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ABSTRACT 

 

 The current education systems in elementary schools are usually using traditional 

teaching methods such as paper and pencil or drawing on the board. The benefit of paper and 

pencil is their ease of use. Researchers have tried to bring this ease of use to computer-based 

educational systems through the use of sketch-recognition. Sketch-recognition allows 

students to draw naturally while at the same time receiving automated assistance and 

feedback from the computer. 

There are many sketch-based educational systems for children. However, current 

sketch-based educational systems use the same sketch recognizer for both adults and 

children. The problem of this approach is that the recognizers are trained by using sample 

data drawn by adults, even though the drawing patterns of children and adults are markedly 

different. We propose that if we make a separate recognizer for children, we can increase the 

recognition accuracy of shapes drawn by children. 

By creating a separate recognizer for children, we improved the recognition accuracy 

of children’s drawings from 81.25% (using the adults’ threshold) to 83.75% (using adjusted 

threshold for children). 

Additionally, we were able to automatically distinguish children’s drawings from 

adults’ drawings. We correctly identified the drawer’s age (age 3, 4, 7, or adult) with 78.3%. 

When distinguishing toddlers (age 3 and 4) from matures (age 7 and adult), we got a 

precision of 95.2% using 10-fold cross validation. When we removed adults and 
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distinguished between toddlers and 7 year olds, we got a precision of 90.2%. Distinguishing 

between 3, 4, and 7 year olds, we got a precision of 86.8%.  

Furthermore, we revealed that there is a potential gender difference since our 

recognizer was more accurately able to recognize the drawings of female children (91.4%) 

than the male children (85.4%). 

Finally, this paper introduces a sketch-based teaching assistant tool for children, 

EasySketch, which teaches children how to draw digits and characters. Children can learn 

how to draw digits and characters by instructions and feedback. 
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1. INTRODUCTION  

 

 People have been using paper and pencil for many years for various purposes. Using 

these tools we have recorded our history, communicated with each other through letters, and 

passed down our knowledge to subsequent generations. Writing, and more generally 

sketching, has been one of the most important methods of communicating in the history 

human society.  

 With modern technology, sketching and handwriting have found new purposes as a 

form of human-computer interaction. We sign our names on tablets when we buy something 

using our credit cards at grocery stores. We jot down memos using our smartphones. We 

have even begun to use intelligent sketch-recognition based systems in computer interfaces 

for a broad range of purposes, from education, to design, to engineering . The benefit of these 

systems that support intelligent recognition of hand drawn sketches is that they allow people 

to draw and interact freely and naturally. Without sketching technology, we are limited to 

mouse and palette shapes that limit our creativity, and they also limit our domain because 

systems cannot provide all the domains we want to use. Sketching alleviates these limitations 

and also contributes to our creativity. 

 We are particularly interested in the use of sketch systems in education. There are a 

many sketch-based educational systems [29,58] that recognize children’s sketches and teach 

them how to draw shapes. However, the limitation of these systems is that the recognizers are 

trained by adults’ drawings. It is clear that the drawing patterns of children are markedly 

different from adults’, and therefore we should make a separate sketch recognizers 
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specifically built for use by children. Through the collection of sketches of ten children aged 

3-7 and the analysis of the differences between adults and children, we were able to 1) create 

a separate recognizer for children, and 2) automatically determine a sketcher’s age by their 

drawing features. 

To analyze the children’s sketches, we collected 475 sketches of simple shapes, 

digits, and characters drawn by ten children (seven 7 year-olds, two 4 year-olds, and one 3 

year-olds) and four adults. To increase the accuracy of children’s data, we analyzed the 

optimal resampling points for children and we found that different resampling point (32 

points) increased recognition accuracy from 81.25% (a threshold for adults) to 83.75%. 

Using subset selection, we found that different feature sets dominate recognition accuracy for 

children and adults. We analyzed the optimal threshold for children and adults using forty-

four features introduced by Paulson et al. [31], and we found that the shape recognition 

accuracy for children was dominated by “Percentage of strokes that passed the line test”. 

However, “The perimeter (of bounding box) to stroke length ratio” gave the best recognition 

result for adults. Additionally, we found that different gender seems to have different sketch-

recognition accuracy. During our user study, the female children gave more accuracy 

(88.5%) than the male children (77.8%). 

 Analysis of this data showed that there are several differences between adults’ and 

children’s sketches. Using these distinguishing features, we could automatically recognize 

their ages by their drawings. We were able to determine the drawer’s age (age 3, 4, 7, and 

adult) with a precision of .783, recall of .768, and an f-measure of .773. When we compared 

between toddlers (age 3 and 4) and matures (age 7 and adult), we got a precision of .952, 
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recall of .957, and an f-measure of .952 using 10-fold cross validation. When we just 

distinguished children’s ages (age 3, 4, and 7) removing adults, we got a precision of .868, a 

recall of .874, and an f-measure of .862.  Distinguishing between toddlers and 7-year olds, 

we got a precision of .902, a recall of .902, and an f-measure of .902. 

 This paper also introduces a sketch-based educational system, EasySketch, which 

teaches children how to draw digits and characters. To help children learn more easily, 

EasySketch has an agent system that acts as a virtual instructor for children. The agent 

system gives feedback whenever children draw their sketches and gives different feedback 

based on their correctness history. To keep the interest of children, we also used the sound 

system that gives different feedback sounds by their correctness history.   
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2. RELATED WORK

In this chapter, we examine sketch-recognition approaches and sketch-recognition 

based applications are examined.  

2.1 Sketch recognition 

In this section, we describe sketch recognition approaches and useful features for 

sketch recognition. Over many years of research, different approaches were proposed for 

sketch recognition: (1) the statistical feature-based approaches,  (2) the gesture based 

approaches, and (3) the geometric approaches. 

The first approach is the statistical feature-based approach. This approach analyzes 

the feature values from strokes. After retrieving the features, the recognizer determines the 

shapes by classifiers such as linear classifier or naïve Bayes. The examples are Rubine [33] 

and Long [25]. 

The second approach is the gesture-based approach. The gesture-based approach 

compares the input data with data sets, which we already have. This approach tries to 

recognize the best matched shapes for the input data. To compare each shape, the approach 

calculates the distances between input shape and the shapes in the data sets.  

Many researchers developed their algorithms with this approach. The examples are (1) the 

elastic structure matching, which uses dynamic programming [12], (2) $1 and $N recognizer 

by Wobbrock et al. [9, 46], and (3) the vision-based recognizer by Kara et al. [19]. Our 

system is based on the vision-based recognizer. The benefit of the gesture- based approach is 
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that the approach does not need to represent rules of primitives in shapes. However, the 

template-matching approach needs many data sets, which consumes many times when the 

recognizers compare the input data with data sets.  

The third approach is the geometric approach. This approach describes each shape by 

representing rules of primitives. There have been various studies that implement the 

geometric approaches. One of the examples is the LADDER system by Hammond et al. [18]. 

The benefit of the geometric approach is that it can enlarge recognizable shapes by 

representing more rules of primitives in each shape. The approaches need to have accurate 

rules for representing primitives in shapes.  

The following sections describe in more detail about these three approaches. 

2.1.1 Review of Statistical Feature-Based Approaches 

In this section, we explain various statistical feature-based approaches and useful 

primitives to describe shapes.  

2.1.1.1 Rubine and Long 

 Rubine introduced GRANDMA, a toolkit for rapidly adding gestures to direct 

manipulation interfaces [33]. Rubine defined a set of features that could be extracted from a 

stroke. The features could be used in a linear classifier to perform shape recognition. 

 Long et al. improved on Rubine’s feature set by removing correlated features and adding 

several new features [25].  
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2.1.1.2 Writing Angle 

 Writing angle is widely used for sharp point detection. The sharp point is a point where 

angle difference is larger than some threshold. The writing angle can detect a point that 

should divide a shape into two shapes. 

 The idea of writing angle is comparing angles between three points with other three 

points. If the difference of angles is larger than some threshold, the middle point in the angle 

is a sharp point.  

The equation to calculate the angle between three points is as follows: 

  a  =  (p1.x  -‐  p2.x,  p1.y  -‐  p2.y)   (2.1) 

                    b  =  (p1.x  -‐  p3.x,  p1.y  -‐  p3.y)   (2.2) 

! = arccos( a•b
| a || b |

) (2.3) 

p1 is the middle point between p2 and p3, and ! represents an angle between p1 and p3. 

Figure 2.1 shows an example of writing angle. 

Figure 2.1. Writing angle i is the sharp point. 
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2.1.1.3 Number of Strokes 

 Number of strokes can be used as a basic primitive for recognizers. For example, a 

triangle should have three lines (strokes). The benefit of number of strokes is that it can be 

easily recognized. However, if the shapes have many variances, the number of strokes can 

contribute to variance differences. Because of each person’s writing style, the same character 

can have a different number of strokes.  

 Figure 2.2 shows different forms to represent digits. Ward and Kuklinski [45] explained 

that the symbol displayed on the left in Figure 2.2 is common for North Americans, while the 

symbol on its right is widely accepted in Europe.  

 To solve the problem, Tapia proposed an algorithm that makes additional rules for 

different number of strokes, or the algorithm reduces the stroke variances by enforcing a 

fixed number of strokes per character, e.g. if the number of strokes M exceeds the given 

number N, the N-1st to Mth strokes are concatenated [37]. 

Figure 2.2. Different forms of strokes (from [45]). 
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2.1.1.4 Point Density 

 Point density recognizes shapes by analyzing distributions of points in particular areas.  

We will use the character “o”, “p”, and “b” as examples. 

• The “o” is evenly distributed in the whole areas.

• The “p” has more distribution on the higher part than the lower part.

• The “b” has more distribution on the lower part than the higher part.

To compute the distribution, a bounding box is divided vertically into three parts: the upper 

40%, the middle 20%, and the lower box of remaining 40%. The reason why the bounding 

box is divided into three rather than two is due to variances in hand-writing. 

 Figure 2.3 shows an example of the distribution of the character “p”. Oltmans’s Bulls-eye 

uses this feature to recognize shapes [28]. However, the limitation is that this feature can 

represent limited numbers of shapes and it cannot represent detailed shapes. 

Figure 2.3. Letter “p” has more density in higher part then other parts. 
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2.1.2 Review of Gesture-Based Approaches 

 This section explains various gesture-based recognition approaches. 

 

2.1.2.1 Elastic Matching 

 Chan proposed the elastic matching algorithm that recognizes shapes by finding 

minimum distances between two shapes [12]. The algorithm calculates each distance by 

comparing two continuous points in shapes. The mapping between the two sequences of 

points allows for both one-to-one and many-to-one correspondences between points. By 

using dynamic programming, there is no need for each shape to have the same point size.  

 The total distance between the ith point of the unknown character and the jth point of the 

model, D(i,j), is calculated as: 

  

The benefit of this approach is that it can be expended to other data set easily and the high 

accuracy (98.60% for digits).  Figure 2.4 shows an example of elastic matching algorithm. 
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Figure 2.4. Elastic matching (from [44]). 

 

 

2.1.2.2 $1and $N recognizer 

 Wobbrock introduced the $1 recognizer (for one-stroke shapes) [46] and the $N 

recognizer (for multi-stroke shapes) [9].  

 The $1 recognizer includes preprocessing steps for the raw data. The raw data has several 

issues as follows: 

• The number of points can be different by writing speed ratio and devices used. 

• The users can have different experiences with the devices. 

 To alleviate these problems, the preprocessing steps in the $1 and the $N recognizer 

include four steps: (1) resampling points, (2) rotating once based on the “indicative angle”, 

(3) scaling and translate, and (4) finding the optimal angle for the best score [9].  

 The difficulty of the multi-stroke is that it can have various kinds of stroke orders  
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and start, end points. Figure 2.5 shows an example of multi-strokes. The “X” has two strokes 

and each stroke has two end points.  To compare the shapes, the $N recognizer translates the 

multi-stroke shape into the one-stroke shape (Figure 2.6).  

 The accuracy of the $N recognizer is about 80-90% [9]. However, the limitation of the 

$N recognizer is that there are N2 combination for N strokes. The limitation is that the 

recognizer takes exponential time to recognize shapes, and it can limit the symbols for the 

recognizer. For example, the recognizer cannot be used to determine Japanese and Chinese 

characters, which contain multi-strokes. 

 

Figure 2.5. Letter “X” have 8 different samples (from [9]). 

 

 

Figure 2.6. Translated “X” character (from [9]). 
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2.1.2.3 Image-based (vision-based) recognition 

 Kara introduced an algorithm that uses the vision (image)-based recognition [19]. The 

problem of prior gesture-based algorithms [9, 12] is that the algorithms have difficulty if the 

shapes have different stroke orders and different start, end points.  

 The vision-based algorithm converts  the shapes into fixed pixel and compares the 

unknown shapes with data sets (Figure 2.7). The procedure includes three steps: (1) 

preprocessing,  (2) polar analysis, and (3) template-matching with four measurements (the 

Hausdorff distance, the Modified Hausdorff distance, the Tanimoto coefficient, the Yule 

coefficient). We implemented the algorithm for our application. However, the limitation of 

this algorithm is  that the  time complexity from several template-matching equations is 

high.  

 To solve the problem, we compared the four measurements and found that the single 

measurement (the Tanimoto coefficient) gives the best accuracy. We will explain our 

recognition accuracy in Section 4 and 5. 

 

Figure 2.7. Examples of symbol templates (from [19]). 
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2.1.3 Review of Geometric Approaches 

 This chapter introduces several geometric approaches. 

 

2.1.3.1 Pictorial pattern using a formal language 

 A. C. Shaw first explained pictorial patterns using a formal language: picture 

description language (PDL) [35].  PDL describes how primitives are connected. In PDL, each 

primitive has two connection points, i.e., a head and a tail. PDL uses four binary operators, 

denoted by +, -, ×, and *. Additionally, the unary operator ~ is used to express the reverse of 

a head and a tail of a primitive or a PDL expression. Figure 2.8 shows how primitives are 

connected using these four binary operators. 

 
Figure 2.8. The figures show how to express four binary operators in PDL.  
 
 
 
Figure 2.9 shows two examples, which describe the structure of the two characters, ‘F’ and 

‘P’. 
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Figure 2.9. Two examples of the character “F” and “P”. 
 
 

The advantage of PDL is that the pictorial patterns can be described by strings. However, the 

disadvantage of PDL is that the pictorial patterns can be expressed in different ways. 

 

2.1.3.2 Plex grammar 

 To solve this ambiguity, J. Feder introduced the plex grammar [15]. To overcome the 

limitation of PDL, the plex grammar allows more than two connection points. A plex 

structure has three components: 

• A list of n-attaching point entities (simply, napes), 

• A list of internal connections between napes, 

• A list of attaching points, which can be used for joining the plex structure with other 

napes or the plex structures. 
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Figure 2.10 exemplifies how the plex structure expresses the character “F” and “P”. 
 

 
 
Figure 2.10. Two examples of the character “F” and “P” using the plex structure. 
 
 
 
In primitives, the “h” means a horizontal line and respectively the “v” means a vertical line. 

The digits show how many end points are in a line. However, the plex grammar also has the 

same problem with PDL [35]. The expressions can also be expressed several ways. 

 

2.1.3.3 Freeman’s chain code 

 Freeman’s chain code is a widely used method for representing shapes [17]. The chain 

code uses the direction of each line. Chan et al. used the chain code for their elastic structural 

matching algorithm [12]. The chain code has eight values from 0 to 7, which indicates the 

direction from the current point to the next point. Figure 2.11 shows how the direction values 
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are expressed in Freeman’s chain code. The following formula describes the calculation of 

direction. 

 

                                                                  Direction = ⌊((((angle × 16)/(2 × π)) + 1)%16)/2⌋      (2.6) 

 

Figure 2.11. Directions in Freeman’s chain code. 
 
 
 
Using the directions, Chan et al. [12] described five types of primitives: 

• line 

• up (curve going counter clockwise) 

• down (curve going clockwise) 

• loop (curve joining itself at some point) 

• dot ( a very short segment) 

For example, Figure 2.12 shows an example of the digit “3”. The letter has two down 

primitives.  
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Figure 2.12. Representation of the digit “3” (from [12]). 
 

 

The limitation of this approach is that it has difficulty describing all the variances of each 

shape. For example, Figure 2.13 shows an example of variance of the digit “3”. The digit “3” 

in Figure 2.13 has two down primitives and one loop primitive, which are different primitives 

from Figure 2.12. Figure 2.14 shows the other variances of the digit “3”. To recognize the 

shapes more accurately, we need to collect all the characters’ variation and specify primitives 

in shapes. However, people have many different kinds of drawing styles. Describing all the 

variance can be time-consuming. 

 

Figure 2.13. An example of variation of digit “3”. 
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Figure 2.14. Number “3” has 10 different models (from [43]). 
 

 

2.1.3.4 LADDER Sketching Language 

 Hammond et al. introduced LADDER sketching language, which describes “A Language 

to Describe, Display, and Editing in Sketch Recognition (LADDER) [18].  

 A general purpose of LADDER is to describe how sketch diagrams for various domains 

are drawn, displayed, and edited. To recognize users’ input data, LADDER recognizes the 

primitives of input data such as a line or an ellipse. After recognizing the primitives, 

LADDER represents geometric rules for shapes. 

 There are applications that use LADDER for their recognition system. For example, Paul 

et al. implemented an educational system for teaching how to draw East Asian character sets 

[36]. To teach how to draw the characters, the system represents geometrical constrains per 

each character. 

 Figure 2.15 represents the Chinese character ten. The components field shows that the 

character ten should have two lines: a horizontal line and a vertical line. The constraints and 

aliases fields represent the geometric rules for the two lines. 
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Figure 2.15. A shape description for the Chinese character ten (from [36]). 
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2.2 Related applications 

 In this section, we describe several sketch-based applications that teach mathematics and 

engineering course. Additionally, we will also introduce educational systems for children and 

describe the limitation of these systems. 

 

2.2.1 Applications for recognizing mathematics equations 

 LaViola et al. [23] introduced a sketch-based application for mathematical expression 

called MathPad2. Users can draw mathematic equations and diagrams on sketch panels. The 

application also provides editing gestures such as a lasso, an eraser, and so on. The essence 

of mathematical sketches comes from making association between mathematical expressions 

and diagrams by using coordinate positions.  Association between mathematical expression 

and diagrams can be made two ways: an implicit way and an explicit way: 

 The implicit association means that system can associate variables and the variables’ 

nearest diagram. The implicit association is based on the familiar variables and constant 

variables found in mathematics and physics text illustrations.  

 By the way, the users can make explicit expressions by drawing a line through a set 

of related mathematical expressions. However, the problem of MathPad2 is structure 

recognition. Users need to explicitly select a set of strokes comprising a single mathematical 

expression by drawing a lasso. 

 MathBrush [22] also recognizes handwritten mathematical expression. The system 

transforms hand drawn mathematics equations into MathML [11], which is a mark-up 

language that represents the underlying mathematical expression and that can be used to 
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transmit the expressions to the backend Computer Algebra Systems (CAS) such as Maple [6] 

or Mathmatica [7]. 

 

2.2.2 Application for engineering students 

 Mechanix [41] is an educational system for engineering students, which have been using 

at Texas A&M University and LeTourneau University. Students and instructors can draw 

their trusses and free-body diagrams, and other shapes on sketch pads. The benefit of 

Mechanix is that the system gives beneficial feedback to students when the students want to 

check if their sketches are correct. Another benefit of Mechanix is that the system 

automatically scores students’ assignments. 

 The recognizer of Mechanix uses a geometrical approach such as LADDER [18]. Most of 

shapes in engineering class include many numbers of lines. For example, an arrow has one 

horizontal line and two small lines. By using this approach, Mechanix can recognize many 

kinds of shapes for engineering course. 

 

2.2.3 Applications for children 

 We have many applications to educate children. Generally, applications for children use 

games because children can be boring when they learn. For example, IXL [3] and Sheppard 

Software [4] have divided sections per each age from pre-kindergarten to eighth grade. The 

applications teach basic mathematics by showing animation, and children can select the 

correct answers by clicking buttons. When children choose wrong answers, they can see the 

explanations for the questions. 
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Figure 2.16. An example of IXL. 

 

 

 

Figure 2.17. Teach characters (the Boowa& Kwala application). 
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Figure 2.18. Teach how to express digits (ictgames.com). 

 

 

 There are applications that teach digits and characters [1,2]. Figure 2.17 and 2.18 show 

examples of these applications. However, the problem of these applications is that the 

applications do not support hand-recognition. To teach how to draw digits and characters on 

computer, we need sketch-based applications for children. We believe that our application 

can help children to learn how to draw digits and characters. 
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3. OVERVIEW OF VISUAL BASED RECOGNITION 

 

 Kara et al. introduced a visual-based (image-based) approach [19]. A visual-based 

recognizer represents shapes as binary templates. The input shapes are internally described as 

down-sampled bitmap images, which we call “templates”. The recognizer analyzes the input 

symbols with the templates and returns best-matched shapes. To determine best-matched 

shapes, the recognizer measures distances between the input shape and the shapes in the 

templates.  

 The benefit of a visual based recognition is as follows [19]: 

• Free from segmentation errors 

• Learning from a single example 

• Easy to be extended 

• Combined Classifier 

• Achieving rotation invariance efficiently 

 

 First, the recognizer is free from segmentation errors. Feature-based approaches 

recognize shapes by segmenting users’ input data. Feature-based recognizers usually have 

two level recognizers: a low-level recognizer and a high-level recognizer. A low-level 

recognizer segments the input stroke and returns primitives of the stroke. For example, when 

a user draws digit “2”, the low-level recognizer segments the shapes as a curve and a line. 

PaleoSketch is an example of the low-level recognizer [29]. After segmenting the shapes, the 

high-level recognizer finally determines the shape by using the rules of primitives. However, 



 

 
 

 

25 

if the segmentations have errors, the recognizer can have wrong determination. The visual-

based recognizer is free from segmentation errors because it does not segment the input 

shapes. Additionally, feature-based recognizers have difficulty to determine multi-stroke 

shapes. However, a vision-based recognizer can recognize symbols without concerning about 

stroke numbers. Figure 3.1 shows an example of “sketch” symbols, which has multi-strokes. 

 

 

Figure 3.1. The top row shows symbols used in training, and the bottom row shows multi-stroked symbols        

                   (from [19]). 

 

 

 Second, the visual-based recognizer only needs a single template per each symbol. The 

problem of other template-matching approaches is that they need many templates.  LeCun et 

al. introduced a recognizer for handwritten digits [24]. The recognizer uses 60,000 patterns 

for training purpose. Due to the heavy training data sets, the recognizer is suffers from high 

time complexity. 
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However, we found that a single template cannot support variations of digits and characters. 

To support this issue, our recognizer 3 templates per each symbol. 

 Third, the recognizer can extend recognizable shapes easily. As we discussed earlier, the 

feature-based recognizers have difficulty to determine multi-stroke symbols. To recognize 

these symbols, the feature-based recognizers need to make another rules per each symbol, but 

it is difficult to describe all the multi stroke symbols. On the other hand, the visual-based 

recognizer only needs to add template data. 

 Fourth, the visual-based recognizer has combined classifiers. To calculate minimum 

distances, the recognizer combines four classifiers: (1) the Hausdroff distance, (2) the 

Modified Hausdroff distance, (3) the Tanimoto coefficient, and (4) the Yule coefficient. [19]. 

When they combined the classifiers, the accuracy was higher than the worst performing 

classifier. However, our result shows that a single measurement (the Tanimoto distance) 

gives the best accuracy.  

 Finally, they use the polar analysis to recognize rotated symbols. One of the problems of 

template-matching approach is that the recognizers can be affected by angle difference. To 

overcome the problem, Kara et al. implemented the polar analysis. 

 Figure 3.2 shows the architecture of the visual-based recognizer of Kara et al. [19].  
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Figure 3.2. Architecture of the recognizer (from [19]). 
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The following sections describe each step of the recognizer. 

 

3.1 Preprocessing 

 The raw input data generally needs to be refined to be used for the recognizer. When the 

visual-based recognizer converts the input data to the image, the image usually has too many 

or less data points, which can give negative effect for the recognizer. To make the points of 

the image appropriate for the recognizer, the preprocessing step frames and downs sample 

the initial image into a 48*48 square grid, which reduces the amount of data to consider 

while preserving the patterns of distinguishing characteristics.  

 To frame the image, the preprocessing includes two steps: (1) construct a bounding box 

aligned with the screen axes, and (2) the recognizer expands the shortest dimension of the 

bounding box without changing the location of the box’s center to produce a square [19]. 

 

3.2 Polar Analysis 

 The problem of the template-matching approaches is that the approaches can be affected 

by their orientation. The angle difference between the origin data and the input data can make 

the comparing equations to have wrong values.   

 To solve the problem, template-matching algorithms are using rotation invariant 

recognition. For example, $1 recognizer incrementally analyzes the indicative angle between 

two symbols [46]. However, the approach has two problems as follows: 

First, the approach can recognize “A” and “∀” as a same symbol. If a recognizer rotate the 

“A” to clockwise 90° and the “∀” to counter-clockwise, then they are matched. 



 

 
 

 

29 

Second, the complexity is too expensive for real-time application [19]. 

 To alleviate this limitation, the vision-based recognizer uses the polar coordinate 

transformation. The main principle of the rotations is that Cartesian coordinates become 

translation in polar coordinates. 

 The polar coordinate can be expressed as: 

                 

                 
 
where   and  are the origin and r is the radial distance between two points and is the 

angle between the radius and the x-axis. Figure 3.3 explains the idea. Figure 3.3a illustrates a 

typical transformation and Figure 3.3b illustrates a pattern is rotated in the x-y plane. 

 However, this approach still has a size issue. When pattern is scaled in the x-y plane, the 

corresponding polar image stretches along the r-axis [19]. To eliminate the size issue, they 

normalized the size by using the “ink length” of the symbol and resampled the points to have 

uniformly spaced [8].  

 To find the angular offset between two shapes, the polar-analysis step uses a slide-and-

compare algorithm. The algorithm incrementally displaces the images along the  axis. At 

each displacement, the two images are compared to determine how well they are matched. To 

compare the measurement, the step uses a template-matching algorithm. In particular, they 

use the Modified Hausdroff distance. The measurement is explained in section 3.3.2. 
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Figure 3.3. (a) letter “P” in screen coordinate (left) and polar coordinates (right), (b) when the letter is rotated in         

                    the x-y plane, the corresponding polar transform shifts parallel to the   axis(from [19]). 

 

 

3.3 Template Matching  

 Template-matching step can be simply described as the process of finding similar images 

between two images. While the other template-matching approaches use a single measuring 

classifiers, Kara’s visual recognizer uses four measuring classifiers, and combines the result. 

Following subsections describe the measuring classifiers. 
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3.3.1 Hausdroff distance 

 The Hausdroff distance is used for calculating dissimilarity between two points. The 

Hausdroff distance has been successfully used for object detection in complex scenes [34]. 

However, a few researchers adapted the Hausdroff distance for hand-drawn pattern 

recognition: Cheung et al. [13] have used the measurement for character recognition, and 

Miller et al. [27] for digit recognition. However, Kara et al. used the measurement for image 

recognition.  

 The Hausdroff distance between two points set A and B can be defined as 

                              

 
 

where  represents a measure of distance between two points a and b, and h(A,B) 

means that the directed Hausdroff distance from A to B and correspond to the maximum of 

all the distances one can measure from each point in A to closet point in B. 

 However, the problem of the Hausdroff distance is that it is too sensitive to outliers [19]. 

For this reason, Dubuisson et al. modified the Hausdroff distance [14]. 

 

3.3.2 Modified Hausdroff distance 

 The Modified Hausdroff distance (MHD) replaces the max operator to average of 

distances: 
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where  is the number of points in A.  

 The modified Hausdroff distance is defined as the maximum of the two directed average 

distances.             

 

3.3.3 Tanimoto coefficient 

 The Tanimoto coefficient calculates similarity between two images.  The equation can be 

defined as:          

 

where  is the total number of black pixels in A,  is the total number of black pixel in B, 

and  is the number of overlapping black pixels in A and B. 

 T(A,B) describes the number of matching points in A and B, and the result is between 0.0 

(minimum similarity) to 1.0 (highest similarity). The problem of this equation is that if 

images contain mostly black pixels, the T(A,B) value can be vanished. 

 To solve the problem, the following equation is used                                                
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, where  is the number of matching white pixels.  is called the Tanimoto coefficient 

complement. 

 The two equations can be combined to form the Tanimoto similarity coefficient [16]. 

 
 

 is a weighting factor between 0.0 and 1.0. 

 

3.3.4 Yule coefficient 

 Like the Tanimoto coefficient, the Yule coefficient also measures the similarity between 

two images. The equation is defined as: 

 
 

, where  is the number of black pixels in A that do not match in B. Similarly, 

 is the number of black pixels in B that do not match in A.  

 The value of Y(A,B) is between 1.0 (maximum similarity) and  -1.0 (minimum 

similarity). The difference of the Yule coefficient to the Tanimoto coefficient is that the Yule 

coefficient simultaneously accounts for the matching black and white pixels by the term 

and . 
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3.3.5 Combining Classifiers 

 To combine four classifiers, we need to consider these issues: 

• The Tanimoto and the Yule coefficient are measures of similarity while the last two 

classifiers are measures of dissimilarity, 

• The classifiers have different ranges. 

 To solve the issues, Kara et al. transformed the Tanimoto and Yule similarity coefficients 

by reversing their values. Next, to eliminate the rage differences among classifiers, they 

normalized the value of all four classifiers to the range 0-1 using a linear transformation 

function. For each classifier, the transformation maps the distance scores to the range [0,1] 

while preserving the relative order established by that classifier.  

For example, they converted the values of the Modified Hausdroff distance and the 

Hausdroff distance to have range from 0 to 1 by following equation. 

       
 

Finally, having standardized the outputs of the four classifiers, they combined the results 

using a method similar to the sum rule introduced by Kittler et al. [19,20]. 
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4. OVERVIEW OF SYMBOL RECOGNITION

The following sections explain our symbol recognition architecture and recognizer. 

4.1 Limitation of Visual Based Recognition 

 Even the high accuracy of the vision-based recognizer (91.8% for digits on their data 

sets) [19], the recognizer still has limitations as follows:  

1. High time complexity: because the recognizer uses four measurements [19] and

combines the result of the measurements, it consumes many time resources.

2. Need to change rotation angle when the vision-based recognizer determines digits:

initially range of rotation angle is from –  to + . However, when the recognizer

recognizes digits, it changes the rotation angle to 90 . It can be a  problem when the

recognizer needs to analyze digits and other domain such as characters because the

recognizer needs to change rotation angle by the shape the recognizer need to

describe.

 To solve the problem, we eliminate some steps of the vision-based recognizer. We use 

only one measurement from the vision-based recognizer: the Tanimoto coefficient. We 

analyzed all combinations of three measurements from the vision-based recognizer (the 

modified Hausdroff distance, the Hausdroff distance, and the Tanimoto coefficient) and we 

found that using the Tanimoto coefficient measurement alone gives the best accuracy for 

adults’ data (Table 1). 
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Measurement Accuracy 

Tanimoto 0.9 

MHD 0.838 

HD 0.863 

MHD+Tanimoto 0.888 

HD+MHD 0.884 

HD+Tanimoto 0.888 

MHD+Tanimoto+HD 0.897 

Table 1. Accuracies of measurements. 

4.2 Symbol Recognition Architecture 

 Figure 4.1 explains our symbol recognition architecture. When users draw symbols on 

sketch panels, each points contains an x and y point. These points need to be preprocessed to 

have more refined drawings. To achieve the refined drawings, we use preprocessing steps. 

We will explain in more detail in the following subsections.  

 After preprocessing, the data goes into our template-matching algorithm. We use the 

Tanimoto coefficient to determine best-matched shapes using our pre-defined data sets. 
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Figure 4.1. Architecture of EasySketch recognizer. 

 

 

4.3 Preprocessing 

 The assumption of recognizers is that the input data will be clean data. The clean data 

means that the data will exclude all noise. The noise is points, which include unexpected 

points. To remove the noise, we need preprocessing steps. Preprocessing is needed for the 

following reasons as well: 

• Each device can have noise data. For example, if the device has improper 

configuration, the device can generate the noise. 

• The sampling rate is different per each device. For example, a mouse and a digital 

pen have different sampling rates. 
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• Each symbol has a different size. To compare each symbol, we need to adjust the 

symbol size to match the sizes of the other symbols. 

• Each writer will make variations in the writing. For example, the speed difference of 

strokes can make the points to have sparse or concentrated areas (Figure 4.2). 

• Strokes can have different stroke directions and orders.  For example, Figure 4.3 

shows the variations of drawing the digit “2”. 

 

 

Figure 4.2. Slow and fast drawing makes considerable time difference and number of points (from [46]). 

 

 

Figure 4.3. Different examples of drawing digit “2”. 
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The following sections explain our preprocessing steps. To remove noise from our raw data, 

we have three preprocessing steps: (1) smoothing, (2) resampling, and (3) de-hooking. 

 

4.3.1 Smoothing 

 Because the raw data can have zigzagged lines, the smoothing step makes the raw data to 

have consistent lines. The raw data is affected by speed and time of user’s drawing and each 

device. Smoothing is done by substitution of a point with the weighted average of its 

neighboring points. 

                                                           (4.1) 

                                                           (4.2) 

 

is the weight on point (  , ), and 2m is the neighboring range of the point. We set 

= 1/6, m = 3. Figure 4.4 shows the result of smoothing. 

 

Figure 4.4. Result of smoothing (left) before, (right) after. 

 



 

 
 

 

40 

4.3.2 Resampling 

 The resampling step solves the following issues. 

• Each samples and input data has different size of points. The data can have different 

size of points based on the users’ input devices and their familiarity with the devices. 

If users draw sketches slowly, the data will have many points. The difference of point 

size makes it difficult to calculate minimum distances between each sample. 

• The size and location is also different. We need to rescale the samples and make them 

to have the same coordinate plane. 

 To solve these problems, the resampling procedure includes following steps: (1) 

resamples points (64 points), (2) scales and translates to the same coordinate plane (48 pixel).  

 

4.3.2.1 Resample points 

 There have been approaches that resampling stroke paths [12,38,47].  

To resample points, we implemented Wobbrock’s $1 recognizer algorithm [46]. The basic 

idea is that the algorithm makes the shapes to have the same size of points and the points to 

have equidistance. We defined M as a size of points of original stroke and N as expected size 

of points we want to make. Wobbrock tried to find the optimal size of N, which range is 32!  

N !  256. They found that 64 is the optimal value for N and we used the same N size (64). 

We also verified that 64 points is the optimal value for our recognizer. (Table2). 
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 64 point, 
48px*48px 

128 point, 
48px*48px 

64 point, 
48px*48px 

Tanimoto 
coefficient 0.9 0.89 0.88 

Table 2. 64 resampling points and 48*48 pixel give the best accuracy (adults) 

 

 To resample each point, we first calculated the distance of stroke (totalLength), and 

increment (I). 

                                          totalLength = M.totalLength()                                (4.3) 

                                                                                                  I  =  totalLength  /  (N-‐1)                                                (4.4) 

 

Secondly, we gradually sum the distance from the first point. If the summed distance is 

higher than I, then the algorithm includes a new point. 

 

 

Algorithm 1: Total Length. 
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Algorithm 2: Resample points. 

 

Figure 4.5 and 4.6 explain our algorithm. Figure 4.5 illustrates two shapes that have different 

numbers of points. After our resampling step, each shape has the same points with each 

other. For convenience, we use 25 points as an example (Figure 4.6). 
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Figure 4.5. Each sample has different size of points. 

 

Figure 4.6. Each sample has the same size of points. 
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4.3.2.2 Scale and Translate 

 After the resampling step, the raw data have equidistance and the same size of points. 

However, the raw data still has a problem. The problem is that even the shapes has the same 

size of points, the size of shapes is still different with each other shape. This could hinder 

recognition performance. 

 To make each shape have the same size, we implement scale and translate step. By our 

analysis, we found that 48*48 pixels give is the best threshold (Table 2). The step has 

following steps: 

• Construct a bounding box (48*48 pixels) 

• Expand the shortest dimension of the boxes’ center to produce a square  

(Figure 4.7). 

 

The algorithm3 explains our steps and Figure 4.8 is our results. 

 

Figure 4.7. (a) Before expand the shape, (b) After expand the shape. 
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Figure 4.8. Scale and translate shapes. 
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Algorithm 3: Scale points. 

 

4.3.3 De-hooking 

 When users draw sketches on sketch panels, the sketches contain unexpected points 

look like “hook” (Figure 4.9). The problem of unexpected points is that it can lead our 

recognizer to have incorrect answers. Especially, if we use Freeman’s chain code [12,17], the 

directions will be affected by the hook.   
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 To solve the problem, we simply ignored the first three points and the last three 

points. 

 

Figure 4.9. Hooks in digit “2”. 

 

 

4.4 Recognition 

 After the preprocessing steps, the raw input data has (1) the same size of points (64 

points), (2) no noise (hook), and (3) the same size with each other shapes (48*48px). 

The cleaned raw data is given to the recognizer to determine the shapes. To recognize shapes, 

we use the template matching approach. 

 There have been approaches [18,41] that use a feature-based recognition, which generates 

rules of primitives in shapes. One of the examples is Mechanix [41]. To recognize shapes, 

Mechanix illustrates all the rules of primitives that the shapes should have. For example, a 

triangle has three lines and the lines should be connected with each other. The benefit of the 
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feature-based recognition is that the recognizer can be extended easily if we can generate 

rules. However, the problem of the feature-based recognition is that we need to illustrate all 

the rules of primitives, and, if the shape has many variations, the rules can be more complex. 

Children especially have difficulty drawing shapes, and  if they have less experience with 

writing devices such as a mouse or a digital pen, the shapes can have inaccurate drawings 

including zigzags.  

 To solve the problem, our recognizer uses the vision-based recognizer algorithm, which 

uses the template matching. As we discussed earlier, we use the Tanimoto coefficient, which 

gives the best result (Table 1). 
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5. IMPLEMENTED APPLICATION AND EVALUATION 

 

5.1 Overview of EasySketch 

 To teach children how to draw digits and characters, EasySketch has following features: 

• The system provides a sketch panel to draw symbols naturally. 

• The system has an agent. When children correctly or incorrectly draw symbols, the 

agent keeps track of the children’s correctness history and gives emotion as feedback. 

The system gives response by text and sound per each status.  

• To teach children how to draw digits and characters, the system shows animated 

example symbols. 

• To be implemented by instructors easily, the instructors can make assignments by 

writing questions in an excel file. 

• To know the users’ scores easily, the system shows a summary when they finish their 

drawings. 

Figure 5.1 shows an interface of EasySketch. 
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Figure 5.1. Interface of EasySketch. 

 

 

 EasySketch has the following panels: 

• Instruction panel: shows an animated sample shapes that help children how to draw 

the symbols. 

• Question panel: describes which shape children need to draw. 

• Editing panel: enables children to edit their drawings. 

• Sketch panel: allows the users to draw their digits and characters on this panel. 

• Feedback Panel: shows the text feedback. 
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5.2 Agent System in EasySketch 

 The current systems for children use animations or games [6,7]. These methodologies can 

make children to feel interesting with the systems. However, the problem of the current 

systems is that the feedback (true or false) is not interesting and beneficial, which can make 

children to feel boring to use the systems. We focused that if we change the feedback to have 

emotion based on the children’s correctness history, the children may feel interesting when 

they use the educational systems. 

 To support this issue, EasySketch implements an agent system that has emotion status. 

Whenever users draw their symbols, EasySketch compares the symbols with expected shapes 

and updates the agent’s emotion. 

 The agent has six emotions: excited, happy, neutral, confused, disappointed, and angry. 

The agent changes its emotion whenever the children submit and check their drawings. The 

initial emotion status begins with “neutral” emotion. If the users draw their symbols 

correctly, the agent changes its status from “neutral” to “happy” and shows a message 

(“Great!”) on feedback panel and plays an audio file. However, if the users draw symbols 

incorrectly, the agent gives a message (“That does not seem right”) and plays an audio file 

and changes the emotion status to “confused”. 

 Figure 5.2, 5.3, and 5.4 explain the emotions and messages per each status. 
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Figure 5.2. Emotion status in EasySketch. 

 

 

Figure 5.3. Feedback. 
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Figure 5.4. Message and audio are changing based on the correctness of drawings. 

 

 

After finishing their drawings, the system shows overall scores and numbers of attempt 

per each symbol. The system changes an image based on their scores (Figure 5.5 and Table 

3). 

 

Figure 5.5. Shows scores when they finish the drawings. 
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Score  Image 

0 ~ 20 

 

21~40 

 

41~60 

 

61~80 

 

81~100 

 

  Table 3. Changing the icon by their final scores. 

 

5.3 Interface for Instructor 

 The current systems’ problem is that instructors cannot make their own assignments 

[6,7]. If children need to practice some specific shapes, the only available option for the users 

is finding questions that seem similar with their expected questions. However, this step needs 

users’ effort to find the question, and if they cannot find the question, there is no way to 

create a question that their children need to draw.  
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 To support this issue, EasySketch provides an easy way for instructors to implement their 

own questions. To make their own questions, they require three steps: (1) edit an excel file, 

(2) sketch the symbols and (3) save them. 

 First, the excel file has five categories as follows: 

• Question ID: represents specific ID per each question. 

• Question: describes a question text that children need to draw (e.g. “Draw a number 

1.”). 

• Shape: is an expected shape that the children need to draw 

• Image: is an image file name of the expected shape. 

Figure 5.6 shows an example of questions. 

 

 

Figure 5.6. Creating an excel file. 

 



 

 
 

 

56 

 After editing the excel file, instructors need to draw and save their sketches. Instructors 

can easily save their sketch by clicking the save button in the editing panel. After saving their 

sketches, they need to create folders and change the name as their expected shapes. 

Figure 5.7 shows an example of a new question that adds a Korean character “kim”. 

 

Figure 5.7. Instructors can add question. 

 

 

5.4 Interface for Children 

 Because our target users are children, we considered the easiness of the interface. The 

contents should be easy enough to read and children should be able to edit and submit their 

sketches easily, and the sketch panel should be large enough to draw. 
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 To support these issues, we made the sketch panel to large enough for children and the 

sketch background to look like a paper. Additionally, for their editing, the system includes 

six icons (undo, redo, new sketch, submit, save, and go next question) for each behavior, 

which looks straightforward for them (Figure 5.1). 

 

5.5 Evaluation 

5.5.1 Result of our user test 

 To collect digits and characters data, we divided the groups into two groups: an adult 

group and a children group. Additionally, we divided the children group into two groups by 

age (under 4 year old children and 7 year old children). Generally, 4 year old children are 

still learning digits and characters, but 7 year old children know how to draw digits and 

characters. 

 We had four adult volunteers and each of them was asked to draw five sketches per each 

shape (digit: 0 to 9 and characters: A to F). All the volunteers were from the department of 

Computer Science at Texas A&M University. One of them used a digital pen and three of 

them used mice. To collect data from adults, we used SOUSA [30], which is a web-based 

application that can collect users’ sketch data.  

 For the children group, we had ten volunteers (3 years old: one child, 4 years old: two 

children, and 7 years old: seven children) who did not have any experience with sketch-based 

educational applications. For our user study, the 7 year old children drew one sketch per each 

digit (0 to 9) and two sketches per each character (A to F). The 7 year old children knew how 

to draw digits and characters. On the other hand, the under 4 year old children had little 
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knowledge about digits and characters. For the user study of the under 4 year old children 

group, we reduced the shapes to draw (digits: 0 to 9 and characters: A to D) and they drew 

one sketch per each shape. During the children’s user study, we processed our user studies 

with their parents to make the children to feel comfortable. 

 We evaluated the accuracy of the recognizer by dividing numbers of correctly recognized 

symbols by the total numbers of test symbols.  

Accuracy = count of correct symbols / total number of test symbols                           (5.1) 

 The total accuracy of the data was 90% for adults with 320 data sets (digits: 89% and 

characters: 90.8%) and 83.75% for 7 year old children with 123 data sets (digits: 80% and 

characters: 90%), and 34.4% for 3 and 4 year old children with 28 data sets (digits: 37.5% 

and characters: 25%). Figure 5.8 and 5.9 show our results. 

 

Figure 5.8. Result of user studies. 
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Figure 5.9. Result of user studies per each symbol (circle means there is many recognition difference between     

                   adults and 7 years children).  

 

 

The following Table 4, 5, and 6 show the result of our user study. 

 RECOGNIZED 

E 
X 
P 
E 
C 
T 
E 
D 
 

 one two three four five six seven eight nine zero A B C D E F 
one 0.95       0.05         
two  0.85 0.05       0.1       

three   0.85     0.1    0.05     
four    0.85   0.05          
five     0.9         0.05  0.05 
six     0.05 0.9  0.05         

seven       1          
eight     0.05   0.9    0.05     
nine       0.15  0.85        
zero          0.85   0.15 0.1   

A           1      
B   0.1         0.9     
C          0.2   0.8    
D             0.05 0.95   
E        0.05    0.1   0.85  
F                1 

Overall 0.9 

Table 4. Result of our recognizer (adult). 
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 RECOGNIZED 

E 
X 
P 
E 
C 
T 
E 
D 
 

 one two three four five six seven eight nine zero A B C D E F 
one 1                
two  0.6 0.4              

three   0.8  0.2            
four    0.8          0.2   
five     0.8         0.2   
six      1           

seven 0.2      0.8          
eight     0.2   0.6    0.2     
nine       0.2  0.8        
zero          0.8   0.2    

A           1      
B       0.2     0.8     
C             1    
D            0.2 0.2 0.6   
E               1  
F                1 

Overall 0.8375 

Table 5. Result of our recognizer (7 age children). 

 

 RECOGNIZED 

E 
X 
P 
E 
C 
T 
E 
D 
 

 one two three four five six seven eight nine zero A B C D 
one  0.33      0.33 0.33       
two 0.33 0.33      0.33       

three   0     0.33    0.66   
four    0.66       0.33    
five    0.5 0.5          
six    0.5 0.5 0         

seven       1        
eight      0.5  0    0.5   
nine  0.5      0.5 0      
zero          1     

A          0.5 0.5    
B    0.5 0.5       0   
C          0.5   0.5  
D          0.5  0.5  0 

Overall 0.344 

Table 6. Result of our recognizer (3,4 age children). 

 

 

 After finishing our user study, children and parents were asked to answer the following 

surveys (Table 13 and 14 in Appendix) and Table 7 is the average of their feedback. All the 

children had experience with a sketch-recognition system (e.g. iPhone), but they have not 

used a sketch-based educational system. They agreed that our system is appropriate for 
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learning and easy to use. However, they would like more interesting visual feedback such as 

animations in the system. 

Description/Identification of Survey Item Scale 
1. Does your child have experience with sketch-based 

application? No 

2. The software is easy to understand and use for the 
children? 5 

3. The software can help the children to learn? 5 
4. The children seem to prefer these kinds of interactions 

over than traditional mouse and keyboard? 5 

5. The children retain attention for longer periods when 
using the system compared to similar pen and paper 
activities? 

3 

6. It will be feasible to use similar games on a regular 
basis as part of the course content? 5 

7. The feedback messages of the system were understood 
by the children? 5 

8. The feedback messages of the system were appropriate 
for their age? 5 

Table 7. Feedback of user study 

 

5.5.2 Analysis of children’s data 

 When we analyzed the children’s sketches, we found that the overall accuracy of 7 year 

old children (83.75%) is similar to adults’ data (90%). However, accuracy of 3-4 year old 

children (37.5%) had many differences with both adults and 7 year old children. 

Additionally, when we analyzed the children’s sketches, we found the following issues: 

1. The children’s sketches have more numbers of points than adults’. Because the 

numbers of points are increased by time to draw, we can know that children need 

more time to draw than adults (Figure 5.10).  
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2. The adults drew shapes larger than the children’s sketches (Figure 5.11). 

3. The under 4 year old children drew shapes smaller than 7 year old children’s, and 

they drew faster than 7 year old children. However, by the observation of their 

drawings, the author realized that they gave less consideration to draw than 7 year old 

children because they had less knowledge with the shapes and they did not know 

what they are drawing (Figure 5.11). 

4. The children had difficulty drawing complex shapes, which include curve lines. 

Figure 5.9 shows that the accuracies of children’s charts have lower rates (less than 

80%) than adults with 0, 2, 3, 4, 5, 7, 8, 9, B, and D. Figure 5.12 and 5.13 are the 

examples of children’s sketches. 

 

 

Figure 5.10. Comparing numbers of points.  



 

 
 

 

63 

 

Figure 5.11. Comparing stroke length. 

 

 

 

Figure 5.12. Drawing B (left: 7 year child, right: 4 year child).  
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Figure 5.13. Drawing D (left: 7 year child, right: 4 year child). 

 

 

After our user study, we had the following feedback from the children and their parents: 

1. The children had difficulty using a digital pen because the digital pen (Figure 5.14) 

has a smaller size than a normal pen, and they could not draw sketches naturally. 

When they drew symbols by using a pen and paper, the symbols had similar shapes to 

adults’ (7 year old children).  

2. The sketch screen was improper for children: when they finished their user studies, 

they still preferred to use a sketch panel rather than traditional devices such as a 

keyboard or a mouse. However, they preferred a pen and pencil or their fingers than a 

digital pen. 

  

Figure 5.14. Toughbook pen. 
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5.5.3 Gender Difference 

 In Educational and Developmental Psychology, there is interest in potential gender 

difference within visual-motor skills. While the more dominant belief is that females develop 

motor skills faster than male, there is much disagreement between researchers. For example, 

Brown [10] and Tennant [39] described that female children’s skill were superior to that of 

male children’s. However, Lotz et al. insisted that the male children had better vision-motor 

skills than the female children [26].  One potential reason for conflicting result may be from 

the type of measurement. Additionally, another limitation of these research is that they 

combined all ages and just compared their gender regardless of their ages. 

 To verify the gender difference, we used the same age group (7 year-olds) and compared 

123 data sets with a total of 7 children (four female children and three male children).  

 After our test, we realized that the recognition accuracy of the female children is higher 

than the male children’s for both digits and characters. The overall accuracy of the female 

children was 88.5%. However, the male children’s accuracy was 77.8%. The recognition 

difference was higher in characters (96.6% for female and 80% for male) than digits (83.7% 

for female and 76.7% male). Figure 5.15 shows the recognition accuracy per gender. 
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Figure 5.15. The female children draw better than the male children. 

 

 

5.5.4 Improve the accuracy for children 

 During the analysis of the children’s data, we realized that we should not use the same 

threshold for adults and children because their drawing patterns are different. As we 

discussed earlier, we found that the Tanimoto coefficient algorithm, 64 resampling numbers 

of points, and 48*48 pixel give the best accuracy for adults. However, the children’s sketches 

have more numbers of points and smaller shapes in their sketches than adults.  

 To increase the accuracy of children, we analyzed 7 year old children’s data and found 

that the 32 resampling points gives the best accuracy for their sketches.  

 Table 8 and Figure 5.16 show our results, and the accuracy has increased by 32 

resampling points. 
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Points and Pixels Measurement Accuracy 

32 points, 48px*48px Tanimoto 0.8375 

64 points, 48px*48px Tanimoto 0.8125 

32 points, 32px*32px Tanimoto 0.8 

32 points, 64px*64px Tanimoto 0.7875 

64 points, 32px*32px Tanimoto 0.7875 

64 points, 64px*64px Tanimoto 0.775 

128 points, 48px*48px Tanimoto 0.775 

128 points, 64px*64px Tanimoto 0.75 

128 points, 32px*32px Tanimoto 0.7375 

Table 8. 32 resampling points and 48*48 pixels give the best accuracy (7 year children). 
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Figure 5.16. 32 resampling points gives more accuracy than 64 resampling points for 7 years. 

 

 

 Figure 5.17 shows the example of the shape that was recognized correctly when we used 

32 resampling points and 48*48 pixels, but it was misrecognized when we used 64 

resampling points and 48*48 pixels. 

 

Figure 5.17. The digit “2” is recognized as a digit “8” if we use 64 resampling points. 
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5.5.5 Analysis of best features for recognition for children and adults 

 We used the forty four feature sets from [31] to find to further understand the difference 

between drawings from children and adults. 

 During our test, we validated best feature sets for children and adults by 10 fold-cross 

validation. Table 9 and 10 show the top five best accuracy feature sets for adults and 

children, and we realized that the best features sets were different for each other. 

Furthermore, the best feature sets for characters were also different from the twenty basic 

shapes from Paulson’s recognizer (Table 11) [31]. By the analysis, we realize that we need to 

use another feature sets for adults and children to recognize characters (A-F). 

 

Feature Accuracy 

Percentage of strokes that passed the line 

test 

0.733333 

The error of the line fit 0.7 

Length ratio between the major and minor 

axis 

0.7 

The error of the spiral fit 0.683333 

The error of the rectangle fit 0.683333 

Table 9. Best Feature Set for Children (7 age child) 
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Feature Accuracy 

The perimeter (of bounding box) to stroke 

length ratio 

0.783333 

Number of revolutions of sub dot 0.758333 

The error of the line fit 0.725 

The error of the rectangle fit 0.725 

The percentage of slope test that passed 0.716667 

Table 10. Best Feature Set for Adults. 

 

 

Feature Accuracy 

EndPoint to stroke length ratio 1.0 

Total rotation of the stroke 1.0 

Normalized distance between direction 

extremes 

0.9 

Direction Change Ratio 0.9 

Curve least square error 0.9 

Table 11. The Best Feature Sets of Paulson’s recognizer [31]. 
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5.5.6 Recognize sketcher’s age by drawings 

 When we analyzed drawers’ sketches, we found that they drew sketches differently by 

age. As we can in Figure 5.18, the three children groups (3 year-olds, 4 year-olds, 7 year-

olds, and adults) had different drawing styles. If computers can automatically determine 

sketchers’ ages by their drawings, we can have many benefits as follows: 

• Teaching their drawings: If we can understand the children's difficulty to draw some 

shapes, we can guide them more carefully. 

• Computer can automatically change the feature sets for the recognizer: If computers 

can recognize the children's age by just their sketches, the computers can 

automatically change their recognizers' feature sets and/or thresholds by their age, 

which will allow them more recognition accuracy. For example, if a three year old 

child has difficulty drawing a circle, the computer can change the threshold of a circle 

for the child. 

 

Figure 5.18. An example of character “D”. 
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To determine the sketcher’s age, we cross-validated 475 data sets using all forty four features 

from [31]. Analysis of this data showed that there are several differences between adults and 

children’s drawings. Using such identified features, we were able to distinguish children’s 

drawings from adults’ drawings. We correctly identified the drawers’ age (age 3, 4, 7, or 

adult) with a precision of .783, recall of .768 and an f-measure of .773. When we grouped 

age 3 and 4 into “toddler” group and grouped age 7 and adults into “matured” group, we got 

a precision of .952, recall of .957, and an f-measure of .952. Removing the adults, and 

distinguishing between “toddlers” and 7 year-olds, we got a precision of .902, a recall of 

.902, and an f-measure of .902. When we compared only between 3, 4, and 7, we got a 

precision of .868, recall of .874, and an f-measure of .862. 
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6. SUMMARY 

 

 In this paper we investigated the different drawings patterns between children and adults. 

To test if there are differences between children and adults, we collected a total of 475 data 

sets from four adults and ten children (3 year-olds: one child, 4 year-olds: two children, 7 

year-olds: seven children). To make a separate recognizer for children, we changed the 

number of resampling points and we increased the recognition accuracy for children from 

81.25% (using the original adult-tuned recognizer) to 83.75% (using adjusted threshold for 

children). To further analyze the drawing pattern difference, we used a set of fourty-four 

geometric features from Paulson et al. [31] and found that different feature sets dominates 

recognition accuracy for children and adults. The best feature sets for children was 

“Percentage of strokes that passed the line test”. On the other hand, “The perimeter (of 

bounding box) to stroke length ratio” was the best feature for adults. 

 Analysis of the data showed that the 7 year-olds had difficulty drawing shapes, which 

include curved lines (0, 2, 3, 4, 5, 7, 8, 9, B, and D). Additionally, we found that different 

ages have different distinguishing features. To automatically identify the drawer’s age, we 

cross-validated the 475 feature sets with the set of forty-four features [31], and we identified 

their ages (age 3, 4, 7, or adult) with a precision of .783, recall of .768 and an f-measure of 

.773. When distinguishing between toddlers (age 3-4) and matures (age 7 and adults), we got 

a precision of .952, recall of .957, and an f-measure of .952. Removing the adults, and 

distinguishing between toddlers and 7 year-olds, we got a precision of .902, a recall of .902, 
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and f-measure of .902. Distinguishing between 3, 4, and 7 ages, we got a precision of .868, 

recall of .874, and an f-measure of .862. 

 Furthermore, we found that there is a potential sketch skill difference between female and 

male children. We compared 7 year olds children group’s data sets with four female children 

and three male children and we realized that the female children (88.5%) drew more 

accurately than the male children (77.8%). 

 Finally, we introduced a sketch-based teaching assistant tool called EasySketch, which 

includes a virtual agent system that changed its feedback by correctness history. 
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APPENDIX A 

In Chapter 5, we introduced the survey forms after the user test. Parents fill out the 

forms when their children finished drawings. 

Description/Identification of Survey Item Answer 
1. How many children were present in the session today?
2. How much time did the children spend using the

software?
3. Does your child know how to draw digits?
4. Does your child know how to draw characters?

  Table 12. Survey form 1. 

Description/Identification of Survey Item Scale 
9. Does your child have experience with sketch-based

application? 1 2 3 4 5 

10. The software is easy to understand and use for the
children? 1 2 3 4 5 

11. The software can help the children to learn? 1 2 3 4 5 
12. The children seem to prefer these kinds of interactions

over than traditional mouse and keyboard? 1 2 3 4 5 

13. The children retain attention for longer periods when
using the system compared to similar pen and paper
activities?

1 2 3 4 5 

14. It will be feasible to use similar games on a regular
basis as part of the course content? 1 2 3 4 5 

15. The feedback messages of the system were understood
by the children? 1 2 3 4 5 

16. The feedback messages of the system were appropriate
for their age? 1 2 3 4 5 

  Table 13. Survey form 2. 
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APPENDIX B 
 

4 years 3 years 
A 

  

B 

  

C 

  

D 

  

Table 14. Sketches of 3 and 4 year old children. 
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4 years 3 years 
ZERO 

  

 

ONE 

   

TWO 

   

THREE 

   

Table 14 Continued. 
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4 years 3 years 
FOUR 

   

FIVE 

 

 

 

SIX 

 

 

 

SEVEN 

 

 

 

Table 14 Continued. 
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4 years 3 years 
EIGHT 

  

NINE 

  

Table 14 Continued. 
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7 years 
ZERO 

     

  

   

ONE 

     

  

   

Table 15. Sketches of 7 year old children. 
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7 years 
TWO 

     

  

   

THREE 

     

  

   

Table 15 Continued. 
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7 years 
FOUR 

     

  

   

FIVE 

     

  

   

Table 15 Continued. 
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7 years 
SIX 

     

  

   

SEVEN 

     

  

   

Table 15 Continued. 
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7 years 
EIGHT 

     

  

   

NINE 

     

  

   

Table 15 Continued. 
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7 years 
A 

     

    

 

B 

     

    

 

Table 15 Continued. 
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7 years 
C 

     

    

 

D 

     

    

 

Table 15 Continued. 
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7 years 
E 

     

    

 

F 

     

   

  

Table 15 Continued. 




