147 research outputs found

    Ventricular Fibrillation and Tachycardia Detection Using Features Derived from Topological Data Analysis

    Get PDF
    A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination between arrhythmias is also important, provided that the required shocking therapy would not be the same. In this work, the main novelty is the use of the mathematical method known as Topological Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation were obtained from the standard MIT-BIH and AHA databases. Two input data to the classify are evaluated: TDA features, and Persistence Diagram Image (PDI). Using the reduced TDA-obtained features, a high average accuracy near 99% was observed when discriminating four types of rhythms (98.68% to VF; 99.05% to VT; 98.76% to normal sinus; and 99.09% to Other rhythms) with specificity values higher than 97.16% in all cases. In addition, a higher accuracy of 99.51% was obtained when discriminating between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and 99.67% specificity). These results show that the use of TDA-derived geometric features, combined in this case this the k-Nearest Neighbor (kNN) classifier, raises the classification performance above results in previous works. Considering that these results have been achieved without preselection of ECG episodes, it can be concluded that these features may be successfully introduced in Automated External Defibrillation (AED) and Implantable Cardioverter Defibrillation (ICD) therapie

    Low-Power Wearable ECG Monitoring System for Multiple-Patient Remote Monitoring

    Get PDF
    Many devices and solutions for remote electrocardiogram (ECG) monitoring have been proposed in the literature. These solutions typically have a large marginal cost per added sensor and are not seamlessly integrated with other smart home solutions. Here, we propose an ECG remote monitoring system that is dedicated to non-technical users in need of long-term health monitoring in residential environments and is integrated in a broader Internet-of-Things (IoT) infrastructure. Our prototype consists of a complete vertical solution with a series of advantages with respect to the state of the art, considering both the prototypes with integrated front end and prototypes realized with off-the-shelf components: 1) ECG prototype sensors with record-low energy per effective number of quantized levels; 2) an architecture providing low marginal cost per added sensor/user; and 3) the possibility of seamless integration with other smart home systems through a single IoT infrastructure

    ECG Beat Representation and Delineation by Means of Variable Projection

    Get PDF
    Objective: The electrocardiogram (ECG) follows a characteristic shape, which has led to the development of several mathematical models for extracting clinically important information. Our main objective is to resolve limitations of previous approaches, that means to simultaneously cope with various noise sources, perform exact beat segmentation, and to retain diagnostically important morphological information. Methods: We therefore propose a model that is based on Hermite and sigmoid functions combined with piecewise polynomial interpolation for exact segmentation and low-dimensional representation of individual ECG beat segments. Hermite and sigmoidal functions enable reliable extraction of important ECG waveform information while the piecewise polynomial interpolation captures noisy signal features like the baseline wander (BLW). For that we use variable projection, which allows the separation of linear and nonlinear morphological variations of the according ECG waveforms. The resulting ECG model simultaneously performs BLW cancellation, beat segmentation, and low-dimensional waveform representation. Results: We demonstrate its BLW denoising and segmentation performance in two experiments, using synthetic and real data. Compared to state-of-the-art algorithms, the experiments showed less diagnostic distortion in case of denoising and a more robust delineation for the P and T wave. Conclusion: This work suggests a novel concept for ECG beat representation, easily adaptable to other biomedical signals with similar shape characteristics, such as blood pressure and evoked potentials. Significance: Our method is able to capture linear and nonlinear wave shape changes. Therefore, it provides a novel methodology to understand the origin of morphological variations caused, for instance, by respiration, medication, and abnormalities

    Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter

    Get PDF
    Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10(-8) LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling

    Double Channel Neural Non Invasive Blood Pressure Prediction

    Get PDF
    Cardiovascular Diseases represent the leading cause of deaths in the world. Arterial Blood Pressure (ABP) is an important physiological parameter that should be properly monitored for the purposes of prevention. This work applies the neural network output-error (NNOE) model to ABP forecasting. Three input configurations are proposed based on ECG and PPG for estimating both systolic and diastolic blood pressures. The double channel configuration is the best performing one by means of the mean absolute error w.r.t the corresponding invasive blood pressure signal (IBP); indeed, it is also proven to be compliant with the ANSI/AAMI/ISO 81060-2:2013 regulation for non invasive ABP techniques. Both ECG and PPG correlations to IBP signal are further analyzed using Spearman’s correlation coefficient. Despite it suggests PPG is more closely related to ABP, its regression performance is worse than ECG input configuration one. However, this behavior can be explained looking to human biology and ABP computation, which is based on peaks (systoles) and valleys (diastoles) extraction
    corecore