjected. 

� Nature of expected dissociating forces:  steady, random, vibration, impulsive, etc. 

� Desired spatial relation and the degree of freedom restriction requirements. 

 

As an illustration, consider as case where two SOLID operands (steel components) offset 

functionality operation.  This offset operation maintains the two operands in a fixed spatial 

relation with respect to each other. 

 
 

Provides a mechanical functionality that ensures that entities assume a desired spatial 

position. Constrains displacement along a pre-defined path by exerting reaction forces. 

Examples: guide rails, fixtures and jigs, and chamfers for assembly. 
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This is usually achieved by exerting a retentive (restricting) force on entity or/and 

resisting dissociating forces.  The channel operation has three components (A, B, and C) as 

shown in Figure 103. 

A is the channel, guide, or path enforcer. 

B is the guided or channeled operand. 

C is the channel Operator defining A-B interaction. 

 

C

B

A

 

Figure 103 Channel functionality operation 

 
 

The First and Second operands are specified at design time by selecting from any of the 

functionality operands.  These operands are usually material operands that need to maintain a 

given spatial relation with each other.  It is possible to extend the concept of channel 

functionality beyond MATERIAL operands to include energy operands (as in optical fibers).  

However, in this work description of channel operation is limited to SOLID operands.  Hence, 

one might select two components as the A and B components of the channel functionality.  The 

selection of A and B operand will automatically invoke the attributes corresponding to selected 

solid operands.  This approach ensures that the designer is aware of all the relevant factors that 

might influence the functionality of the design. 
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The channel operator (C) defines the relevant coupling bond necessary to achieve the A-

to-B channel operation.  The coupling bond includes the set of DoFs, constraints, and the 

functional relations (including spatial relations) necessary to achieve the desired channel task.  

The designer is allowed to also define some custom relations involving the attributes and the 

functional features of the operands.   

Additional operands that might be required to achieve the channel operation are also 

defined for the operation.  Channel functionality is usually realized by the inclusion of some 

additional operand or operand mechanisms necessary (as separators) to spatially maintain the 

necessary channel. 

 

B.9 Block Operation 

Block: Disallows non-permissible entrance / motions.  Examples include provision of 

insulation in electrical systems, guards in fans, etc.  Maintain a specified separation/offset 

between entities by providing obstruction to disallowed contacts. It functions by providing an 

operand as a separator.  This is usually achieved by exerting a retentive (restricting) force on 

entity or/and resisting dissociating forces.  This operation has three components (A, B, and C) as 

shown in Figure 104. 

A: First Operand 

B: Second Operand 

C: Block Operator: A-B interaction 
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B

C

A

 

Figure 104 Block functionality operation 

 
 

The First and Second operands need to be specified at design time by selecting from any 

of the functionality operands.  These operands are usually material operands that need to 

maintain a given spatial separation and relation with each other.  It is possible to extend the 

concept of block functionality beyond MATERIAL operands to include energy operands.  

However, in this work description of block operation is limited to SOLID operands.  Hence, one 

might select two components as the A and B components of the block functionality.  The 

selection of A and B operand will automatically invoke the attributes corresponding to selected 

solid operands.  This approach ensures that the designer is aware of all the relevant factors that 

might influence the functionality of the design. 

Additional operands that might be required to achieve the guard-block operation are also 

defined for the operation.  Block functionality is usually realized by the inclusion of some 

The block operator defines the relevant coupling bond necessary to achieve the A-to-B 

block operation.  The coupling bond will include the set of DoFs, constraints, and the functional 

relations (including spatial relations) necessary to achieve the desired block task.  The designer 

is allowed to also define some custom relations involving the attributes and the functional 

features of the operands.   
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additional operand or operand mechanisms necessary (as separators) to spatially maintain the 

blocking. 
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