9 research outputs found

    A New Formulation for Total Least Square Error Method in d-dimensional Space with Mapping to a Parametric Line

    Full text link
    There are many practical applications based on the Least Square Error (LSE) or Total Least Square Error (TLSE) methods. Usually the standard least square error is used due to its simplicity, but it is not an optimal solution, as it does not optimize distance, but square of a distance. The TLSE method, respecting the orthogonality of a distance measurement, is computed in d-dimensional space, i.e. for points given in E2 a line p in E2, resp. for points given in E3 a plane in rho in E3, fitting the TLSE criteria are found. However, some tasks in physical sciences lead to a slightly different problem. In this paper, a new TSLE method is introduced for solving a problem when data are given in E3 and a line p in E3 is to be found fitting the TLSE criterion. The presented approach is applicable for a general -dimensional case, i.e. when points are given in E^d a line E^d is to be found. This formulation is different from the TLSE formulation.Comment: arXiv admin note: text overlap with arXiv:2208.0367

    Symmetry in Applied Mathematics

    Get PDF
    Applied mathematics and symmetry work together as a powerful tool for problem reduction and solving. We are communicating applications in probability theory and statistics (A Test Detecting the Outliers for Continuous Distributions Based on the Cumulative Distribution Function of the Data Being Tested, The Asymmetric Alpha-Power Skew-t Distribution), fractals - geometry and alike (Khovanov Homology of Three-Strand Braid Links, Volume Preserving Maps Between p-Balls, Generation of Julia and Mandelbrot Sets via Fixed Points), supersymmetry - physics, nanostructures -chemistry, taxonomy - biology and alike (A Continuous Coordinate System for the Plane by Triangular Symmetry, One-Dimensional Optimal System for 2D Rotating Ideal Gas, Minimal Energy Configurations of Finite Molecular Arrays, Noether-Like Operators and First Integrals for Generalized Systems of Lane-Emden Equations), algorithms, programs and software analysis (Algorithm for Neutrosophic Soft Sets in Stochastic Multi-Criteria Group Decision Making Based on Prospect Theory, On a Reduced Cost Higher Order Traub-Steffensen-Like Method for Nonlinear Systems, On a Class of Optimal Fourth Order Multiple Root Solvers without Using Derivatives) to specific subjects (Facility Location Problem Approach for Distributed Drones, Parametric Jensen-Shannon Statistical Complexity and Its Applications on Full-Scale Compartment Fire Data). Diverse topics are thus combined to map out the mathematical core of practical problems
    corecore