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Preface to ”Symmetry in Applied Mathematics”

The Symmetry in Applied Mathematics special issue of Symmetry Journal reprinted here is

collecting fourteen papers dealing with various subjects under the auspices of using symmetry

for solving problems. The special issue called for articles from a broad interdisciplinary area,

since ’applied mathematics’ is a specific form of mathematics that involves creating and use of

mathematical models to map out the mathematical core of a practical problem. There is probably

no scientific field in which applied mathematics has not made its necessary presence. On the

other hand, symmetry is about identification and use invariants to any of various transformations

for any paired dataset and characterizations associated with. Inside applied mathematics,

symmetry may work as a powerful tool for problems reduction and solving. Applications include

probability theory (all probabilistic reasoning is ultimately based on judgments of symmetry),

fractals (geometry), supersymmetry (physics), nanostructures (chemistry), taxonomy (biology),

bilateral symmetry (medicine), and the list can go on. The call for papers was closed on

November 15, 2019. The papers reports from mathematical theoretical results (Khovanov Homology

of Three-Strand Braid Links https://www.mdpi.com/2073-8994/10/12/720, Volume Preserving

Maps Between p-Balls https://www.mdpi.com/2073-8994/11/11/1404, Generation of Julia and

Mandelbrot Sets via Fixed Points https://www.mdpi.com/2073-8994/12/1/86) applications in

physics or chenistry (A Continuous Coordinate System for the Plane by Triangular Symmetry

https://www.mdpi.com/2073-8994/11/2/191, One-Dimensional Optimal System for 2D Rotating

Ideal Gas https://www.mdpi.com/2073-8994/11/9/1115, Minimal Energy Configurations of Finite

Molecular Arrays https://www.mdpi.com/2073-8994/11/2/158), designing of the algorithms and

their efficiency (Noether-Like Operators and First Integrals for Generalized Systems of Lane-Emden

Equations https://www.mdpi.com/2073-8994/11/2/162, Algorithm for Neutrosophic Soft Sets in

Stochastic Multi-Criteria Group Decision Making Based on Prospect Theory https://www.mdpi.

com/2073-8994/11/9/1085, On a Reduced Cost Higher Order Traub-Steffensen-Like Method for

Nonlinear Systems https://www.mdpi.com/2073-8994/11/7/891, On a Class of Optimal Fourth

Order Multiple Root Solvers without Using Derivatives https://www.mdpi.com/2073-8994/11/

12/1452), to specific uses (Facility Location Problem Approach for Distributed Drones https://

www.mdpi.com/2073-8994/11/1/118, Parametric Jensen-Shannon Statistical Complexity and Its

Applications on Full-Scale Compartment Fire Data https://www.mdpi.com/2073-8994/12/1/22)

and to probability and statistics (The Asymmetric Alpha-Power Skew-t Distribution https://www.

mdpi.com/2073-8994/12/1/82, A Test Detecting the Outliers for Continuous Distributions Based on

the Cumulative Distribution Function of the Data Being Tested https://www.mdpi.com/2073-8994/

11/6/835).

Lorentz Jäntschi, Sorana D. Bolboacă

Editors
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Abstract: Khovanov homology is a categorication of the Jones polynomial. It consists of graded chain
complexes which, up to chain homotopy, are link invariants, and whose graded Euler characteristic is
equal to the Jones polynomial of the link. In this article we give some Khovanov homology groups of
3-strand braid links Δ2k+1 = x2k+2

1 x2x2
1x2

2x2
1 · · · x2

2x2
1x2

1, Δ2k+1x2, and Δ2k+1x1, where Δ is the Garside
element x1x2x1, and which are three out of all six classes of the general braid x1x2x1x2 · · · with
n factors.

Keywords: Khovanov homology; braid link; Jones polynomial

MSC: 57M27; 55N20

1. Introduction

Khovanov homology was introduced by Mikhail Khovanov in 2000 in Reference [1] as a
categorification of the Jones polynomial, which was introduced by Jones in [2]. His construction,
using geometrical and topological objects instead of polynomials, was so interesting that it offered a
completely new approach to tackle problems in low-dimensional topology.

Khovanov homology plays a vital role in developing several important results in the field of
knot theory. Soon after the discovery of Khovanov homology, Bar-Natan proved in Reference [3]
that Khovanov’s invariant is stronger than the Jones polynomial. He also proved that the graded
Euler characteristic of the chain complex of a link L is the un-normalized Jones polynomial of that
link. In 2005, Bar-Natan extended the Khovanov homology of links to tangles, cobordisms, and
two-knots [4]. In [5] Bar-Natan gave a fast way of computing the Khovanov homology. In 2013,
Ozsvath, Rasmussen, and Szabo introduced the odd Khovanov homology by using exterior algebra
instead of symmetric algebra [6]. Gorsky, Oblomkov, and Rasmussen gave some results on stable
Khovanov homology of torus links in Reference [7]. Putyra introduced a triply graded Khovanov
homology and used it to prove that odd Khovanov homology is multiplicative with respect to disjoint
unions and connected sums of links Reference [8]. Manion gave rational Khovanov homology of
three-strand pretzel links in 2011 [9]. Nizami, Mobeen, and Ammara gave Khovanov homology of
some families of braid links in Reference [10]. Nizami, Mobeen, Sohail, and Usman gave Khovanov
homology and graded Euler characteristic of 2-strand braid links in [11].

In Reference [12], Marko used a long exact sequence to prove that the Khovanov homology
groups of the torus link T(n; m) stabilize as m → ∞. A generalization of this result to the context of

Symmetry 2018, 10, 720; doi:10.3390/sym10120720 www.mdpi.com/journal/symmetry1



Symmetry 2018, 10, 720

tangles came in the form of Reference [13], where Lev Rozansky showed that the Khovanov chain
complexes for torus braids also stabilize (up to chain homotopy) in a suitable sense to categorify the
Jones–Wenzl projectors. At roughly the same time, Benjamin Cooper and Slava Krushkal gave an
alternative construction for the categorified projectors in Reference [14]. These results, along with
connections between Khovanov homology, HOMFLYPT homology, Khovanov–Rozansky homology,
and the representation theory of rational Cherednik algebra (see [15]) have led to conjectures about
the structure of stable Khovanov homology groups in limit Kh(T(n; 1)) (see [15], and results along
these lines in Reference [16]). More recently, in Reference [17], Robert Lipshitz and Sucharit Sarkar
introduced the Khovanov homotopy type of a link L. This is a link invariant taking the form of a
spectrum whose reduced cohomology is the Khovanov homology of L.

Although computing the Khovanov homology of links is common in the literature, no general
formulae have been given for all families of knots and links. In this paper, we give Khovanov homology
of the three-strand braid links Δ2k+1, Δ2k+1x2, and Δ2k+1x1, where Δ is the Garside element x1x2x1.
Particularly, we focus on the top homology groups.

2. Braid Links

Definition 1. A knot is a simple, closed curve in the three-space. More precisely, it is the image of an injective,
smooth function from the unit circle to R3 with a nonvanishing derivative [18]. You can see some knots in
Figure 1:

Trivial knot Trefoil knot Figure-eight knot

Figure 1. Knots.

Definition 2. An m-component link is a collection of m nonintersecting knots [18]. A trivial two-component
link and the Hopf link are given in Figure 2:

Trivial two-component link Hopf link

Figure 2. Links.

Definition 3. Two links L1 and L2 are said to be isotopic or equivalent if there is a smooth map F:
[0, 1]× S1 → R3, which confirms that Ft is a link for all t ∈ [0, 1] and that that F0 = L1 and F1 = L2. Map F
is called isotopy. By the isotopy class of a link L, denoted [L], we mean the collection of all links that are isotopic
to L.

Since it is hard to work with links in R3, people usually prefer working with their projections on a
plane. These projections should be generic, which means that all multiple points are double points
with a clear information of over- and undercrossing, as you can see in Figure 3. Such a projection of a
link is called the diagram of the link.
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Figure 3. Crossing.

Theorem 1. (Reidemeister, [19]). Let D1 and D2 be two diagrams of links L1 and L2. Then, links L1 and L2

are isotopic if and only if D1 is transformed into D2 by planar isotopies and by a finite sequence of three local
moves represented in Figure 4:

R1 R2

R3

Figure 4. Reidemeister moves.

Definition 4. A link invariant is a function that remains constant on all elements in an isotopy class of a link.

Remark 1. A function to qualify as a link invariant should be invariant under the Reidemeister moves.

Definition 5. An n-strand braid is a collection of n nonintersecting, smooth curves joining n points on a plane
to n points on another parallel plane in an arbitrary order such that any plane parallel to the given planes
intersects exactly n number of curves [20]. The smooth curves are called the strands of the braid. You can see a
2-strand braid in Figure 5:

Figure 5. 2-strand braid.

Definition 6. The product of two n-strand braids α and β, denoted by αβ, is defined by putting β below α and
then gluing their common endpoints.

3
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Definition 7. A braid is said to be elementary if it consists of just one crossing. The ith elementary braid,
denoted by xi, is given in Figure 6:

Figure 6. Elementary braid xi.

Remark 2. Each braid is a product of elementary braids.

Definition 8. The closure of a braid β, denoted by β̂, is defined by connecting its lower endpoints to its
corresponding upper endpoints with smooth curves, as you can see in Figure 7.

β β̂

Figure 7. Braid closure.

Remark 3.

1 All braids are oriented from top to bottom.
2 From now onward, by braid β we mean its closure β̂, which is actually a link.

An important result by Alexander, connecting links and braids, is:

4
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Theorem 2. (Alexander [21]). Each link is a closure of some braid.

Definition 9. The 0- and 1-smoothings of crossing are defined, respectively, by and .

Definition 10. A collection of disjoint circles obtained by smoothing out all the crossings of a link L is called the
Kauffman state of the link [22].

3. Homology

Definition 11. Let V =
⊕

n Vn, be a graded vector space with homogeneous components {Vn} of degree n. The
graded dimension of V is the power series q dim V: = ∑n qn dim Vn.

Definition 12. The degree of the tensor product of graded vector space V1 ⊗V2 is the sum of the degrees of the
homogeneous components of graded vector spaces V1 and V2.

Remark 4. In our case, the graded vector space V has the basis < v+, v− > with degree p(v±) = ±1 and the
q-dimension q + q−1.

Definition 13. The degree shift .{l} operation on a graded vector space V =
⊕

Vn is defined by(
V.{l}

)
n
= Vn−l .

Construction of Chain Groups: Let L be a link with n crossings, and let all crossings be labeled from
1 to n. Arrange all its 2n Kauffman states into columns 1, 2, . . . , n so that the rth column contains all
states having r number of 1-smoothings in it. To every stat α in the rth column we assign graded
vector space Vα(L) := V⊗m{r}, where m is the number of circles in α. The rth chain group, denoted by
[[L]]r :=

⊕
α:r=|α| Vα(L), is the direct sum of all vector spaces corresponding to all states in the

rth column.

Definition 14. The chain complex C of graded vector spaces Cr is defined as:

. . . −→ Cr+1 dr+1
−−→ Cr dr

−→ Cr−1 dr−1
−−→ . . .

such that dr ◦ dr+1 = 0 for each r.

In a system of converting the chain group into a complex, we use the maps between graded vector
spaces to satisfy d ◦ d. For this purpose we can label the edges of the cube {0, 1}χ by the sequence ξ

ε{0, 1, �}χ, where ξ contains only one � at a time. Here, � indicates that we change a 1-smoothing to
a 0-smoothing. The maps on the edges is denoted by dξ , the height of edges |ξ|. The direct sum of
differentials in the cube along the column is

dr := ∑
|ξ|=r

(−1)ξ dξ .

Now, we discuss the reason behind the sign of (−1)ξ . As we want from the differentials to satisfy
d ◦ d = 0, the maps dξ have to anticommute on each of the vertex of the cube. A way to do this is by
multiplying edges dξ by (−1)ξ := (−1)∑i<j ξi , where j is the location of � in ξ.

For better understanding, please see the n-cube of trefoil knot x−3
1 in Figure 8.

5



Symmetry 2018, 10, 720

x−3
1 V{1}

d0�1←−−
V⊗2{2}

V⊗2

d0�0←−−
V{1} V⊗2{2}

d1�1←−−
V⊗3{3}

V{1}
d1�0←−−

V⊗2{2}

Figure 8. n-cube of x−3
1 .

It is useful to note that the ordered basis of V is
〈
v+, v−

〉
and the ordered basis of V ⊗ V is〈

v+ ⊗ v+, v− ⊗ v+, v+ ⊗ v−, v− ⊗ v−
〉
.

Definition 15. Linear map m : V ⊗ V → V that merges two circles into a single circle is defined as
m(v+ ⊗ v+) = v+, m(v+ ⊗ v−) = v−, m(v− ⊗ v+) = v− and m(v− ⊗ v−) = 0.

Map Δ : V → V ⊗ V that divides a circle into two circles is defined as Δ(v+) = v+ ⊗ v− + v− ⊗ v+ and
Δ(v−) = v− ⊗ v−; see Figure 9.

Figure 9. m and Δ maps.

Definition 16. The homology group associated with the chain complex of a link L is defined asHr(L) = ker dr

im dr+1 .

Definition 17. The kernel of the map dr : V⊗r−1 → V⊗r, denoted by ker dr, is the set of all elements of V⊗r−1

that go to the zero element of V⊗r. The elements of the kernel are called cycles, while the elements of im dr+1 are
called boundaries.

Remark 5. Note that the image of the chain complex of dr+1 is a subset of kernel dr as, in general, dr ◦ dr+1 = 0.

Definition 18. The graded Poincaré polynomial Kh(L) in variables q and t of the complex is defined as

Kh(L) := ∑
r

trqdimHr(L).

6
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Theorem 3. (Khovanov [1]). The graded dimension of homology groupsHr(L) are link invariants. The graded
Poincaré polynomial Kh(L) is also a link invariant and Kh(L)

∣∣
t=−1 = Ĵ(L).

3.1. Homology of x−3
1

Now, we give the Khovanov homology of link x−3
1 = :

1. The n-cube: The 3-cube of x−3
1 is given in Figure 10:

V{1}
←

V⊗2{2}

V⊗2

←
V{1} V⊗2{2}

←
V⊗3{3}

V{1}
←

V⊗2{2}

Figure 10. The 3-cube of x−3
1 .

2. Chain complex: The chain complex of x̂3
1 is

0 d4
−→ V⊗3 d3

−→ ⊕3V⊗2 d2
−→ ⊕3V d1

−→ V⊗2 d0
−→ 0.

3. Ordered basis of the chain complex: The following are the vector spaces of the chain complex
along with their ordered bases:

V ⊗ V ⊗ V =
〈
v+ ⊗ v+ ⊗ v+, v− ⊗ v+ ⊗ v+, v+ ⊗ v− ⊗ v+, v+ ⊗ v+ ⊗ v−, v− ⊗ v− ⊗ v+, v− ⊗

v+ ⊗ v−, v+ ⊗ v− ⊗ v−, v− ⊗ v− ⊗ v−
〉

(V ⊗ V) ⊕ (V ⊗ V) ⊕ (V ⊗ V) =
〈
(v+ ⊗ v+, 0, 0), (0, v+ ⊗ v+, 0), (0, 0, v+ ⊗ v+), (v− ⊗

v+, 0, 0), (0, v− ⊗ v+, 0), (0, 0, v− ⊗ v+), (v+ ⊗ v−, 0, 0), (0, v+ ⊗ v−, 0), (0, 0, v+ ⊗ v−), (v− ⊗
v−, 0, 0)(0, v− ⊗ v−, 0), (0, 0, v− ⊗ v−)

〉
V ⊕V ⊕V =

〈
(v+, 0, 0), (0, v+, 0), (0, 0, v+), (v−, 0, 0), (0, v−, 0), (0, 0, v−)

〉
V ⊗V =

〈
v+ ⊗ v+, v− ⊗ v+, v+ ⊗ v−, v− ⊗ v−

〉

7
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4. Differential maps in matrix form: Differential map d3
(

V1 ⊗V2 ⊗V3

)
=
(

m(v1 ⊗ v2)⊗ v3, v1 ⊗

m(v2 ⊗ v3), v2 ⊗m(v1 ⊗ v3)
)

in terms of a matrix is:

d3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and map d2
(

V1 ⊗ V2, V3 ⊗ V4, V5 ⊗ V6

)
=

(
m(v3 ⊗ v4) − m(v1 ⊗ v2), m(v5 ⊗ v6) − m(v1 ⊗

v2), m(v5 ⊗ v6)−m(v3 ⊗ v4)
)

is d2 =

(
A 0 0 0
0 A A 0

)
, where A =

⎛⎜⎝ −1 1 0
−1 0 1
0 −1 1

⎞⎟⎠ . Also,

d1
(

V1, V2, V3

)
= Δ(v1)− Δ(v2) + Δ(v3) is d1 =

⎛⎜⎜⎜⎝
0 0 0 0 0 0
1 −1 1 0 0 0
1 −1 1 0 0 0
0 0 0 1 −1 1

⎞⎟⎟⎟⎠ .

5. Khovanov Homology: On solving d3x = 0 or⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

x8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0,

8
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we receive x1 = x2 = x3 = x4 = 0, x2 + x3 = 0, x3 + x4 = 0, x2 + x4 = 0, x6 + x7 = 0, x5 + x6 = 0,

and x5 + x7 = 0. So the kernel of d3 =
〈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
〉

. Similarly, the image of d3 is

〈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
1
0
0
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
1
0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉
.

Thus,

H3(x̂3
1) =

ker d3

im d4 =
Z(v−⊗v−⊗v−)

0
= Z(v−⊗v−⊗v−).

To compute the homology of the next level, we first cancel out the terms that appear in both ker d2

and im d3, and then use a special trick: Note that the last three summands of ker d2 make up all
of Z3

(v−⊗v−)
, where the last three summands of im d3 span the subspace of Z3

(v−⊗v−)
generated by

vectors (0, 1, 1), (1, 1, 0) and (1, 0, 1). Now, form a matrix whose columns are these vectors. Since
the eigenvalues of this matrix are −1, 1, and 2, we can write:

Z3

〈(0, 1, 1), (1, 1, 0), (1, 0, 1)〉 =
Z

2Z
⊕ Z

Z1
⊕ Z

Z−1
= Z2.

Reducing the remaining matrices of kernel of d2 and image of d3 into reduced row echelon form,
quotient ker d2

im d3 becomes isomorphic to Z. Hence,

H2(x̂3
1) =

ker d2

im d3 = Z⊕Z2.

The range of d2 is Z(v+ ,v+ ,0) ⊕ Z(v+ ,0,−v+) ⊕ Z(0,v+ ,v+) ⊕ Z(v− ,v− ,0) ⊕ Z(v− ,0,−v−) ⊕ Z(0,v− ,v−) and
the kernel of d1 is Z(v+ ,v+ ,0) ⊕ Z(0,v+ ,v+) ⊕ Z(v+ ,0,−v+) ⊕ Z(v− ,v− ,0) ⊕ Z(0,v− ,v−) ⊕ Z(v− ,0,−v−).
Since ker d1 = im d2,

H1(x̂3
1) = 0.

It is clear from the chain complex that the kernel of d0 is the full space V ⊗V.

H0(x̂3
1) =

Z(v+⊗v+) ⊕Z(v−⊗v+) ⊕Z(v+⊗v−) ⊕Z(v−⊗v−)

Z(v−⊗v++v+⊗v−) ⊕Z(v−⊗v−)
= Z(v+⊗v+) ⊕Z.

9
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3.2. Homology of Δ2k+1

We now compute the homology of braid link Δ2k+1, where Δ = x1x2x1. The canonical form of
this braid is Δ2k+1 = x2k+2

1 x2x2
1x2

2x2
1 · · · x2

2x2
1x2

1, having 2k + 2 factors; you can see Δ3 in Figure 11.

Δ3

Figure 11. Δ3.

The co-chain complex of the link Δ2k+1 is 0 d−1
−−→ V⊗3 d0

−→ ⊕6k+3V⊗2 d1
−→

⊕
(2k+1

1 )(4k+2
1 )

V⊗1 ⊕
(2k+1

1 )+(4k+2
2 )

V⊗3 d3
−→ ⊕

(2k+1
1 )(4k+2

2 )+(2k+1
2 )(4k+2

1 )
V⊗1 ⊕

(2k+1
1 )+(4k+2

2 )
V⊗3 d4

−→ . . .

d6k+1
−−−→ ⊕

(4k+2
1 )

V⊗2k+1 ⊕
(2k+1

1 )
V⊗2k+3 d6k+2

−−−→ V⊗2k+2 d6k+3
−−−→ 0.

We now represent the differential maps in terms of matrices. The matrix representing differential
d0 has order 24k + 12× 8 and is

d0 =

⎛⎜⎜⎜⎝
A 0 0 0 0 0 0 0
0 A B 0 0 0 0 0
0 0 C A 0 0 0 0
0 0 0 0 C A B 0

⎞⎟⎟⎟⎠ .

Here, each matrix A, B, and C has a (6k + 3)× 1 order:

A =
(

1 1 1 1 1 1 1 · · · 1
)t

B =
(

0 1 0 0 1 0 0 · · · 1 0
)t

C =
(

1 0 1 1 0 1 1 · · · 0 1
)t

Since ker d0 = Zv−⊗v−⊗v− ⊕ Zv+⊗v−⊗v−−v−⊗v+⊗v−+v+⊗v−⊗v− and im d−1 = 0, the homology at
this level is

H0(Δ2k+1) = Zv−⊗v−⊗v− ⊕Zv+⊗v−⊗v−−v−⊗v+⊗v−+v+⊗v−⊗v− .

10
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Now, we go for differential map d1. The matrix that represents it has an order of 20(6k2 + 3)×
4(6k + 3) and is

d1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1 0 0 0
0 R1 R1 0
0 0 0 0
0 0 0 0
0 0 0 0

R2 0 0 0
R2 0 0 0
0 R2 0 0
0 0 R2 0
0 0 0 R2

0 R3 R4 0
...

...
. . .

...
0 0 Rn−1 Rn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The order of each of the matrix Ri is (12k + 6)× (6k + 3):

R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 . . . 0 0
1 0 0 0 −1 0 . . . 0
1 0 0 0 0 0 . . . −1
0 1 −1 0 0 0 . . . 0
0 1 0 −1 0 0 . . . 0
0 1 0 0 0 −1 . . . 0
0 1 0 0 0 0 . . . −1
...

...
...

...
...

...
...

...
0 0 0 0 0 . . . 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

R2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 . . . 0 0
1 0 . . . −1 0 0 0 0
1 0 . . . 0 0 −1 0 0
1 0 . . . 0 0 0 −1 0
1 0 . . . 0 0 0 0 −1
0 1 0 0 −1 0 . . . 0
0 1 . . . 0 0 −1 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

R3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 . . . 0 0
1 0 . . . −1 0 0 0 0
1 0 . . . 0 0 −1 0 0
1 0 . . . 0 0 0 −1 0
1 0 . . . 0 0 0 0 −1
0 0 1 −1 0 0 . . . 0
0 0 1 0 0 −1 . . . 0
0 0 1 0 . . . −1 0 0
0 0 1 0 . . . 0 0 −1
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

11
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R4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
0 1 0 0 −1 0 . . . 0
0 1 . . . 0 0 −1 0 0
...

...
...

...
...

...
...

...
0 0 0 0 1 0 . . . −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and, at the end, all rows of matrix Rn are zero except for the last row, which is(
0 . . . 0 0 1 0 . . . −1

)
.

Here, ker d1 = Z(v+⊗v++v+⊗v++v+⊗v++v+⊗v++v+⊗v++v+⊗v++v+⊗v++v+⊗v+)
⊕Z(v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−)
⊕Z(v−⊗v++v−⊗v+−v+⊗v−−v+⊗v−−v+⊗v−)
⊕Z(v+⊗v−+v+⊗v−+v+⊗v−+v−⊗v++v−⊗v++v−⊗v++v−⊗v++v−⊗v+)
⊕Z(v−⊗v−+v−⊗v−) ⊕Z(v−⊗v−+v−⊗v−+v−⊗v−+v−⊗v−+v−⊗v−)
and
im d0 = Z(v+⊗v+) ⊕Z(v+⊗v−) ⊕Z(v−⊗v+) ⊕Z(v−⊗v−) ⊕Z(v+⊗v+) ⊕Z(v+⊗v−) ⊕Z(v−⊗v+).
Since the number of Z spaces appear in the kernel of d1, it is exactly the same as the image of d0,
H1(Δ2k+1) = 0.
The image of d1 is obvious. We just need the kernel of d2. The matrix that represents d2 has an order of
(26k+3 + 22k+2)(6k + 5)× 20(6k2 + 3) and is⎛⎜⎝

S1 S2 S3 S4 S5 S6 S7 S8 S9 . . . S20

S21 S21 S22 S23 S24 S25 S26 S27 S28 . . . S40

...
...

...
...

...
...

...
...

...
...

...
Sn−19 Sn−18 Sn−17 Sn−16 Sn−15 Sn−14 Sn−13 Sn−12 Sn−11 . . . Sn

⎞⎟⎠ .

Here, the order of each Si is (4k2 + 3)× (6k2 + 3), and is:

S1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 1
1 0 0 0 0 0 . . . 1
0 0 0 0 0 0 . . . 0
0 0 −1 0 0 0 . . . 0
1 0 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
1 0 0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

S3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 . . . 0
0 −1 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 1
0 0 −1 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, S4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
−1 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 −1 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

...

12
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Sn−2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 −1 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Sn−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
−1 0 0 0 0 0 . . . −1
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 −1 0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Sn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
−1 0 0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus,H2(Δ2k+1) = Z⊕Z. Differential d6k+2 of order (22k+2)× (2k + 1)(22k+2 + 22k+3) is

d6k+2 =
(

Y1 Y2 Y3 Y4 Y5 . . . Y6k+3

)
,

where Yi are matrices, each having an order of 22k+2 × 22k+2 :

Y1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 1 0 · · · 0
0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 1 −1 0 −1 · · · 0
1 0 1 −1 0 −1 · · · 0
1 0 0 0 0 0 · · · −1
0 0 0 0 0 0 · · · −1
...

...
...

...
...

...
...

...
0 0 0 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Y2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 0 0 0 0
−1 0 · · · 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
0 1 · · · 1 0 −1 0 0 1
0 1 · · · 1 0 0 1 −1 0
0 0 · · · 0 1 0 1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Y3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 −1 0 0 0 0 0 · · ·
0 0 0 0 0 −1 0 0 · · ·
...

...
...

...
...

...
...

...
...

−1 1 0 0 0 0 0 0 · · ·
−1 1 0 1 0 0 1 −1 · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Y4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
0 1 0 0 −1 0 0 · · ·
0 0 0 0 0 0 0 · · ·
−1 0 −1 1 0 0 0 · · ·
−1 0 −1 1 0 0 0 · · ·

...
...

...
...

...
...

...
...

0 0 0 0 0 0 1 · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

...

Yi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

0 −1 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 −1 1 −1 0 · · ·
0 0 1 −1 0 0 0 −1 · · ·
−1 0 0 0 0 0 0 0 · · ·

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

...

Y6k+3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 −1 1 −1 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here ker d6k+3 is the full space V⊗2k+1 and the im d6k+2 is

Z(v+⊗v+⊗v+⊗v+) ⊕Z(v+⊗v−⊗v+⊗v++v−⊗v+⊗v+⊗v+)
⊕Z(v+⊗v+⊗v−⊗v++v+⊗v−⊗v+⊗v+)Z(v+⊗v−⊗v+⊗v+)
⊕Z(v+⊗v−⊗v+⊗v−+v−⊗v+⊗v+⊗v−) ⊕Z(v+⊗v+⊗v−⊗v−+v+⊗v−⊗v+⊗v−)
⊕Z(v+⊗v+⊗v+⊗v−) ⊕Z(v+⊗v−⊗v−⊗v++v−⊗v+⊗v−⊗v+)
⊕Z(v+⊗v−⊗v+⊗v−+v−⊗v+⊗v+⊗v−) ⊕Z(v+⊗v−⊗v−⊗v+) ⊕Z(v−⊗v−⊗v+⊗v+)

⊕Z(v+⊗v+⊗v−⊗v+) ⊕Z(v−⊗v+⊗v−⊗v++v−⊗v−⊗v+⊗v+)
⊕Z(v+⊗v−⊗v−⊗v−+v−⊗v+⊗v−⊗v−) ⊕Z(v+⊗v−⊗v−⊗v−) ⊕Z(v−⊗v−⊗v+⊗v−)
⊕Z(v−⊗v−⊗v−⊗v+) ⊕Z(v+⊗v−⊗v+⊗v−) ⊕Z(v−⊗v−⊗v−⊗v−)

14
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⊕Z(v+⊗v+⊗v−⊗v−) ⊕Z(v−⊗v+⊗v+⊗v−)
⊕Z(v−⊗v+⊗v−⊗v+) ⊕Z(v−⊗v+⊗v−⊗v−).

Thus,H6k+3(Δ3) = 0, and we finally obtain the result:

Theorem 4. The Khovanov homology of the link Δ2k+1 is

Hi(Δ2k+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 6k ≤ i ≤ 3
Z⊕Z i = 2
0 i = 1
Z⊕Z i = 0

The following result gives some homology groups of Δ2k+1x2 = x2k+3
1 x2x2

1x2
2x2

1 · · · x2
2x2

1x2
1.

Theorem 5.

Hi(Δ2k+1x2) =

⎧⎪⎨⎪⎩
Z⊕Z i = 0
0 i = 1
0 i = 6k + 4

Proof. The cochain complex of link Δ2k+1x2 is

0 d−1
−−→ V⊗3 d0

−→ ⊕6k+4V⊗2 d1
−→ ⊕

(2k+2
1 )(4k+2

1 )
V⊗1 ⊕

(2k+2
2 )+(4k+2

2 )
V⊗3

d2
−→ ⊕

(2k+2
1 )(4k+2

2 )+(2k+2
2 )(4k+2

1 )
V⊗2 ⊕

(2k+2
1 )+(4k+2

1 )
V⊗4 d3

−→

. . . d6k+2
−−−→ ⊕

(2k+2
1 )

V⊗2k ⊕
(4k+2

1 )
V⊗2k+2 d6k+3

−−−→ V⊗2k+1 d6k+4
−−−→ 0

Differential d0 having an order of 24k + 16× 8 is

d0 =

⎛⎜⎜⎜⎝
A 0 0 0 0 0 0 0
0 A B 0 0 0 0 0
0 0 C A 0 0 0 0
0 0 0 0 C A B 0

⎞⎟⎟⎟⎠ ,

where A, B, and C, each having an order of (6k + 4)× 1, are:

A =
(

1 1 1 1 1 1 1 · · · 1
)t

B =
(

0 1 0 0 1 0 0 · · · 0 1
)t

C =
(

1 0 1 1 0 1 1 · · · 1 0
)t

Since im d−1 = 0 and ker d0 = Z(v+⊗v−⊗v−−v−⊗v+⊗v−+v−⊗v−⊗v+) ⊕ Z(v−⊗v−⊗v−),
H0(Δ2k+1x2) = Z(v+⊗v−⊗v−−v−⊗v+⊗v−+v−⊗v−⊗v+) ⊕Z(v−⊗v−⊗v−).

15
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Now, differential d1 of an order of 18(6k2 + 6)× 4(6k + 4) is

d1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 −M1 0 0
M1 0 −M1 0
M1 0 0 −M1

M2 −M2 0 0
M2 0 −M2 0
M3 −M3 0 0
M3 0 −M3 0
0 M4 −M4 0
0 M4 0 −M4
...

...
. . .

...
0 0 Mn−1 Mn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the order of each Mi is (16k + 2)× (6k + 4) and is

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 1 0 . . . 0
0 −1 −1 0 0 1 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
−1 0 0 0 0 0 . . . 0
−1 0 0 0 0 0 . . . 0
0 −1 0 0 0 0 . . . 1
...

...
...

...
...

...
...

...
0 0 0 −1 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . −1 0 . . . 0 0
0 . . . 0 0 0 0 0
0 . . . 0 −1 0 0 0
0 . . . 0 0 −1 0 0
0 . . . 0 0 −1 0 0
0 . . . −1 0 . . . 0 0
0 . . . 0 −1 −1 0 0
...

...
...

...
...

...
...

0 . . . 0 −1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . −1 0 0 0 0 0 0
0 . . . 0 −1 −1 0 0 0 0
0 . . . 0 0 0 0 0 0 0
0 . . . −1 0 0 1 0 0 0
0 . . . −1 0 0 1 0 0 0
0 . . . 0 0 0 0 0 0 −1
0 . . . 0 0 0 0 0 0 −1
...

...
...

...
...

...
...

... 0
0 . . . 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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M4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 . . . . . . . . . 1 0
0 −1 −1 0 . . . . . . . . . 0 1
0 0 0 0 . . . . . . . . . 0 0
0 0 0 0 . . . . . . . . . 0 0
...

...
...

...
...

...
...

... 0
0 −1 0 0 . . . . . . . . . 0 0
0 0 −1 0 . . . . . . . . . 0 0
0 0 0 −1 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and Mn =
(

0 . . . −1 0 −1 0 . . . −1
)

.

In this case, the kernel of d1 and image of d0 contain the same number of Z spaces. So,
H1(Δ2k+1x2) = 0.

Finally, the differential of d6k+4 of an order of 22k+1 × (2k + 3)(22k)(22k+1) is

d6k+4 =
(

Y1 Y2 Y3 Y4 . . . Yi

)
,

where each Yi has an order of 22k+1 × 6k + 4 and is

Y1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 −1 0 0 1 0 0 −1 1
0 0 0 0 0 0 0 0 0 0
...

...
... 1 −1

... −1 1
...

...
...

...
... 1 −1

... −1 1
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Y2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
1 1 −1 0 0 1 0 0 −1 1
...

...
...

...
...

...
...

...
...

...
...

...
... 1 −1

... −1 1
...

...
...

...
... 1 −1

... −1 1
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Y3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
−1 1 −1 0 0 1 0 0 −1 1

...
...

...
...

...
...

...
...

...
...

...
...

... 1 −1 0 −1 1
...

...
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Y4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
−1 1 −1 0 0 1 0 0 −1 1

...
...

...
...

...
...

...
...

...
...

0 0 0 1 −1 0 −1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

...

and Yi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

−1 1 −1 0 0 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is evident that ker d6k+4 is full space V⊗2k+1. Moreover, im d6k+3 is also V⊗2k+1.
We also get the Khovanov homology of braid link Δ2k+1x1:

Theorem 6.

Hi(Δ2k+1x1) =

⎧⎪⎨⎪⎩
Z⊕Z i = 0
0 i = 1
0 i = 6k + 1

Proof. The proof is similar to the proof of Theorem 5: Obtain all states, organized them in columns,
assign a graded vector space to each state, form chain groups as a direct sum of all vector spaces along
a column, and form the chain complex. Then, write the differential maps in terms of matrices using the
ordered bases of the chain groups, and compute their kernels and images. Finally, find the Khovanov
homology groups using the relationHr(L) = ker dr

im dr+1 .

4. Conclusions

Although computing the Khovanov homology of links is common in the literature, no general
formulae have been given for all families of knots and links. In this paper, we considered a general
three-strand braid x1x2x1x2 · · · , which, depending on the powers of Garside element Δ = x1x2x1,
is divided into six subclasses, and gave the Khovanov homology of Δ2k+1, Δ2k+1x2, and Δ2k+1x1

(To learn more about these classes, see Reference [23–26].) The results particularly cover the 0th, 1st,
and top homology groups of these classes, and all homology groups, in general, of link Δ2k+1. We hope
the results will help classifying links, and in studying the important properties of these links.
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Abstract: We construct a volume preserving map Up from the p-ball Bp(r) =
{

x ∈ R3, ‖x‖p ≤ r
}

to
the regular octahedron B1(r′), for arbitrary p > 0. Then we calculate the inverse U−1

p and we also
deduce explicit expressions for U∞ and U−1

∞ . This allows us to construct volume preserving maps
between arbitrary balls Bp(r) and Bp′(r̃), and also to map uniform and refinable grids between them.
Finally we list some possible applications of our maps.

Keywords: equal volume projection; hierarchical grid

1. Introduction

The p-norms in R3 have applications in many branches of mathematics, physics and computer
science. For p ≥ 1, the p-norm of the vector x = (x, y, z) ∈ R3 (also called Lp-norm) is defined as

‖x‖p = (|x|p + |y|p + |z|p)1/p . (1)

For p = 2, we arrive at the Euclidean norm, and when p → ∞ the norm is called the infinity norm
or the maximum norm and is given by

‖x‖∞ = max(|x|, |y|, |z|).

When p ∈ (0, 1), Formula (1) does not define a norm, because the triangle inequality is
not satisfied.

2. Preliminaries

For p > 0, let Bp(r) be the 3D p-ball of radius r > 0 centered at the origin, defined by

Bp(r) =
{

x ∈ R
3, ‖x‖p ≤ r

}
.

For finite p the parametric equations of Bp(r) are

x = ρ |cos θ|2/p |sin ϕ|2/p sgn(cos θ) sgn(sin ϕ),

y = ρ |sin θ|2/p |sin ϕ|2/p sgn(sin θ) sgn(sin ϕ),

z = ρ |cos ϕ|2/p sgn(cos ϕ),

with ρ ∈ [0, r], θ ∈ [0, 2π), ϕ ∈ [0, π].
For p = 1 the ball B1(r) is the regular octahedron with the vertices on the axes, at distance r from

the origin. For p = ∞, the set B∞(r) is the cube with edge of length 2r and for p = 2 the region B2(r)
represents the Euclidean ball. For p > 2 the balls are called superellipsoids and they are used in computer

Symmetry 2019, 11, 1404; doi:10.3390/sym11111404 www.mdpi.com/journal/symmetry21
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graphics (see [1,2], where the author uses the name superquadrics to refer to both superellipsoids and
supertoroids). Some examples of balls Bp(r), for different values of p are given in Figure 1.

Figure 1. Some balls Bp(r) for p = 0.5, p = 0.75, p = 1 (first line) and p = 1.2, p = 2 and p = 2.5
(second line), respectively.

The volume of the 3D p-ball is

Vol(Bp(r)) = 8
∫ r

0

∫ (rp−xp)1/p

0

∫ (rp−xp−yp)1/p

0
dz dy dx

= 8r3 Γ3(1/p + 1)
Γ(3/p + 1)

.

We notice that the radius r′ of the regular octahedron B1(r′) with the same volume as the p-ball
Bp(r) must be

r′ = rcp, with cp =
3
√

6
Γ(1/p + 1)

3
√

Γ(3/p + 1)
.

We will construct a map Up : Bp(r)→ B1(r′) which preserves the volume, i.e., Up satisfies

Vol(D) = Vol(Up(D)), for all domains D ⊆ Bp(r). (2)

Consider the bijections F1,p, F2,p : [0, 1] → [0, 1], which are particular cases of the regularized
incomplete Beta function (also known in statistics as cumulative beta distribution functions)

F1,p(t) =
1∫ 1

0 [u(1− u)]
1
p−1 du

∫ t

0
u

1
p−1

(1− u)
1
p−1 du, for t ∈ [0, 1],

F2,p(t) =
1∫ 1

0 u
2
p−1

(1− u)
1
p−1 du

∫ t

0
u

2
p−1

(1− u)
1
p−1 du, for t ∈ [0, 1].
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In the standard notation we have F1,p(t) = It(1/p, 1/p) and F2,p(t) = It(2/p, 1/p), where It is
the so-called regularized incomplete beta function defined as It(α, β) = B(t; α, β)/B(1; α, β), with

B(t; α, β) =
∫ t

0
uα−1(1− u)β−1du, for α, β > 0.

One has F1,p(0) = F2,p(0) = 0 and F1,p(1) = F2,p(1) = 1, further F1,p, F2,p are increasing
functions. Let G1,p, G2,p : [0, 1] → [0, 1] be the inverses (in Mathematica one can use the command
InverseBetaRegularized for the inverses G1,p and G2,p) of the functions F1,p and F2,p, respectively.

For a ∈ (0, π/2), let

Bp,a(r) =
{
(x, y, z) ∈ Bp(r), x, y, z ≥ 0, x tan a ≥ y

}
.

Lemma 1. For a ∈ (0, π/2) we have

Vol(Bp,a(r)) =
1
8

F1,p

(
tanp a

1 + tanp a

)
Vol(Bp(r)).

Proof. The volume of Bp,a(r) can be computed using the double integral

Vol(Bp,a(r)) =
∫∫

D
(rp − xp − yp)1/p dx dy,

where D =
{
(x, y) ∈ R2, xp + yp ≤ rp, 0 ≤ y ≤ x tan a

}
. With the change of variables

x = (ρ cos t)2/p and y = (ρ sin t)2/p the Jacobian is

J =
(

2
p

)2
ρ

4
p−1

(cos t)
2
p−1

(sin t)
2
p−1

and the new domain of integration is

Δ =
{
(ρ, t) ∈ R

2, 0 ≤ ρ ≤ rp/2, 0 ≤ t ≤ arctan(tanp/2 a)
}

.

The volume of Bp,a(r) is

Vol(Bp,a(r)) =
4
p2

∫ rp/2

0
(rp − ρ2)

1
p ρ

4
p−1 dρ

∫ arctan(tan
p
2 a)

0
(cos t)

2
p−1

(sin t)
2
p−1 dt.

With the change of variables u = ρ2/rp and v = sin2 t in the two independent integrals we get

Vol(Bp,a(r)) =
r3

p2

∫ 1

0
(1− u)

1
p u

2
p−1 du

∫ tanp a
1+tanp a

0
v

1
p−1

(1− v)
1
p−1 dv

=
r3

p2 B(1/p + 1, 2/p)B(1/p, 1/p)F1,p

(
tanp a

1 + tanp a

)
= r3 Γ3(1/p + 1)

Γ(3/p + 1)
F1,p

(
tanp a

1 + tanp a

)
.

3. Construction of the Volume Preserving Map Up : Bp(r)→ B1(r′) and Its Inverse

Of course, there is no unique map Up with the volume preserving property. In this section, we will
construct a map Up : Bp(r)→ B1(r′) satisfying the following conditions:

(a) Up has the volume preserving property (2);
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(b) Up is continuous on Bp(r) and has continuous partial derivatives at every point of Bp(r), except
the points of the coordinate planes;

(c) Up has the symmetry property

Up(x, y, z) = (sgn(x)X, sgn(y)Y, sgn(z)Z), where (X, Y, Z) = Up(|x|, |y|, |z|);

(d) Up maps every Bp,a(r̃) onto some B1,b(cpr̃).

Theorem 2. The map Up = (X, Y, Z) with the properties (a)–(d) is defined by

X = sgn(x)cp (|x|p + |y|p + |z|p)
1
p

[
1− F1,p

( |y|p
|x|p + |y|p

)]√
F2,p

( |x|p + |y|p
|x|p + |y|p + |z|p

)
,

Y = sgn(y)cp (|x|p + |y|p + |z|p)
1
p F1,p

( |y|p
|x|p + |y|p

)√
F2,p

( |x|p + |y|p
|x|p + |y|p + |z|p

)
,

Z = sgn(z)cp (|x|p + |y|p + |z|p)
1
p

[
1−

√
F2,p

( |x|p + |y|p
|x|p + |y|p + |z|p

)]
,

when |x|p + |y|p > 0, and (X, Y, Z) = (0, 0, cpz) when |x|p + |y|p = 0.

Proof. Let (x, y, z) ∈ Bp(r). Then (X, Y, Z) = Up(x, y, z) ∈ B1(r′). Consider first the case
x, y, z > 0. From condition (d) for the limit case a = π

2 and using (a) and (c) we deduce that
Vol(Bp(r)) = Vol(B1(cpr)). This relation gives us

X + Y + Z = cp(xp + yp + zp)1/p. (3)

From conditions (a) and (d) there is some b > 0 such that

Vol(Bp,a(r̃)) = Vol(B1,b(cpr̃)).

From Lemma 1 we have

F1,p

(
tanp a

1 + tanp a

)
Vol(Bp(r̃)) = F1,1

(
tan b

1 + tan b

)
Vol(B1(cpr̃)).

Since Bp(r̃) and B1(cpr̃) have the same volume and F1,1(t) = t we obtain

F1,p

(
tanp a

1 + tanp a

)
=

tan b
1 + tan b

.

Further, since tan a = y/x and tan b = Y/X, this equality can be written as

F1,p

(
yp

xp + yp

)
=

Y
X + Y

. (4)

From conditions (a) and (b) the Jacobian of Up must be 1, i.e.∣∣∣∣∣∣∣
∂X
∂x

∂X
∂y

∂X
∂z

∂Y
∂x

∂Y
∂y

∂Y
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z

∣∣∣∣∣∣∣ = 1. (5)
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Further, taking into account Formulas (3) and (4) we have

Z = cp(xp + yp + zp)1/p − X−Y,

Y = XF1,p

(
yp

xp + yp

)(
1− F1,p

(
yp

xp + yp

))−1
,

then we calculate the partial derivatives of Y and Z with respect to x, y and z and introduce them
in (5). After some calculations, we find that X must be solution of the following first order partial
differential equation

∂X
∂x

xzp−1 +
∂X
∂y

yzp−1 − ∂X
∂z

(xp + yp) =
(xp + yp)

2
p
[
1− F1,p

(
yp

xp+yp

)]2
B
(

1
p , 1

p

)
cp pX(xp + yp + zp)

1
p−1

.

With U = X2 the equation is rewritten

∂U
∂x

xzp−1 +
∂U
∂y

yzp−1 − ∂U
∂z

(xp + yp) = 2
(xp + yp)

2
p
[
1− F1,p

(
yp

xp+yp

)]2
B
(

1
p , 1

p

)
cp p(xp + yp + zp)

1
p−1

.

We have to solve the symmetric system

dx
xzp−1 =

dy
yzp−1 =

dz
−(xp + yp)

=
cp p(xp + yp + zp)

1
p−1 du

2(xp + yp)
2
p
[
1− F1,p

(
yp

xp+yp

)]2
B
(

1
p , 1

p

) .

The first equality gives us y = xC1, for some constant C1. Replacing this in the equality

dx
xzp−1 =

dz
−(xp + yp)

we get xp + yp + zp = C2, for some constant C2. Replacing these two relations in the equality

dx
xzp−1 =

cp p(xp + yp + zp)
1
p−1 du

2(xp + yp)
2
p
[
1− F1,p

(
yp

xp+yp

)]2
B
(

1
p , 1

p

) ,

integrating and using that the plane x = 0 is mapped onto U = 0 (this follows from the conditions (b)
and (c) of the map), we obtain

U =
2C

2
p

2 B(1/p, 1/p)B(2/p, 1/p)
p2cp

[
1− F1,p

(
Cp

1

1 + Cp
1

)]2

F2,p

(
xp(1 + Cp

1 )

C2

)
,

which is equivalent to

X = cp(xp + yp + zp)1/p
[

1− F1,p

(
yp

xp + yp

)]√
F2,p

(
xp + yp

xp + yp + zp

)
. (6)
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Then,

Y = cp(xp + yp + zp)1/p F1,p

(
yp

xp + yp

)√
F2,p

(
xp + yp

xp + yp + zp

)
, (7)

Z = cp(xp + yp + zp)1/p

[
1−

√
F2,p

(
xp + yp

xp + yp + zp

)]
. (8)

In the case when z = 0 and also in the case when x = 0 or y = 0 but x + y > 0 we use
Formulas (6)–(8) to define the map Up. In the case when x = y = 0, we define Up(0, 0, z) = (0, 0, cpz),
for all z ≥ 0, using the continuity property of the map Up.

Finally, for the points (x, y, z) in the other seven octants, the map Up will be defined as

Up(x, y, z) = (sgn(x)X, sgn(y)Y, sgn(z)Z), where (X, Y, Z) = Up(|x|, |y|, |z|).

Remark. Not all the partial derivatives of the map Up which occur in Theorem 2 exist at the points of the
coordinates planes. For example, ∂Y

∂x does not exist at the points (0, y, z), because the partial derivative of

F1,p

( |y|p
|x|p+|y|p

)
with respect to x does not exist at the points (0, y, z).

The expression of the inverse map of Up is given in the next theorem.

Theorem 3. The map U−1
p : B1(r′)→ Bp(r) is defined by

x =
X + Y + Z

cp
G

1
p

1,p

(
Y

X + Y

)
G

1
p

2,p

((
X + Y

X + Y + Z

)2
)

, (9)

y =
X + Y + Z

cp

(
1− G1,p

(
Y

X + Y

)) 1
p

G
1
p

2,p

((
X + Y

X + Y + Z

)2
)

, (10)

z =
X + Y + Z

cp

(
1− G2,p

((
X + Y

X + Y + Z

)2
)) 1

p

, (11)

for every (X, Y, Z) ∈ B1(r′) and X ≥ 0, Y ≥ 0, Z ≥ 0, X + Y > 0. If X = Y = 0, we have U−1
p (0, 0, Z) =

(0, 0, Z/cp).
In the other seven octants, we define the inverse of the map Up using the symmetry property (c) of Up.

Proof. Condition (4) is equivalent to

yp

xp + yp = G1,p

(
Y

X + Y

)
.

Replacing (3) in (7) we obtain

X + Y
X + Y + Z

=

√
F2,p

(
xp + yp

xp + yp + zp

)
,

which is equivalent to
xp + yp

xp + yp + zp = G2,p

((
X + Y

X + Y + Z

)2
)

.

After some computations we can express x, y, z in terms of X, Y, Z to obtain (9)–(11).
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4. Particular Cases

4.1. The Cases p = 1 and p = 2

For p = 1 one has c1 = 1, F1,p(t) = t and F2,p(t) = t2, therefore U1 is the identity.

For p = 2 one has c2 = π
1
3 , F1,p(t) = 1

π

(
arcsin(2t− 1) + π

2
)
= 2

π arcsin
√

t, F2,p(t) = 1−
√

1− t
and for x, y, z > 0, the map U2 is

X = 2π−2/3

√
x2 + y2 + z2 − z

√
x2 + y2 + z2 arccos

y√
x2 + y2

,

Y = 2π−2/3

√
x2 + y2 + z2 − z

√
x2 + y2 + z2 arcsin

y√
x2 + y2

,

Z = π1/3
√

x2 + y2 + z2

(
1−

√
1− z√

x2 + y2 + z2

)
.

If we use the spherical coordinates defined by x = ρ cos θ sin ϕ, y = ρ sin θ sin ϕ and z =

ρ cos ϕ we obtain relations (9), (10), (11) from [3], where we also gave the inverse, which has an
explicit expression.

4.2. The Case p = ∞

In this case we will obtain a new map, different from the one constructed in [4].
We restrict again to the case x, y, z > 0 because of the symmetry property of the map.
First, a simple calculation shows that c∞ = 61/3 and

lim
p→∞

(xp + yp + zp)1/p = max(x, y, z).

In order to calculate the limits in (6)–(8) when p → ∞ we use the following result.

Lemma 4. For α, β > 0 we have

lim
p→∞

p

B
(

α
p , β

p

) =
αβ

α + β
. (12)

Proof. We use the equality Γ(x) = Γ(x + 1)/x, which holds for x > 0. One has

p

B
(

α
p , β

p

) =
p Γ

(
α+β

p

)
Γ
(

α
p

)
· Γ
(

β
p

) =
p · α

p ·
β
p · Γ

(
1 + α+β

p

)
Γ
(

1 + α
p

)
· Γ
(

1 + β
p

)
· α+β

p

,

and now it is easy to see that the limit when p → ∞ is the one in (12).

Proposition 5. For x, y, z > 0 we have

lim
p→∞

F1,p

(
yp

xp + yp

)
=

{ y
2x , x > y,

1− x
2y , y ≥ x.

Proof. We use the idea in [5].
Suppose x > y.

F1,p

(
yp

xp + yp

)
=

1

B
(

1
p , 1

p

) ∫ yp/(xp+yp)

0
(u(1− u))

1
p−1 du.
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With the change of variable u = tp we have

F1,p

(
yp

xp + yp

)
=

p

B
(

1
p , 1

p

) ∫ y/(xp+yp)1/p

0
(1− tp)

1
p−1 dt.

From 0 < t < y/(xp + yp) we further deduce that xp/(xp + yp) < 1− tp < 1, and therefore

(
xp

xp + yp

) 1
p−1

> (1− tp)
1
p−1

> 1.

After integration we obtain

y

(xp + yp)
1
p

(
xp

xp + yp

) 1
p−1

≥
∫ y/(xp+yp)1/p

0
(1− tp)

1
p−1 dt ≥ y

(xp + yp)
1
p

,

and further,

p

B
(

1
p , 1

p

) y

(xp + yp)
1
p

(
xp

xp + yp

) 1
p−1

≥ F1,p

(
yp

xp + yp

)
≥ p

B
(

1
p , 1

p

) y

(xp + yp)
1
p

.

After applying Lemma 4 for α = β = 1 and replacing the limits

lim
p→∞

(xp + yp)
1
p = max(x, y) = x and lim

p→∞

xp

xp + yp = 1,

We finally obtain

lim
p→∞

F1,p

(
yp

xp + yp

)
=

y
2x

. (13)

For the case y ≥ x we use the formula F1,p(1 − t) = 1 − F1,p(t) for t = xp/(xp + yp) and
Formula (13), interchanging x and y.

Proposition 6. For x, y, z > 0 we have

lim
p→∞

F2,p

(
xp + yp

xp + yp + zp

)
=

{
1

3z2 max(x, y)2, if z = max(x, y, z),
1− 2

3
z

max(x,y) , otherwise.

Proof. Case 1. Suppose max(x, y, z) = z.
With the change of variable t = u2/p we obtain

F2,p

(
xp + yp

xp + yp + zp

)
=

p

2B
(

2
p , 1

p

) ∫ (
xp+yp

xp+yp+zp

)2/p

0

(
1− t

p
2

) 1
p−1

dt.

Applying Lemma 4 for α = 2, β = 1 we have

lim
p→∞

p

2B
(

2
p , 1

p

) =
1
3

.
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Further, from the condition that t belongs to the interval of integration we can write

zp

xp + yp + zp < 1− t
p
2 < 1,

and therefore (
zp

xp + yp + zp

) 1
p−1

>
(

1− t
p
2

) 1
p−1

> 1.

After integration we obtain

(
xp + yp

xp + yp + zp

) 2
p
(

zp

xp + yp + zp

) 1
p−1

≥
∫ (

xp+yp

xp+yp+zp

) 2
p

0

(
1− t

p
2

) 1
p−1

dt ≥
(

xp + yp

xp + yp + zp

) 2
p

.

A simple calculation shows that

lim
p→∞

(
xp + yp

xp + yp + zp

)2/p
=

(max(x, y))2

z2 and lim
p→∞

zp

xp + yp + zp = 1,

which imply that

lim
p→∞

∫ (
xp+yp

xp+yp+zp

) 2
p

0

(
1− t

p
2

) 1
p−1

dt =
(max(x, y))2

z2 .

Case 2. Suppose max(x, y, z) = x or y.
Using the equality

Ix(α, β) = 1− I1−x(β, α), α, β > 0, x ∈ [0, 1],

we have

F2,p

(
xp + yp

xp + yp + zp

)
= 1− 1

B
(

2
p , 1

p

) ∫ zp
xp+yp+zp

0
u

1
p−1

(1− u)
2
p−1 du.

With the change of variable u = tp we get

F2,p

(
xp + yp

xp + yp + zp

)
= 1− p

B
(

2
p , 1

p

) ∫ (
zp

xp+yp+zp

)1/p

0
(1− tp)

2
p−1 dt.

Similarly

z
(xp + yp + zp)1/p

(
xp + yp

xp + yp + zp

) 2
p−1

≥
∫ (

zp
xp+yp+zp

)1/p

0
(1− tp)

2
p−1 dt ≥ z

(xp + yp + zp)1/p .

Using

lim
p→∞

z
(xp + yp + zp)1/p =

z
max(x, y)

and lim
p→∞

xp + yp

xp + yp + zp = 1,

the proof is complete.

29



Symmetry 2019, 11, 1404

In conclusion, for x, y, z > 0, the map U∞ has the values (X, Y, Z) = U∞(x, y, z) given by:

61/3
(

x
2
√

3
,

2y− x
2
√

3
, z− y√

3

)
, x ≤ y ≤ z,

61/3

(
x
2

√
1− 2z

3y
,
(

y− x
2

)√
1− 2z

3y
, y

(
1−

√
1− 2z

3y

))
, x ≤ z ≤ y,

61/3
(

2x− y
2
√

3
,

y
2
√

3
, z− x√

3

)
, y ≤ x ≤ z,

61/3

((
x− y

2

)√
1− 2z

3x
,

y
2

√
1− 2z

3x
, x

(
1−

√
1− 2z

3x

))
, y ≤ z ≤ x,

61/3

(
x
2

√
1− 2z

3y
,
(

y− x
2

)√
1− 2z

3y
, y

(
1−

√
1− 2z

3y

))
, z ≤ x ≤ y,

61/3

((
x− y

2

)√
1− 2z

3x
,

y
2

√
1− 2z

3x
, x

(
1−

√
1− 2z

3x

))
, z ≤ y ≤ x,

and can be reduced to

61/3
(

x
2
√

3
,

2y− x
2
√

3
, z− y√

3

)
, x ≤ y ≤ z,

61/3

(
x
2

√
1− 2z

3y
,
(

y− x
2

)√
1− 2z

3y
, y

(
1−

√
1− 2z

3y

))
, x ≤ y, z ≤ y,

61/3
(

2x− y
2
√

3
,

y
2
√

3
, z− x√

3

)
, y ≤ x ≤ z,

61/3

((
x− y

2

)√
1− 2z

3x
,

y
2

√
1− 2z

3x
, x

(
1−

√
1− 2z

3x

))
, y ≤ x, z ≤ x.

The above formulas can also be used in the case when x = 0 or y = 0 or z = 0, with the
mention that the denominators cannot be zero, except the case when x = y = z = 0, when we take
U∞(0, 0, 0) = (0, 0, 0).

After some calculations we get that, for X, Y, Z > 0 the inverse U−1
∞ (X, Y, Z) is given by

6−1/3
(

2
√

3X,
√

3(X + Y), X + Y + Z
)

, on D1,

6−1/3
(

2X(X + Y + Z)
X + Y

, X + Y + Z,
3Z(2X + 2Y + Z)

2(X + Y + Z)

)
, on D2,

6−1/3
(√

3(X + Y), 2
√

3Y, X + Y + Z
)

, on D3,

6−1/3
(

X + Y + Z,
2Y(X + Y + Z)

X + Y
,

3Z(2X + 2Y + Z)
2(X + Y + Z)

)
, on D4,

where Di, i = 1, 2, 3, 4 are the set of points (X, Y, Z) satisfying the following conditions, respectively:

X ≤ Y,
√

3(X + Y) ≤ X + Y + Z,

X ≤ Y,
3Z(2X + 2Y + Z)

2(X + Y + Z)
≤ X + Y + Z,

Y ≤ X, (X + Y)
√

3 ≤ X + Y + Z,

Y ≤ X,
3Z(2X + 2Y + Z)

2(X + Y + Z)
≤ X + Y + Z.
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Condition
3Z(2X + 2Y + Z)

2(X + Y + Z)
≤ X + Y + Z

can be written as 3((X + Y + Z)2 − (X + Y)2) ≤ 2(X + Y + Z)2, and is equivalent to
X + Y + Z ≤

√
3(X + Y), since X, Y, Z > 0.

Therefore,

D1 = {X ≤ Y,
√

3(X + Y) ≤ X + Y + Z},

D2 = {X ≤ Y, X + Y + Z ≤
√

3(X + Y)},

D3 = {Y ≤ X, (X + Y)
√

3 ≤ X + Y + Z},

D4 = {Y ≤ X, X + Y + Z ≤
√

3(X + Y)}.

Finally, the expressions of (x, y, z) = U−1
∞ (X, Y, Z) can be reduced to

x = 6−1/3 min
(√

3, 1 +
Z

X + Y

)
(X + min(X, Y)) ,

y = 6−1/3 min
(√

3, 1 +
Z

X + Y

)
(Y + min(X, Y)) ,

z = 6−1/3 min
(

X + Y + Z, 3Z
(

1− Z
2(X + Y + Z)

))
.

These formulas can also be used in the case when Z = 0 and in the case when X = 0 or Y = 0,
but X + Y > 0. In the case when X = Y = 0 we take U−1

∞ (0, 0, Z) = (0, 0, 6−1/3Z).
If we take arbitrary numbers p, p̃ > 0, the application

U−1
p̃ ◦ Up : Bp(r)→ B p̃(r̃), with r̃ = cpc−1

p̃ r,

is a volume preserving map, therefore we have defined a volume preserving map between arbitrary
p-balls.

5. Possible Applications

A uniform grid of a 3D domain D is a grid in which all the cells have the same volume. This is
required in statistical applications, in computer graphics in the theory of deformable bodies (see, for
example, Ref. [6] and the references therein) and in construction of wavelet bases of the space L2(D).
A refinement process is needed for multiresolution analysis or for multigrid methods, when a grid
is not fine enough to solve a problem accurately. A refinement of a 3D grid is called uniform when
each cell is divided into a given number of smaller cells having the same volume. To be efficient in
practice, a refinement procedure should also be a simple one. One efficient way to construct a uniform
and refinable (UR) grid on a domain D is to map on D an existing UR grid by a volume preserving
map. In our case, we can construct (UR) grids on a ball Bp′ by transporting from a ball Bp an already
constructed (UR) grid. The simplest example of such a ball with (UR) grids is the cube B∞, but we
have also constructed such (UR) grids on the regular octahedron B1 (see [3,4]) and on the 3D Euclidean
ball B2 (see [3,7] ).

The technique used in [3] can be easily adapted to the p-ball Bp in order to construct
multiresolution analysis of L2(Bp) and orthonormal wavelet bases on the p-ball Bp.

The centers of the cells in our (UR) grids in Bp can be taken as points in interpolation formulas,
as Monte Carlo interpolation or adaptive interpolation formulas.

Another application of volume preserving maps is in the theory of partial differential equations
on Lipschitz domains (see [8]).
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Abstract: The aim of this paper is to present an application of a fixed point iterative process in
generation of fractals namely Julia and Mandelbrot sets for the complex polynomials of the form
T(x) = xn + mx + r where m, r ∈ C and n ≥ 2. Fractals represent the phenomena of expanding
or unfolding symmetries which exhibit similar patterns displayed at every scale. We prove some
escape time results for the generation of Julia and Mandelbrot sets using a Picard Ishikawa type
iterative process. A visualization of the Julia and Mandelbrot sets for certain complex polynomials is
presented and their graphical behaviour is examined. We also discuss the effects of parameters on
the color variation and shape of fractals.
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1. Introduction

Fixed point theory provides a suitable framework to investigate various nonlinear phenomena
arising in the applied sciences including complex graphics, geometry, biology and physics [? ? ? ? ].
Complex graphical shapes such as fractals, were discovered as fixed points of certain set maps [? ].
Informally, fractals can be treated as self similar mathematical structures which have similarity and
symmetry such that considerably small parts of the shape are geometrically akin to the whole shape.
Fractals are also known as expanding symmetries or unfolding symmetries. Although, fractals do not
have a formal definition, however they are identified through their irregular structure that cannot be
found in Euclidean geometry. Julia [? ] who is considered as one of the pioneers of fractal geometry,
studied iterated complex polynomials and introduced Julia set as a classical example of fractals. Let C
be the complex space, T : C→ C be a complex polynomial of degree n ≥ 2 with complex coefficients
and Ti(x) be the ith iterate of x. The behaviour of the iterates Ti(x) for large i determine the Julia set
(see [? ? ? ? ]).

Definition 1 ([? ]). The set of points in C whose orbits do not converge to a point at infinity is known as filled
Julia set, KT, that is,

KT =
{

x ∈ C : {|Ti(x)|}∞
i=0 is bounded

}
.

Julia set of T denoted by JT is the boundary of filled Julia set, that is, JT = ∂KT .
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Therefore, we may say that x ∈ JT if for every neighborhood of x there exist points w and v such
that Ti(w)→ ∞ and Ti(v) � ∞. The complement of a Julia set is a Fatou set.

Let p ∈ C be a fixed point of T and |(Ti)′p| = ρ, where prime denotes the complex differentiation.
A point p is called a periodic point if p = Ti p for some integer i ≥ 0. Let

{
p, Tp, ..., Ti p, ...

}
be an

orbit of p. The point p is called an attracting point if 0 ≤ ρ < 1 and a repelling point if ρ > 1 [? ? ].
The following result gives a significant connection between repelling points of a polynomial and the
Julia set.

Theorem 1 ([? ]). If T is a complex polynomial, then JT is the closure of the repelling periodic points of T.

Let p be an attracting fixed point of T. Then, the set A(p) is called the basin of attraction of p if

A(p) =
{

x ∈ C : Tix → p as i → ∞
}

.

The basin of attraction of infinity, A(∞), is defined in the same way. The following lemma is
pivotal in determining Julia sets.

Lemma 1. [? ] Let p be an attracting fixed point of T. Then, JT = ∂A(p).

Thus, the Julia set is the boundary of the basin of attraction of each attracting fixed point of
T, including ∞. The existence of the fixed point p for any complex polynomial is guaranteed by
Brouwer fixed point theorem [? ]. However, the existence of an attracting fixed point depends on
the choice of the parameters. Consider the polynomial Qr(x) = x2 + r. Then it has two fixed points

excluding infinity. In this case, a fixed point p is attracting if |2p| < 1 i.e., |1−
√

1
4 − r| < 1. Fix

vr =
√

1
4 − r, then the set of parameters r such that Qr has an attracting fixed point is given by

S = {r ∈ C : |1− vr| < 1}. Julia sets, JQr , on the real axis i.e., r = 0 are reflection symmetric while
those with complex parameter values, r ∈ C demonstrate rotational symmetry.

Mandelbrot [? ] extended the idea of Julia sets and presented the notion of fractals. He investigated
the graphical behaviour of connected Julia sets and plotted them for complex function, Qr(x) = x2 + r,
where x ∈ C is a complex variable and r ∈ C is an input parameter. He noted that various geometrical
properties involving dimension, symmetry and similarity play consequential role in the study of
fractal geometry.

Definition 2 ([? ]). Let T be any complex polynomial of degree n ≥ 2. A Mandelbrot set M is the set consisting
of all parameters r for which the Julia set, JQr , is connected, that is,

M =
{

r ∈ C : JQr is connected
}

,

or an equivalent definition is

M = {r ∈ C : {|Qn
r (0)|}� ∞ as n → ∞} .

Mandelbrot [? ? ] noted that records of heart beat, irregular coastal structures, variations of traffic
flow and many naturally existing textures are examples of fractals.

In order to generate and analyze fractals, various techniques are used such as iterated function
systems, random fractals, escape time criterion etc. The escape time algorithm is the stopping criterion
that is based on the number of iterations necessary to determine if the orbit sequence tends to infinity
or not. This algorithm provides a suitable mechanism used to demonstrate some attributes of dynamic
system under iterative process. Generally, the escape criterion for Julia and Mandelbrot sets is given by:
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Theorem 2 ([? ]). For Qr(x) = x2 + r, x, r ∈ C, if there exists i ≥ 0 such that

|Qi
r(x)| > max {|r|, 2} ,

then Qi
r(x)→ ∞ as i → ∞.

The term max {|r|, 2} is also known as escape radius threshold. The escape radius varies in each
iteration. The escape radius has a key role in visualizing the fractals.

Historically, Julia and Mandelbrot sets are investigated for the polynomials Qr but the study has
been extended to quadratic, cubic, and nth degree complex polynomials. Lakhtakia et al. [? ] explored
the Julia sets for general complex function of the form T(x) = xn + r where n ∈ N. The superior
Julia and superior Mandelbrot sets for such complex polynomials in the context of noises arising in
the objects were analyzed by Negi et al. [? ? ]. Rochon [? ] considered a more generalized form of
Mandelbrot sets in bi-complex planes, see also [? ? ].

Many authors have utilized various iterative processes to generate fractals. Julia and Mandelbrot
sets have usually been studied for quadratic, cubic and higher degree polynomials in Picard orbit [? ].
Let T : C→ C and x0 ∈ C. The Picard orbit [? ] is a sequence {xi} which is given by

xi+1 = T(xi),

where i ≥ 0.

Since the convergence of Picard process is slow, various faster converging iterative processes have
been introduced to generate Julia and Mandelbrot sets. Rani and Kumar [? ? ] used one-step Mann
iterative process to generate superior Julia and Mandelbrot sets for nth degree complex polynomials of
the form T(x) = xn + r. The Mann orbit, for any x0 ∈ C, is a sequence {xi} which is given by

xi+1 = (1− α)(xi) + αT(xi),

where i = 0, 1, ... and α ∈ (0, 1].
In 2010, a two-step Ishikawa iteration was used by Rana and Kumar [? ] and Chauhan et al. [?

] to study relative superior Julia and relative superior Mandelbrot sets, respectively. The dynamics
of the nth order complex polynomial for non integer values were investigated in [? ]. The authors
also obtained new Julia and Mandelbrot sets via Ishikawa orbit. The Ishikawa orbit, for any x0 ∈ C,
is a sequence {xi} which is given by{

xi+1 = (1− α)xi + αTyi,

yi = (1− β)xi + βTxi,

where i = 0, 1, ... and α, β ∈ (0, 1].
Ashish and Rani [? ] investigated the three-step Noor iteration process for Julia and Mandelbrot

sets. The Noor orbit, for any x0 ∈ C, is a sequence {xi} which is given by⎧⎪⎪⎨⎪⎪⎩
xi+1 = (1− α)Txi + αTyi,

yi = (1− β)Txi + αTui,

ui = (1− γ)Txi + γTxi,

where i = 0, 1, ... and α, β, γ ∈ (0, 1].
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The modified Ishikawa process, S-iteration, was employed by Kang et al. [? ? ] to study relative
superior Mandelbrot sets, tricorn and multicorns. The S-orbit, for any x0 ∈ C, is a sequence {xi}
given by {

xi+1 = (1− α)xi + αTyi,

yi = (1− β)xi + αTxi,

where i = 0, 1, ... and α, β ∈ (0, 1].
Kumari et al. [? ] used a four-step iterative process which is faster than of Picard, Mann and

S-iteration processes and obtained some generalizations of Julia and Mandelbrot sets for quadratic,
cubic and higher degree polynomials.

It is noteworthy that for each iterative process the behaviour and dynamics of the Julia and
Mandelbrot sets differ. For some thought-provoking and fascinating comparisons, the reader may
refer to [? ? ? ? ? ] and references therein.

Complex polynomials of the form T(x) = xn + mx + r, where m, r ∈ C occur in various
engineering problems including digital signal processing. These complex polynomials are used to
determine the pole-zero plots for signals and the study of the structure and solutions of linear time
invariant (LTI) state-space models, for details see [? ]. Thus the study of behaviour of these polynomials
and their Julia and Mandelbrot sets has gained immense interest among researchers. Kang et al. [?
] introduced Julia and Mandelbrot sets in implicit Jungck Mann and Jungck Ishikawa orbits. Later,
several researchers [? ? ? ? ? ] employed this implicit iterative process to generate graphs of
such complex polynomials. In order to achieve this, they split the polynomial T into two functions
T1(x) = xn + r and T2(x) = mx. However, the Jungck iterative process and its variants are used to
determine the common fixed points of two mappings. Therefore, the question arises whether we can
obtain an escape criterion and generate fractals for polynomials of the form T using explicit iterative
processes.

The purpose of this paper is to answer this question. In this paper, we discuss the graphical
behaviour of the complex polynomial of the form T(x) = xn + mx + r where m, r ∈ C and n ≥ 2
using Picard Ishikawa type fixed point iteration process for the generation of fractals. Note that the
Julia and Mandelbrot sets generated have distinctive shapes for the proposed iterative process as
compared to already present iterative processes in the literature. Further, we show the effect of change
of parameters on color variation and graph of the sets.

The Picard Ishikawa type iteration process was introduced by Piri et al. [? ]. They claimed that
this iterative process converges faster than Mann and Ishikawa iteration processes. Let D be a subset
of a Banach space and f : D → D then the three step iteration process is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 = x ∈ D,

xi+1 = (1− αi)yi + αi f yi,

yi = f zi,

zi = f ((1− βi)xi + βi f xi), i ≥ 0,

(1)

where αi, βi ∈ (0, 1].

2. Main Results

In this section, we use a Picard Ishikawa type iterative process and some prove escape criterions
to determine the escape radius for this process. Throughout this paper we assume that for any complex
polynomial the parameters are chosen in a way that at the least one attracting fixed point exists.

Let C be a complex space and TC : C→ C be a complex polynomial with complex coefficients.
The Picard Ishikawa type orbit around any x0 ∈ C, is a sequence {xi} given by
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xi+1 = (1− α)yi + αTCyi,

yi = TCzi,

zi = TCti,

ti = (1− β)xi + βTCxi,

(2)

where i = 0, 1, 2, ... and α, β ∈ (0, 1].
We need the following escape criterions for the quadratics, cubic and higher degree polynomials.

2.1. Escape Criterion for Quadratic Complex Polynomials in a Picard Ishikawa Type Orbit

For the quadratic polynomial TC(x) = x2 + mx + r where m, r ∈ C, we have the following result.

Theorem 3. Suppose that |x| ≥ |r| > max
{

2(1+|m|)
α , 2(1+|m|)

β

}
, α, β ∈ (0, 1]. Define {xi}i∈N as in (??)

where x0 = x, y0 = y, z0 = z and t0 = t. Then, |xi| → ∞ as i → ∞.

Proof. As, TC(x) = x2 + mx + r. From (??), we have

|t| =|(1− β)x + βTCx|
=|(1− β)x + β(x2 + mx + r)|
≥|(1− β)x + β(x2 + mx)| − β|r|.

The assumption |x| ≥ |r| yields

|t| ≥|(1− β)x + β(x2 + mx)| − β|x|
≥β|x2| − (1− β + β|m|)|x| − β|x|
=β|x2| − (1 + β|m|)|x|

=|x|
(

β|x| − (1 + β|m|)
)

.

Since β ≤ 1, we obtain −(1 + β|m|) > −(1 + |m|) which implies that

|t| ≥ |x|
(

β|x| − (1 + |m|)
)

.

Thus, we have

|t| ≥ |x|(1 + |m|)
(

β|x|
1 + |m| − 1

)
.

Therefore,

|t| ≥ |t|
(1 + |m|)

≥|x|
(

β|x|
1 + |m| − 1

)
. (3)

From our assumption; |x| > max
{

2(1+|m|)
α , 2(1+|m|)

β

}
, we get

(
β|x|

1 + |m| − 1
)
> 1. (4)

Now, (??) gives that
|t| > |x|. (5)
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As z = z0, (??) gives

|z| =|TC(t)|
=|t2 + mt + r| ≥ |t2 + mt| − |r|.

Since β ≤ 1 , it follows from (??) and assumption |x| ≥ |r| that

|z| ≥|t2 + mt| − |x|
≥β|t2| − |m||t| − |t|

=|t|
(

β|t| − (1 + |m|)
)

,

which further implies that

|z| ≥ |z|
(1 + |m|) ≥ |t|

(
β|t|

(1 + |m|) − 1
)

. (6)

Using (??) and (??) we have

|t| >|x|

=⇒ β|t|
1 + |m| >

β|x|
1 + |m|

=⇒
(

β|t|
1 + |m| − 1

)
>

(
β|x|

1 + |m| − 1
)
> 1. (7)

Consequently, (??)–(??) yield
|z| > |x|. (8)

Moreover, let y = y0, |y| = |TC(z)| = |z2 + mz + r|. Then, by an assumption |x| ≥ |r|, (??) and
the fact that β ≤ 1 we obtain

|y| ≥|z2 + mz| − |r|
≥β|z|2 − |m||z| − |z|

≥|z|
(

β|z| − (1 + |m|)
)

.

This implies

|y| ≥ |z|
(

β|z|
1 + |m| − 1

)
.

From (??) and (??) we obtain

|y| ≥ |x|
(

β|x|
1 + |m| − 1

)
> |x|. (9)

Finally, we have

|x1| =|(1− α)y + αTC(y)|
=|(1− α)y + α(y2 + my + r)|.
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Furthermore, from |x| ≥ |r| and (??) we get that

|x1| =|(1− α)y + α(y2 + my + r)|
≥α|y2| − (1− α + α|m|)|y| − α|r|
≥α|y2| − (1− α + α|m|)|y| − α|y|
=α|y2| − (1 + α|m|)|y|

=|y|
(

α|y| − (1 + α|m|)
)

.

As α ≤ 1, we obtain

|x1| ≥|y|
(

α|y| − (1 + α|m|)
)

≥|y|
(

α|y| − (1 + |m|)
)

≥|y|(1 + |m|)
(

α|y|
(1 + |m|) − 1

)
.

By (??), we have

|x1| ≥ |x|
(

α|x|
1 + |m| − 1

)
.

From our given assumption, we have |x| > 2(1+|m|)
α and hence

(
α|x|

1+|m| − 1
)

> 1. Thus, there

exists a real number ρ > 0 such that (
α|x|

1 + |m| − 1
)
> 1 + ρ.

It follows that
|x1| > (1 + ρ)|x|.

In particular, |x1| > |x|. Continuing in the same manner yields

|xi| > (1 + ρ)i|x|.

Therefore, the orbit of x tends to infinity.

The following corollary is the refinement of the Theorem ??.

Corollary 1. Suppose that |xi| > max
{
|r|, 2(1+|m|)

α , 2(1+|m|)
β

}
where α, β ∈ (0, 1] then |xi| → ∞ as i → ∞.

2.2. Escape Criterion for Cubic Complex Polynomials in a Picard Ishikawa Type Orbit

For the cubic polynomial TC(x) = x3 + mx + r where m, r ∈ C, we have the following result.

Theorem 4. Suppose |x| ≥ |r| > max

⎧⎨⎩
(

2(1+|m|)
α

) 1
2

,
(

2(1+|m|)
β

) 1
2

⎫⎬⎭, α, β ∈ (0, 1]. Define a sequence

{xi}i∈N as in (??) where x0 = x, y0 = y, z0 = z and t0 = t. Then, |xi| → ∞ as i → ∞.
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Proof. As TC(x) = x3 + mx + r, from (??) we have

|t| =|(1− β)x + βTC(x)|
=|(1− β)x + β(x3 + mx + r)|
≥|(1− β)x + β(x3 + mx)| − β|r|.

The assumption |x| ≥ |r| yields that

|t| ≥|(1− β)x + β(x3 + mx)| − β|x|
≥β|x3| − (1− β + β|m|)|x| − β|x|
=β|x3| − (1 + β|m|)|x|

=|x|
(

β|x2| − (1 + β|m|)
)

.

As β ≤ 1,

|t| ≥ |x|
(

β|x2| − (1 + |m|)
)

.

Therefore,

|t| ≥ |t|
(1 + |m|)

≥|x|
(

β|x2|
1 + |m| − 1

)
. (10)

The assumption, |x| > max

⎧⎨⎩
(

2(1+|m|)
α

) 1
2

,
(

2(1+|m|)
β

) 1
2

⎫⎬⎭ implies that

(
β|x2|

1 + |m| − 1
)
> 1. (11)

It follows from (??) that
|t| > |x|. (12)

As z = z0, by (??) we have

|z| =|TC(t)|
≥|t3 + mt| − |r|.

As β ≤ 1 , from (??) and assumption |x| ≥ |r| we obtain

|z| ≥|t3 + mt| − |x|

=|t|
(

β|t2| − (1 + |m|)
)

which further implies that

|z| ≥ |t|
(

β|t2|
(1 + |m|) − 1

)
. (13)

Now by (??) and (??), we have(
β|t|2

1 + |m| − 1
)
≥
(

β|x|2
1 + |m| − 1

)
> 1. (14)
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Consequently, (??), (??) and (??) imply that

|z| > |x|. (15)

Also, y = y0, |y| = |TC(z)| = |z3 + mz + r|. Then, the given assumption |x| ≥ |r|, (??) and the
fact that β ≤ 1 yield

|y| ≥ |z3 + mz| − |r|

≥|z|
(

β|z2| − (1 + |m|)
)

.

Thus

|y| ≥ |z|
(

β|z2|
1 + |m| − 1

)
.

From (??) and (??), we obtain

|y| ≥ |x|
(

β|x2|
1 + |m| − 1

)
> |x|. (16)

Lastly, we have

|x1| =|(1− α)y + αTCy|
=|(1− α)y + α(y3 + my + r)|.

From |x| ≥ |r|, (??) and α ≤ 1, we have

|x1| =|(1− α)y + α(y3 + my + r)|
≥α|y3| − (1− α + α|m|)|y| − α|y|
=α|y2| − (1 + α|m|)|y|

≥|y|
(

α|y2| − (1 + |m|)
)

≥|y|(1 + |m|)
(

α|y2|
(1 + |m|) − 1

)
.

From (??), we have

|x1| ≥ |x|
(

α|x2|
1 + |m| − 1

)
.

By our assumption we have |x| >
(

2(1+|m|)
α

) 1
2

and hence
(

α|x2|
1+|m| − 1

)
> 1. Thus, there exists

a real number ρ > 0 such that (
α|x2|

1 + |m| − 1
)
> 1 + ρ.

It follows that
|x1| > (1 + ρ)|x|.

Continuing in the same manner, we obtain

|xi| > (1 + ρ)i|x|.

Therefore, the orbit of x tends to infinity.

The following corollary is the refinement of the Theorem ??.
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Corollary 2. Suppose that |xi| > max

⎧⎨⎩|r|,
(

2(1+|m|)
α

) 1
2

,
(

2(1+|m|)
β

) 1
2

⎫⎬⎭where α, β ∈ (0, 1] then |xi| → ∞

as i → ∞.

2.3. Escape Criterion for General Complex Polynomials in a Picard Ishikawa Type Orbit

For the general complex polynomial TC(x) = xn + mx + r where m, r ∈ C, we have the
following result.

Theorem 5. Suppose |x| ≥ |r| > max

⎧⎨⎩
(

2(1+|m|)
α

) 1
n−1

,
(

2(1+|m|)
β

) 1
n−1

⎫⎬⎭, with n ≥ 2 and α, β ∈ (0, 1].

Define a sequence {xi}i∈N as in (??) where x0 = x, y0 = y, z0 = z and t0 = t. Then, |xi| → ∞ as i → ∞.

Proof. Let TC(x) = xn + mx + r. Note that (??), assumptions |x| ≥ |r| and β ≤ 1 give

|t| =|(1− β)x + βTC(x)|
≥|(1− β)x + β(xn + mx)| − β|r|
≥β|xn| − (1− β + β|m|)|x| − β|x|

=|x|
(

β|xn−1| − (1 + β|m|)
)

≥|x|
(

β|xn−1| − (1 + |m|)
)

.

Therefore,

|t| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
. (17)

By our assumption, we have |x| >
(

2(1+|m|)
β

) 1
n−1

and hence

(
β|xn−1|
1 + |m| − 1

)
> 1. (18)

It follows from (??) that
|t| > |x|. (19)

Since z = z0, so from (??) we obtain

|z| ≥ |tn + mt| − |r|.

As β ≤ 1, from (??) and assumption |x| ≥ |r|, we have

|z| ≥ |t|
(

β|tn−1|
(1 + |m|) − 1

)
. (20)

Now by (??) and (??), we have (
β|t|n−1

1 + |m| − 1
)
> 1.

Hence,
|z| > |x|. (21)
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As y = y0, |y| = |TC(z)| = |zn + mz + r|, so using the similar arguments as before we obtain

|y| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|. (22)

Also, from |x| ≥ |r|, (??), and α ≤ 1 we have

|x1| =|(1− α)y + α(yn + my + r)|
≥α|yn| − (1− α + α|m|)|y| − |r|
=α|y2| − (1 + α|m|)|y|

=|y|
(

α|y2| − (1 + α|m|)
)

≥|x|
(

α|x2|
1 + |m| − 1

)
.

Furthermore, from our assumption we have |x| >
(

2(1+|m|)
α

) 1
n−1

and thus
(

α|xn−1|
1+|m| − 1

)
> 1.

Thus, there exists a real number ρ > 0 such that(
α|xn−1|
1 + |m| − 1

)
> 1 + ρ.

Finally, we obtain
|x1| > (1 + ρ)|x|.

Now, continuing this process
|xi| > (1 + ρ)i|x|.

Therefore, the orbit of x tends to infinity.

The following corollary is the refinement of the Theorem ??.

Corollary 3. Suppose that |xi| > max

⎧⎨⎩|r|,
(

2(1+|m|)
α

) 1
n−1

,
(

2(1+|m|)
β

) 1
n−1

⎫⎬⎭ where n ≥ 2 and α, β ∈ (0, 1]

then |xi| → ∞ as i → ∞.

Theorem 6. Suppose that {xi}i∈N∪{0} is a sequence in the Picard Ishikawa type orbit for the complex
polynomial TC(x) = xn + mx + r where m, r ∈ C with n ≥ 2 such that |xi| → ∞ as i → ∞,

then |x| ≥ |r| >
(

2(1+|m|)
α

) 1
n−1

and |x| ≥ |r| >
(

2(1+|m|)
β

) 1
n−1

, α, β ∈ (0, 1].

Proof. Let {xi}i∈N be a sequence in Picard Ishikawa type orbit. First, we prove that |x| ≥ |r|. According
to hypothesis, |xi| → ∞ as i → ∞, the sequence {|xi|} must be unbounded. Hence, |xi| ≥ |r| for all
i ∈ N ∪ {0} and therefore |x| ≥ |r|. Let TC(x) = xn + mx + r, m, r ∈ C where t0 = t, x0 = x, y0 = y
and z0 = z, then |x| ≥ |r| implies that

|t| =|(1− β)x + βTCx|
=|(1− β)x + β(xn + mx + r)|
≥|βxn|+ ((1− β) + mβ)x| − β|r|
≥β|xn| − ((1− β) + |m|β)|x| − β|x|
≥β|xn| − (1 + |m|β)|x|.
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Thus,

|t| ≥|x|(β|xn−1| − (1 + |m|))

= |x|(1 + |m|)
(

β|xn−1|
1 + |m| − 1

)
implies

|t| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
. (23)

Here, we have two possibilities; either
(

β|xn−1|
1+|m| − 1

)
≤ 1 or

(
β|xn−1|
1+|m| − 1

)
> 1. If

(
β|xn−1|
1+|m| − 1

)
≤

1 we have
β|xn−1|
1 + |m| ≤ 2

which implies that

|xn−1| ≤ 2(1 + |m|)
β

and hence

|x| ≤
(

2(1 + |m|)
β

) 1
n−1

,

a contradiction. Indeed, {|xi|} is not bounded where i ∈ N∪ {0}. Therefore, we must have
(

β|xn−1|
1+|m| −

1
)
> 1. Thus, |x| >

(
2(1+|m|)

β

) 1
n−1

. Now, inequality (??) implies that

|t| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|.

Furthermore, β ≤ 1 and |x| ≥ |r| give

|z| =|TC(t)|
≥|tn + mt| − |r| ≥ β|tn| − |m||t| − |x|
=|t|(β|tn−1| − |(1 + |m|)).

As
(

β|xn−1|
(1+|m|) − 1

)
> 1, so we have

|t| > |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|.

As a consequence we obtain

|z| ≥|x|
(

β|xn−1|
1 + |m| − 1

)
(1 + |m|).

Thus,

|z| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|. (24)
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Similarly, |y| = |TC(z)| = |zn + mz + r|, |x| > |r| and β ≤ 1 imply that

|y| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
.

Consequently,

|y| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|. (25)

Finally, we have

|x1| =|(1− α)y + αTC(y)|
=|(1− α)y + α(yn + my + r)|
≥α|yn| − (1− α + α|m|)|y| − α|r|
≥α|yn| − (1− α + α|m|)|y| − α|y|
≥α|yn| − (1 + α|m|)|y|
≥α|yn| − (1 + |m|)|y|
=|y|(α|yn−1| − (1 + |m|))
≥|x|(α|xn−1| − (1 + |m|)).

Hence

|x1| ≥ |x|
(

α|xn−1|
1 + |m| − 1

)
.

Using arguments similar to those as before, we only have one possibility that
(

α|xn−1|
1+|m| − 1

)
> 1.

Therefore, |x| >
(

2(1+|m|)
α

) 1
n−1

. This completes the proof.

3. Visualization of Fractals

In this section, we present some Julia and Mandelbrot sets for quadratic and higher order
polynomials. We found several captivating new fractals having various geometric shapes. However,
we have chosen some figures. The color variation occurs due to the change of input parameters.
We have also investigated the effect of change of parameters α and β on the shape and the variation of
colors. The number of iterations was fixed at 10.

3.1. Generation of Julia sets

Following Algorithm 1 is the pseudocode for the generation of Julia sets. Note that T′(z) represents
the iteration process.
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Algorithm 1: Generation of Julia Set
Input : complex polynomial–T : C→ C, parameters–r, m ∈ C, Area–A ⊂ C, number of

iterations–N, colormap with M colors–colormap[0...M− 1]
Output :� is the area for Julia set

1 R = Threshold radius
2 for c ∈ A
3 do

4 k = 0
5 while k ≤ N do

6 z = T′(z)
7 if |z| > R then

8 break
9 end

10 k = k + 1
11 end

12 m = �(M− 1) k
N �

13 color c with colormap[m]

14 end

Now, we present quadratic, cubic and septic Julia sets in Picard Ishikawa type orbit for the
complex polynomial, TC(x) = xn + mx + r.

1. For Figure ??, we consider the polynomial T(x) = x2 + (−0.5 + 0.7i)x + (−0.01 + 0.18i)
and A = [−2.5, 2.5]× [−2.1, 2.1]. It is easy to see that T has one attracting fixed point,
p = −0.1427 + 0.1019i. Observe that for α = 0.2, β = 0.097 and α = 0.11,β = 0.18 we obtain
different images due to color variation caused by parameters. It is interesting to note that for
α = 1, β = 1 and α = 10−10, β = 10−10 we have similar shapes but there is clear variation of
colors.

2. For Figure ??, we consider the polynomial T(x) = x3 + (−0.275 + 0.5i)x + (−0.559 + 0.35i) and
A = [−1.5, 1.5]× [−1.8, 1.8]. The polynomial T has attracting fixed point p ∼ −0.6434 + 0.2687i
in A. Note that the cubic Julia sets for α = 0.08 and β = 0.09 have more color variation as
compared to the Julia sets for α = 0.1, and β = 0.2. Again, for α = 1, β = 1 and α = 10−10,
β = 10−10 the shapes are same but there is variability in colors.

3. For Figure ??, we input T(x) = x7 + (0.23 + 1.2i)x + (0.5 + 0.7i) and A = [−1.3, 1.3]2.
The attracting fixed point of the polynomial is p ∼ −0.2391 + 0.5835i. We can see that for
α = 0.01 and β = 0.08 the shape is spread and stretched while the shape is dense and neatly
packed for α = 0.1 and β = 0.05. Note the variation of colors in figures (C) and (D) as well.
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(a) α = 0.2, β = 0.097 (b) α = 0.11, β = 0.18

(c) α = 1, β = 1 (d) α = 10−10, β = 10−10

Figure 1. Quadratic Julia sets.

(a) α = 0.08, β = 0.09 (b) α = 0.1, β = 0.2

(c) α = 1, β = 1 (d) α = 10−10, β = 10−10

Figure 2. Cubic Julia sets.
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(a) α = 0.01, β = 0.08 (b) α = 0.1, β = 0.05

(c) α = 1, β = 1 (d) α = 0.009, β = 0.009

Figure 3. Septic Julia sets.

3.2. Generation of Mandelbrot Sets

Following Algorithm 2 is the pseudocode for the generation of Mandelbrot sets. Note that T′(z)
represents the iteration process.

Algorithm 2: Generation of Mandelbrot set.
Input : complex polynomial–T : C→ C, parameters–r, m ∈ C, Area–A ⊂ C, number of

iterations–N, colormap with M colors–colormap[0...M− 1]
Output :� is the area for Mandelbrot set

1 for c ∈ A
2 do

3 R = Threshold radius
4 k = 0
5 x0 = critical point of T
6 while k ≤ N do

7 z = T′(z)
8 if |z| > R then

9 break
10 end

11 k = k + 1
12 end

13 m = �(M− 1) k
N �

14 color c with colormap[m]

15 end

48



Symmetry 2020, 12, 86

For Figure ?? we input A = [−2, 2]× [−1.2, 2.5] and observe that for α = 0.1 and β = 0.3, the
shape is stretched and the bulb is wider and for α = 0.75 and β = 0.7 the shape is compact with defined
bulb. Notice the variation of colors for Mandelbrot sets for α = 1, β = 1 and α = 0.009, β = 0.009.
Also, observe that Mandelbot sets generated are symmetric about origin.

(a) α = 0.1, β = 0.3 (b) α = 0.75, β = 0.7

(c) α = 1, β = 1 (d) α = 0.009, β = 0.009

Figure 4. Mandelbrot sets.

4. Conclusions

In this paper, a Picard Ishikawa type orbit was used to study the behaviour of complex
poylnomials. We obtained escape criterions for complex quadratic, cubic and higher degree
polynomials. Some alluring Julia and Mandelbrot sets have been generated. We also observed that the
variation of parameters has shown eminent changes in the Julia and Mandelbrot sets. Our results are
different from comparable existing results as we obtain escape criterion and fractals for polynomials
of the form T(x) = xn + mx + r where m, r ∈ C without using the Jungck iterative process. It is also
worth mentioning that the behaviour of the polynomial and shape of the fractal generated under the
iterative process (??) is different and unique as compared to the iterative process studied before in the
literature [? ? ? ? ].
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Abstract: The concept of the grid is broadly used in digital geometry and other fields of computer
science. It consists of discrete points with integer coordinates. Coordinate systems are essential for
making grids easy to use. Up to now, for the triangular grid, only discrete coordinate systems have
been investigated. These have limited capabilities for some image-processing applications, including
transformations like rotations or interpolation. In this paper, we introduce the continuous triangular
coordinate system as an extension of the discrete triangular and hexagonal coordinate systems.
The new system addresses each point of the plane with a coordinate triplet. Conversion between the
Cartesian coordinate system and the new system is described. The sum of three coordinate values
lies in the closed interval [−1, 1], which gives many other vital properties of this coordinate system.

Keywords: barycentric coordinate system; coordinate system; hexagonal grid; triangular grid;
tri-hexagonal grid; transformations

1. Introduction

The concept of the grid is essential and heavily used in digital geometry and in digital image
processing. A grid is comprised of discrete points addressed with integer vectors. There are three
regular tessellations of the plane, which define the square, hexagonal, and triangular grids (named
after the form of the pixels used as tiles) [1]. Most of the applications use the square grid because its
orthogonal coordinate system, known as the Cartesian coordinate system (CCS), which fits very well
to it. This addresses each square pixel of the grid by a pair of independent integers. The dual of the
square grid (the grid formed by the nodes, which are the crossing points of the gridlines) is again a
square grid. Therefore, essentially, the same CCS is used as well. Working with real images, we may
need to perform operations that do not map the grid to itself, e.g., zooming or rotations. The Cartesian
coordinate system allows real numbers to be used in such cases. Moreover, the digitization operation
can easily be defined by a rounding operation.

The hexagonal grid, tiling the plane by the same size regular hexagons (hexagonal pixels), has been
used for decades in image processing applications [2], in cartography [3,4], in biological simulations [5],
and in other fields, since the digital geometry of the hexagonal grid provides better results than the
square grid in various cases. In addition, it is used in various table and computer games based on its
compactness. It is the simplest 2D grid, since the only usual neighborhood using the nearest neighbors
is simpler and less confusing than the two types of neighbors in the square grid [6]. The neighborhood
of a pixel contains six other hexagons (see Figure 1a). In contrast to the square grid, the dual of the
hexagonal grid is not the hexagonal, but the triangular grid (see Figure 1a,b). Adequate and elegant
coordinate systems for these kinds of grids are required for their use in both theory and applications,
e.g., in image processing or engineering applications. In Reference [7], a three-coordinate-valued
system of zero-sum triplets is used to describe the hexagonal grid capturing the triangular symmetry
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of the grid. In Figure 1a, the first coordinate value is ascending right-upwardly, the second values
are ascending into the right-downward direction, and the third one is ascending into the left-upward
direction [7,8]. We should mention that this system could be seen as the extension of the oblique
coordinate system using two independent integer values [9] by concerning the third value to obtain
zero-sum for every triplet. The digital distance based on the neighborhood relation is computed in
Reference [9]. Since the vectors describing the grid are not orthogonal, some geometric descriptions
based on Cartesian coordinates are not very clear. However, to simplify the expressions of the
constrained three-dimensional coordinate system is recommended. We should also mention that 0-sum
triplets allowing real numbers were used in Reference [8] to describe rotations (that may not map
the hexagonal grid to itself). In this way, a useful digitization operator is found. Her’s system was
mentioned and used in References [10,11] for various imaging-related disciplines.

Figure 1. The coordinate system for the hexagonal grid (a) and its dual (b). The coordinate system for
the triangular grid (c) and its dual (d).

The triangular grid is the third regular grid. It is generated by tiling the plane regularly with
equilateral triangles. Although it is the most complex among the three regular tessellations (it has the
largest number and types of neighbors), it has various advantages in applications, e.g., by the flexibility
of the used neighborhood. The triangular grid is built by triangles in two different orientations.
Moreover, it is not a point lattice since some of the grid vectors, i.e., the vectors connecting the
midpoints of triangles with different orientations, do not translate the grid into itself [12]. However,
the triangular grid gives a valid alternative for applications in image processing. In some cases, it gives
better results than the usual square grid due to its better symmetric properties and larger, natural
neighborhood structure. Each pixel has 12 neighbors sharing at least a corner. They are categorized into
three types of neighbor relations [13,14]. The triangular grid has similar symmetry to the hexagonal
grid. Therefore, in Reference [15], a coordinate system with zero-sum and one-sum triplets are used to
describe this grid (the three values are not independent, since this is also a 2D grid, see Figure 1c,d).
The angle between any two of the three coordinate axes is 120◦ as for the hexagonal grid. In this
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description, two pixels are neighbors if their coordinate values differ by at most one. Moreover, at the
closest neighbors, only one coordinate differs [15,16]. Observe that exactly the same coordinate triplets
are used on the left and on the right-hand side in Figure 1c,d, respectively, which shows the duality of
the triangular and hexagonal grids. In Reference [17], a combinatorial coordinate system was shown
that addresses the pixels, the corners, and the edges between them. That coordinate system gives an
efficient tool to work with digital cell complexes on the triangular grid. Various image processing
algorithms have been defined and implemented for the triangular grid recently such as discrete
tomography [18,19], thinning [20], and mathematical morphology [21]. We should also mention that
triangulation is a frequently used technique in imaging and computer graphics. However, the obtained
grid is usually not the regular triangular grid. Lastly, we should note that several non-regular grids
have various applications in 2D and in higher dimensions.

The coordination is vital because it is a leading tool in making a simple, easily usable, and effectively
programmable system with integer numbers (coordinates). The isometric transformations are described
in Reference [12]. However, up to now, there was no such extension of this coordinate system that is
able to address the entire plane. For various applications, including, e.g., arbitrary angled rotations,
an extension of the coordinate system is needed. We note here that Her’s zero-sum triplets could match
only up to half of the grid points in the triangular grid (Figure 1c,d), and, therefore, the coordinate
system addressing the whole plain cannot be used for the triangular grid.

In this paper, we introduce a continuous coordinate system for the plain based on the symmetry
of the triangular grid, where every point of the 2D plane has its unique coordinate triplet. We use three
coordinate values to describe the triangular grid as in Reference [15] but also to address the points of
the plane “between” and “around” the nodes of the dual grid. Our new coordinate system is shown
to be an extension of the hexagonal and of the triangular coordinate systems. Moreover, our system
builds upon the coordinate system for the so-called, tri-hexagonal grid, also called the three-plane
triangular grid in Reference [16].

For further applications, we also provide a mapping between our continuous coordinate system
for the triangular grid and the Cartesian coordinate system of the 2D plane.

The rest of this paper is as follows. The next, preliminary section, describes some important
discrete coordinate systems and the barycentric coordinate system. The continuous coordinate system
for the triangular grid is then introduced in Section 3. Conversions to and from Cartesian coordinates
are also presented. Some important properties of the new coordinate system are presented in Section 4.
Lastly, conclusions close the paper.

2. Preliminaries

In this paper, as usual, Z3 denotes the cubic grid, whose points are addressed by integer triplets,
according to the three coordinates x, y, z.

In order to create a continuous coordinate system for the triangular grid that enables us to
uniquely address any point of the triangular grid, we combine discrete triangular coordinate systems
from Reference [22] (see also Figure 1 for some examples) with the barycentric coordinate system
(BCS), discovered by Möbius (see References [1,23]).

In Figure 2, a coordinate system for the tri-hexagonal grid (the three-plane triangular grid of
regions [16]) and its dual is given. This grid resembles a mix of the triangular and hexagonal grids
since it is a combination of the one-plane and two-plane grids [7,22]. The new coordinate system will
be an extension of the discrete triangular and hexagonal coordinate systems.
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Figure 2. Representation of the tri-hexagonal coordinate system (a) and its dual (b). The same
coordinate system is used to address the pixels (a) and the nodes of the dual grid (b).

Next, a brief description is given for the discrete triangular coordinate system and BCS.

2.1. Discrete Triangular Coordinate System

The discrete Hexagonal Coordinate System uses 0-sum triplets (Figure 1a,b). The discrete
Triangular Coordinate System [22] is a symmetric coordinate system that addresses each pixel by an
integer triplet. The three coordinate axes have angles of 120◦ as in the hexagonal grid. The sum of the
triplets is equal to 0 or 1, which refers to the two types of orientations of triangles (�,�). The triangles
with zero-sum are the “even” triangles (�), and the triangles with one-sum triplets are the “odd”
triangles (�) (see Figure 1).

For finding an appropriate extension to this system that is able to address all points of the 2D
plane, we start by addressing the midpoints of triangles with integer triplets of +1 and −1 sum.
Therefore, we call them “positive�” and “negative�” triangles, respectively. According to Figure 3,
the coordinate system of Figure 2b is used to address midpoints of triangles of the triangular grid.
Observe that each triplet assigned to a midpoint (see the blue triplets in Figure 3) builds up from the
coordinate values shared by two of the corners of the given pixel (see the three red triplets around
each blue triplet). There is already an important difference between our proposed and Her’s zero-sum
coordinate system, which includes the use of zero-sum triplets to address these midpoints as well
(actually, three fractional values for each midpoint), which was a very good and efficient choice to
extend the coordinate system of the hexagonal grid. However, it does not meet our requirements.
Therefore, we have fixed these coordinate values in another way. We should also mention that Her’s
system inside the regular triangles can be seen as an application of the barycentric coordinate system
(see next subsection) based on the values assigned to the corners of the triangle.

Figure 3. The coordinate system for the tri-hexagonal grid is used for the triangular grid (and for its
dual at the same time).
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2.2. The Barycentric Coordinate System (BCS)

One of the main motivations of the barycentric technique is to use a coordinate system only for
a finite (bordered) segment of the plane, which is also more “balanced” inside this region than the
values of the Cartesian frame.

The barycentric technique uses coordinate triplets to address any points inside (and on the border)
of a given triangle. We put three one-sum weights, (w, v, u), to the corners known as a, b, and c of
the triangle and the mass center p inside the triangle is assigned to the triplet of weights. It is also
known that, if the area of the triangle abc is one unit, then the areas of bcp, acp, and abp are exactly w, v,
and u, respectively. The coordinates of p can be computed from the coordinates of the corners of the
triangle by weighted average, i.e., p = wa + vb + uc (where p, a, b, and c are the vectors representing the
positions of these points).

This formula can easily be transformed to the following formula using the fact that w = 1 − v − u:

p = a + v (b − a) + u (c − a) (1)

Actually, since the three barycentric coordinate values (w, v, and u) of point p are not independent
(sum of 1), we may use only two of them, v and u, to address point p similarly as in an oblique
coordinate system. One may understand Equation (1) as stating that the starting point is a, and we
can go to the direction of b and the direction of c by some distance, which is indicated by v and u,
respectively. However, in our approach, the starting point a is the midpoint of the regular triangle and,
according to the values of v and u, the coordinate triplet for point p is calculated (see Figure 4 and
Example 1).

Figure 4. A composition of the barycentric technique and discrete coordinate system to address points
p and q in the triangular plane by coordinate triplets in (a) and (b), respectively.

In the classical barycentric technique, the point is considered to be inside a triangle, as long as
the sum of (u and v) is between 0 and 1: 0 < u + v < 1. If the sum is equal to 1, then the point will
be on the edge (cb), while it will be out of the triangle if the sum is less than 0 or greater than 1 (see
Figure 4a). Now, we relax the condition of the barycentric technique and allow the sum of u and v to be
any real number between 0 and 2 besides the conditions 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 hold (see Figure 4b).
In this way, we may also address some points outside of the triangle. In Figure 4 and Example 1,
a composition of the barycentric technique and the discrete coordinate system (assigned to the corners
of an isosceles triangle in the regular triangle) is given to address other points of the plane.

Example 1. Consider the triangle defined by corners (1, 0, 0), (1, 0, −1), and (1, −1, 0), which represent the
three vertices a, b, and c, respectively. Let u = 0.2 and v = 0.4, where 0 < u + v < 1. Then, based on Equation (1),
the coordinate triplet of point p is (1, −0.2, −0.4). If u = 0.8 and v = 0.4 (0 < u + v < 2), then the coordinate
triplet of point q is (1, −0.8, −0.4) (see Figure 4).
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3. Continuous Coordinate System for Reflecting the Triangular Symmetry

In order to create a continuous triangular coordinate system that works efficiently, we combine
the discrete coordinate system for the triangle grid with BCS. In the discrete triangular coordinate
system, integer coordinate triplets with various sums were used. In BCS, coordinate triplets with
fractional values address the points inside a triangle. We develop a new system, which uses triplets
on the entire plane. We start by dividing each equilateral triangle of the triangular grid into three
isosceles obtuse-angled triangles, which will possess areas A, B, and C, as shown in Figure 5. In this
case, the midpoint m between areas will be the start point (the red point), which is represented by the
letter a in Equation (1). This point will be used to calculate the coordinates of the points in the three
areas A, B, and C.

Figure 5. Dividing positive (a) and negative (b) triangles to three areas A, B, and C. The letters assigned
to the isosceles triangles are based on the orientation of the sides.

As we have already mentioned above, we use coordinate triplets with sum +1 and −1 for
these midpoints, depending on the orientation of the original triangle. The sum of 1 represents the
midpoint of the positive triangles� and the sum of −1 represents the midpoint of negative triangles
�. Therefore, using the barycentric Equation (1) based on these midpoints, we obtain a unique triplet
for each point in each area of the plane, which we will describe below.

Based on the barycentric Equation (1), we know that the values u and v are limited by 0 ≤ u + v ≤ 1
(inside or on the border of the given triangle), which gives the ability to address the points inside areas
A, B, and C of each type of triangle (�,�), separately. However, let us consider the case in which the
sum of u and v satisfies 0 ≤ u + v ≤ 2, such that the conditions 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 hold. Then,
consequently, each midpoint can be used to address not only the points in the area located in this
original triangle but also the points in the neighboring area denoted with the same letters. To illustrate
this, the green area in Figure 6a can be completely addressed by using either midpoint a(+) or a(−) as
the starting point in Equation (1).

Figure 6. (a) By using either a(+) or a(−), the whole green area A could be addressed. (b) The hexagon
surrounded by the thick dark blue line shows the entire area that can be addressed by using a positive
midpoint m.
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Proposition 1. To address the points inside a rhombus A, B, or C, the coordinate triplet of a point does not
depend on the choice of whether the midpoint of the positive or the negative triangle is used for addressing.

Proof. Assume point (p) in area A of the negative triangle. Let a(+) = (a1, a2, a3), a(−) = (a1, a2 − 1, a3 −
1), p = (p1, p2, p3), b = (b1, b2, b3), and c = (c1, c2, c3) where a(+) is the midpoint of the positive triangle
and a(−) is the midpoint of the negative one (see Figure 7).

Figure 7. Proving how point p can be calculated by either the positive or negative midpoint (a(+) or
a(−)). (a) Shows the position of point p with respect to both a positive and a negative triangle, while (b)
and (c) represent the calculation of the coordinates of point p based on the positive and negative
triangles, respectively.

As we mentioned earlier, each triplet assigned to a midpoint builds up from the coordinate values
shared by two of the corners of the given pixel (see Section 2.1). Thus, we have some equalities.

In the positive triangle, we have:

a1 = b1 = c1, b2 = a2, c3 = a3 and c2 = a2 − 1,

In the negative triangle, we have:

a1 = b1 = c1, b2 = a2, c3 = a3 and b2 = a2 − 1.

Now, to compute the first coordinate value, a1, from the positive triangle, we have the following.

p1(+) = a1 + v (b1 − a1) + u (c1 − a1) since a1 = b1 = c1 then p1(+) = a1.

From the negative side, we have the following.

p1(−) = a1 + (1 − v) (b1 − a1) + (1 - u) (c1 − a1) then also p1(−) = a1.
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For the second coordinate value, a2, from the positive triangle, we have the following.

p2(+) = a2 + v (b2 − a2) + u (c2 − a2),

since b2 = a2, then:
p2(+) = a2 + u (c2 − a2).

Using c2 = a2 − 1, we get p2(+) = a2 − u.
From the negative side, we have the following.

p2(−) = (a2 − 1) + (1 − v) (b2 − (a2 − 1)) + (1 − u) (c2 − (a2 − 1)),

since b2 = (a2 − 1), it is:
p2(−) = (a2 − 1) + (1 − u) (c2 − (a2 − 1)),

since c2 = a2, then we have p2(−) = a2 − u.
Lastly, for the third coordinate value, a3, from the positive triangle, we have:

p3(+) = a3 + v (b3 − a3) + u (c3 − a3).

Since c3 = a3,
p3(+) = a3 + v (b3 − a3).

Furthermore, b3 = a3 – 1, which yields to p3(+) = a3 − v.
From the negative side, we have the following.

p3(−) = (a3 − 1) + (1 − v) (b3 − (a3 − 1)) + (1 − u) (c3 − (a3 − 1)).

Since c3 = a3 − 1 and b3 = a3, it can be written as:

p3(−) = (a3 − 1) + (1 − v) (b3 − (a3 − 1)) = a3 − v.

Having the point inside other regions, the proof goes in a similar manner. �

As we have already mentioned, a popular way to understand BCS for a point (inside a triangle)
goes by the ratio of the areas defined by the triangles determined by the point and two of the triangle
corners. In fact, our system uses a similar technique to address the points inside a triangle since it is
stated in the next corollary based on the previous proposition.

Corollary 1. Let p be any point inside or on the border of an obtuse-angled triangle determined by a midpoint
a = (a1, a2, a3), and corners b = (b1, b2, b3), c = (c1, c2, c3). Let the barycentric coordinates of p be (w, v, u),
with w + v + u = 1, i.e., by assigning these weights to a and b and c, respectively, the weighted midpoint is at p.
Then, the coordinates of p = (p1, p2, p3) are exactly pi = w ai + v bi + u ci for i = 1, 2, 3.

Notice that the three points a, b, and c above must have a fixed coordinate value (depending on
the type of the triangle). The weighted average of this coordinate value will be the same for any point
inside or on the border of this obtuse-angled triangle.

As we have seen a given triplet of corners, including a midpoint can be used to address points
not only on the inside but also on the border of the triangle determined by them. The type of these
regions is important in this issue. In Figure 6b, the thick, dark blue line shows the entire area that
the positive midpoint can address. The key issue is to use triplets of the discrete coordinate system
and to use only two barycentric fractional values inside, by using the directions of the sides of the
appropriate rhombus in which the point is located. The sides of a rhombus are actually parallel to two
of the coordinate axes.
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Hereafter, for simplicity, we will use only the positive midpoints for further calculations,
while ignoring the negative ones. The triangular plane can be seen in Figure 8a.

Figure 8. (a) Re-structuring the triangular plane to fit the Cartesian plane. (b) The two distinguished
rectangles of the plane.

In the next two subsections, we will illustrate the conversion between the continuous coordinate
system to/from the Cartesian coordinate system. Namely, we can convert the coordinate triplet of a
certain point in our new coordinate system to its corresponding Cartesian coordinates and vice versa.

3.1. Converting Triplets to Cartesian Coordinates

Assume that we use (i, j, k) as a coordinate triplet of a point, where I, J, and K are the axes of the
triangular plane (see Figure 1), and suppose (x, y) is used to indicate the same point in the Cartesian
plane where X and Y are the axes.

For the conversion, we fix the side-length of the triangle of the triangular grid to
√

3. Consequently,
its height is 1.5 (see the dashed blue lines in Figure 9). Then, the following matrix equation computes
the corresponding coordinate values x and y for the given triplet (i, j, k):

( √
3

2 0 −
√

3
2

1
2 −1 1

2

)
·

⎛⎜⎝ i
j
k

⎞⎟⎠ =
1
2
·
( √

3(i− k)
i− 2j + k

)
=

(
x
y

)
(2)

Figure 9. The dashed red lines indicate the Cartesian coordinates of the point.
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Example 2. Let (1, −0.2, −0.5) be a point in the triangular plane. Then, based on (2):

( √
3

2 0 −
√

3
2

1
2 −1 1

2

)
·

⎛⎜⎝ 1
−0.2
−0.5

⎞⎟⎠ ≈ (
1.3

0.45

)

Thus, (x, y) ≈ (1.3, 0.45), as shown in Figure 9.

3.2. Converting Cartesian Coordinates to Equivalent Triplets

One of the simplest ways to do such a conversion is to determine the midpoint and the two
corner points, which defines the triangle in which the given point locates (inside or on the border).
Then, by computing the barycentric coordinates (weights) of the point with respect to these triangle
corners, by Corollary 1, the continuous coordinate triplet is computed. In this subsection, we present
a slightly different method with little more details to convert Cartesian coordinates to continuous
triangular coordinates.

As we already mentioned earlier, the midpoints of positive triangles are used to address all
points in the triangular plane. Therefore, every positive midpoint will address areas A, B, and C in
neighbor (negative) triangles, as already seen in Figure 6b. Consequently, the triangular plane will
be re-structured, which can be seen in Figure 8a. However, two kinds of rectangles can be clearly
distinguished in this plane, called CB and AB (see Figure 8b).

We may start by specifying the area (i.e., rhombus) A, B, or C that a Cartesian point (x, y) belongs
to. Then, we can use appropriate formulae that are assigned to each type of area, which is a process
we will describe later in this section (see Table 1). Hence, the following three steps are used to specify
the area.

Step 1 Which quarter of the Cartesian plane is involved? Note that the 1st and 3rd quarters have 
the same structure, while the 2nd and 4th quarters have another one. 

Step 2 Which rectangle is involved (AB or CB)? 
Step 3 Which area is involved (A, B, or C)? 

Table 1. The coordinate triplets formulae, based on area type, where 〈. . .〉 is a rounding operation *.

Coordinate Triplet Area A Area B Area C

i 〈 x√
3
〉+ 〈 y

3 〉 x
√

3
3 + y + j

2x√
3
+ k

j i+k
2 − y 〈 −2y

3 〉 i+k
2 − y

k i− 2x√
3

i− 2x√
3

〈 y
3 〉 − 〈 x√

3
〉

* rounding operation returns the nearest integer to the real number, such that numbers exactly the same distance
from two integers are rounded to the larger absolute valued one, e.g., 〈1.5〉 = 2, 〈−1.5〉 = −2 and 〈−0.4〉 = 0.

We show how these steps can be computed by pseudo codes. The first step is the easiest one
since we can inquire whether the values of (x, y) are greater or equal to zero or not. Then, this task is
completed and the involved quarter is specified (see Code 1).

Code 1.

IF ((x ≥ 0) AND (y ≥ 0)) OR ((x < 0) AND (y < 0))
THEN “1st or 3rd quarter”
ELSE “2nd or 4th quarter”

To complete the second step, note that the basic measurements of every rectangle are known,
with a height and width equal to 1.5 and

(√
3/2

)
, respectively. Then, the CB rectangle is involved
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whenever the integer part of x and y, are both even or both odd. Otherwise, the AB rectangle is
involved. See Code 2 to clarify this step.

Code 2.

IF ((int (2x/
√

3) mod 2 = 0) AND (int (y/1.5) mod 2) = 0) OR
(int (2x/

√
3) mod 2 = 1) AND (int (y/1.5) mod 2) = 1))

THEN “CB Rectangle is involved”
ELSE “AB Rectangle is involved”

where:

• int takes the integer part of the (decimal) number,
• mod is the modulus (or remainder, here after division by two).

Now, the involved rectangle is specified and the third step follows. Since we have two types
of rectangles AB and CB, and they are symmetric, we will discuss only one of them known as type
AB rectangles.

In rectangle AB, a point (x, y) will belong to either part A or part B. To decide which one is
involved, we consider Line 1 (L1) and Line 2 (L2) in Figure 8b, where they divide the rectangle into
parts A and B. If the point is between L1 and L2, then part A is involved. Otherwise, it is in part B.
However, L1 and L2 are considered to be within the area A in cases when the point is on the lines.
Equations (3) and (4) of a straight line are used for Line 1 and Line 2, respectively.

m·x + r1 − y = 0, (3)

m·x + r2 − y = 0, (4)

where:

• m is the slope of L1 and L2, which is a constant here, equal to
(
−
√

3/3
)

,

• r1 and r2 are the y-axis intercept with L1 and L2, respectively, where r2 = r1 + 1

This step is started by substituting the point (x, y) in Equations (3) and (4). Then, it is determined
that part A is involved if the left side of Equation (3) is not greater than 0 and the left side of Equation
(4) is not less than 0. Otherwise, part B is involved. Code 3 is used to clarify this step.

Code 3.

IF ((r1 − x
√

3/3 − y) ≤ 0) AND ((r2 − x
√

3/3 − y) ≥ 0)
THEN “Area A is involved”
ELSE “Area B is involved”

The y-axis intercept with Line 1, r1, in area AB, is computed by computing any point (x, y) on Line
1. Therefore, the point at the bottom-right corner of rectangle AB is computed for this purpose (see the
red point in Figure 10). Hence, Equation (5) is used to find the value of r1. In Equation (5), we used the
modulus (mod) as a function naturally extended to real numbers, i.e., it gives the remainder after the
division by a real number (and that is between 0 and the divisor). Moreover, by adding 1 to r1, we get
the value of the y-axis intercept with Line 2, r2 (see Code 3).

r1 = y−
(

y mod
3
2

)
+

√
3

3
·
(

x +

√
3

2
−
(

x mod
√

3
2

))
(5)

Similar strategies are used when the CB rectangle is involved, taking care that the slopes of Line 1
and Line 2 will be equal to

(√
3/3

)
.
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Lastly, when the involved area A, B, or C is specified, particular formulae are used that are
specified in Table 1. Example 3 is used for a further explanation.

Figure 10. The red point is used to compute the value of r1, which is the Y-axis intercept with Line 1.

Example 3. Consider a point with Cartesian coordinates: (x, y) = (1.299, 0.45). In order to convert this
Cartesian coordinate pair to its corresponding triangular triplet, the three steps below will be followed.

Step 1 The 1st or 3rd quarter is involved.
Step 2 It’s odd and even. Therefore, rectangle AB is involved.
Step 3 Area A is matched.

Thus, formulae of area A (see Table 1) should be applied in this order, so:

(1) i = 〈0.75〉+ 〈0.15〉 = 1 + 0 = 1
(2) k = 1 − 2x√

3
≈ −0.500.

(3) j ≈ −y + 0.5 · 0.5 = −0.2

The corresponding triplet is (i, j, k) ≈ (1, −0.2, −0.5), which is approximately the same as in Example 2,
as it should be.

To show the conversion of points on other areas (e.g., Area B or Area C), the following examples
are given:

Example 4. (Point in Area B)

(a) Converting from Continuous Coordinate System to CCS.

Let (i, j, k) = (0.683, 0, −0.183) be a point in the triangular plane. To convert to CCS, Equation (2) is used:

( √
3

2 0 −
√

3
2

1
2 −1 1

2

)
·

⎛⎜⎝ 0.683
0

−0.183

⎞⎟⎠ ≈ (
0.75
0.25

)

(b) Converting from CCS to a Continuous Coordinate System.

Let (x, y) = (0.75, 0.25). The corresponding Continuous Coordinate System triplet can be calculated based
on the three steps above as follows.

Step 1 It belongs to the 1st quarter.
Step 2 It belongs to rectangle CB.
Step 3 Area B is matched.
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Thus, formulae of area B from Table 1 are applied in the following order:

(1) j = 〈−2y
3 〉 = 0

(2) i = x
√

3
3 + y + j ≈ 0.433 + 0.25 + 0 = 0.683

(3) k = i− 2x√
3
≈ 0.683 − 0.866 = −0.183

The corresponding triplet is (i, j, k) = (0.683, 0, −0.183), which is exactly the original value.

Example 5. (Point in Area C)

(a) Converting from the Continuous Coordinate System to CCS.

Let (i, j, k) = (0.346, −0.626, 0) be a point in the triangular plane. To convert to CCS, we use Equation
(2) below. ( √

3
2 0 −

√
3

2
1
2 −1 1

2

)
·

⎛⎜⎝ 0.346
−0.626

0

⎞⎟⎠ ≈ (
0.299
0.799

)

(b) Converting from CCS to a Continuous Coordinate System

Let (x, y) = (0.299, 0.799). The corresponding Continuous Coordinate System triplet can be calculated
based on the three steps below.

Step 1 It belongs to the first quarter.
Step 2 It belongs to rectangle CB.
Step 3 Area C is matched.

Thus, formulae of area C from Table 1 are applied in the following order.

(1) k = 〈 y
3 〉 − 〈 x√

3
〉 = 0 − 0 = 0

(2) i = 2x√
3
+ k ≈ 0.346 + 0 = 0.346

(3) j = i+k
2 − y ≈ 0.173 − 0.799 = −0.626

The corresponding triplet is (i, j, k) = (0.346, −0.626, 0), which is exactly the original triplet.

Example 6. (A mid-point)

(a) Converting from Continuous Coordinate System to CCS.

Let (i, j, k) = (1, 0, 0) be a point in the triangular plane. To convert to CCS, Equation (2) is used below.

( √
3

2 0 −
√

3
2

1
2 −1 1

2

)
·

⎛⎜⎝ 1
0
0

⎞⎟⎠ =

( √
3

2
1
2

)

(b) Converting from CCS to a Continuous Coordinate System.

Let (x, y) = (
√

3/2, 0.5). The corresponding Continuous Coordinate System triplet can be calculated based
on the three steps below.

Step 1 It belongs to the first quarter.
Step 2 Based on Code 2, it belongs to rectangle CB (but, since it is a mid-point, then either rectangle AB or CB

may be used).
Step 3 Area B is matched.

Thus, formulae of area B from Table 1 are applied in the following order.
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(1) j = 〈−2y
3 〉 = 0

(2) i = x
√

3
3 + y + j = 0.5 + 0.5 + 0 = 1

(3) k = i− 2x√
3

= 1 − 1 = 0

The corresponding triplet is (i, j, k) = (1, 0, 0), which is exactly the original value.

4. Properties of the Continuous Triangular Coordinate System

In this section, we will focus on the most important properties of this continuous coordinate system.

4.1. On the Triplets of a General Point

In Figure 6a, consider the red straight line between a(+) and a(−), in the green area. Then, the
sum of the coordinate values of the points on this line would change continuously from 1 until −1.
Depending on the sum, we can classify the points as follows:

If a point with 3 CV’s sum is:

• equal to 1, then it indicates the positive midpoint (i.e., a(+));
• equal to −1, then it indicates the negative midpoint (i.e., a(−));
• equal to 0, then it indicates the point on the triangle’s edge;
• positive, then the point belongs to the positive triangle;
• negative, then the point belongs to the negative triangle.

Theorem 1. The sum of the coordinate triplet of any point in the plane is in the range of the closed interval [−1, 1].

Proof. Consider an area A of a positive triangle with the corners a = (a1, a2, a3), b = (b1, b2, b3),
and c = (c1, c2, c3), where b and c are vertices (corners of an equilateral triangle) of the grid, while a is
the midpoint of a positive triangle and p = (p1, p2, p3) is a randomly chosen point belonging to this area
(inside or on the border of A). Now based on the barycentric Equation (1), we have the following.

3

∑
i=1

pi=
3

∑
i=1

ai + v·(
3

∑
i=1

(ci − ai)) + u·(
3

∑
i=1

(bi − ai))

It is clear that ∑3
i=1 ai = 1, whereas

∑3
i=1(ci − ai) = (c1 − a1) + (c2 − a2) + (c3 − a3)

= (c1 + c2 + c3)− (a1 + a2 + a3)

= 0− 1 = −1

Similarly, ∑3
i=1(bi − ai) = −1.

Then, by substitution, we have the following.

3

∑
i=1

pi = 1− u− v = 1− (u + v). (6)

Since 0 ≤ u + v ≤ 2, the maximal and minimal value of the sum of any coordinate triplet is equal
to 1 (when u + v = 0) and to −1 (when u + v = 2), respectively. �

Theorem 2. The sum of the coordinates of a triplet is non-negative in a positive triangle and non-positive in a
negative triangle.

Proof. Consider a point p that belongs to a positive triangle. Clearly, the coordinates of p are based on
u and v such that 0 ≤ u + v ≤ 1. Now, by substituting u + v in Formula (6) (at the proof of Theorem 1,
the summation will always be non-negative (moreover, it is positive inside the triangle).
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Similarly, let p belong to a negative triangle, then 1 < u + v ≤ 2. Thus, by substituting into Formula
(6), the sum will always be a non-positive value. �

Every point in the triangular plane has at least one integer value in its triplet. Moreover, the place
of the integer value indicates its area (A, B, or C).

Theorem 3. The first coordinate value of every point in area A is the same as the first coordinate value of
the midpoint. The second coordinate value of every point in area B equals the second coordinate value of the
midpoint. Similarly, the third coordinate value of any point in area C equals the third coordinate value of the
midpoint (Figure 11).

Figure 11. The corresponding constant coordinate value for each area.

Proof. Consider an area A of a positive triangle with the corners a = (a1, a2, a3), b = (b1, b2, b3),
and c = (c1, c2, c3), where b and c are vertices (corners of an equilateral triangle) of the grid, while a is
the midpoint and p = (p1, p2, p3) is a randomly chosen point belonging to this area (i.e., inside or on the
border of the triangle abc). Since it is area A, we have a1 = b1 = c1. Substituting this into Equation (1),
p1 = a1 follows for any point p in this area. A similar proof can be considered for areas B and C. �

If a triplet contains two integer values, then the point is located on the line bordering the areas.
For example, a triplet of the form (1, 0, k) addresses a point on the line (side of the obtuse-angled
triangle) between area A and B (0 ≤ k ≤ −1). However, if three integers are a triplet, then this triplet
addresses either a midpoint or a vertex (corner) of a triangle.

4.2. Relation to Discrete Coordinate Systems

In Reference [16], the hexagonal grid is called a one-plane triangular grid since it is a sub-plane
of Z3 and because of its symmetry. The triangular grid (nodes of the hexagonal grid) is called
a two-plane triangular grid. Combining one-plane and two-plane grids produces the so-called
three-plane triangular grid, which is known as the tri-hexagonal grid (Reference [24], Figure 2).
In this subsection, their coordinate systems are compared to the new coordinate system.

Theorem 4. The triplets containing only integers such that their sum equals zero represent exactly the
hexagonal grid (one-plane triangular grid).

Proof. See Figure 1b for the points of this grid. One may check that exactly those points are addressed
with zero-sum integer triplets for which the Cartesian coordinate pair is described below.

H =
{
(x, y)

∣∣∣x =
(

m
√

3
)

/2, y = 1.5n, where m, n are integers such that m + n is even
}

.

�
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Theorem 5. The triplets containing only integers such that their sum is either 0 or 1 represent exactly the
triangular grid (two-plane triangular grid).

Proof. See Figure 1d for the points of this grid. The locations of the points with zero-sum coordinate
triplets are already known by Theorem 4. Now, we give the locations of the points addressed with
1-sum (integer) triplets.

T =
{
(x, y)

∣∣∣x =
(

m
√

3
)

/2, y = 1.5n− 1, where m, n are integers such that m + n is even
}

.

One can easily see that the union of these two sets (H and T) of points gives back exactly the
vertices of the hexagons of the figure, i.e., the coordinate system of the dual triangular grid. �

Theorem 6. The triplets containing only integers such that their sum is either 0 or ±1 represent exactly the
tri-hexagonal grid (that is the three-plane triangular grid).

Proof. See Figure 3 for the points of this grid. According to Theorem 5, the locations of the zero-sum
and one-sum integer coordinate triplets are already shown. We need to show the locations of the
points addressed with (integer) triplets that have −1-sum. They are:

M =
{
(x, y)

∣∣∣x =
(

m
√

3
)

/2, y = 1.5n + 1, where m, n are integers such that m + n is even
}

.

Actually, the points of this grid, T ∪ H ∪M, are exactly those that were the base of the method of
creating the coordinate system. �

5. Conclusions

The presented continuous coordinate system is an extension of some previously known discrete
coordinate systems, e.g., of the symmetric coordinate frame for the triangular grid. This extension is
needed and helpful for various applications, where the grid points are not necessarily mapped to grid
points, e.g., arbitrary angled rotations, zooming or interpolation of images. We should also mention
translations of images [25] since the triangular grid is not a point lattice. Mathematical morphology
operators are also based on local translations [21]. Thus, our coordinate system provides a new tool for
the research direction as well. The proposed system addresses each point of the 2D (triangular) plane.
Conversion to and from the Cartesian coordinate system is provided. These mappings are inverses of
each other. Thus, the new coordinate system is ready to use in various applications including those
operations that do not necessarily map the grid to itself.
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Abstract: We derive the one-dimensional optimal system for a system of three partial differential
equations, which describe the two-dimensional rotating ideal gas with polytropic parameter γ > 2.
The Lie symmetries and the one-dimensional optimal system are determined for the nonrotating and
rotating systems. We compare the results, and we find that when there is no Coriolis force, the system
admits eight Lie point symmetries, while the rotating system admits seven Lie point symmetries.
Consequently, the two systems are not algebraic equivalent as in the case of γ = 2 , which was found
by previous studies. For the one-dimensional optimal system, we determine all the Lie invariants,
while we demonstrate our results by reducing the system of partial differential equations into a
system of first-order ordinary differential equations, which can be solved by quadratures.

Keywords: lie symmetries; invariants; shallow water; similarity solutions; optimal system

1. Introduction

A powerful mathematical treatment for the determination of exact solutions for nonlinear
differential equations is the Lie symmetry analysis [1–3]. Specifically, Lie point symmetries help
us in the simplification of differential equations by means of similarity transformations, which reduce
the differential equation. The reduction process is based on the existence of functions that are
invariant under a specific group of point transformations. When someone uses these invariants
as new dependent and independent variables, the differential equation is reduced. The reduction
process differs between ordinary differential equations (ODEs) and partial differential equations
(PDEs). For ODEs, Lie point symmetries are applied to reduce the order of ODE by one; while on PDEs,
Lie point symmetries are applied to reduce by one the number of independent variables, while the
order of the PDEs remains the same. The solutions that are found with the application of those
invariant functions are called similarity solutions. Some applications on the determination of similarity
solutions for nonlinear differential equations can be found in [4–9] and the references therein.

A common characteristic in the reduction process is that the Lie point symmetries are not
preserved during the reduction; hence, we can say that the symmetries can be lost. That is not an
accurate statement, because symmetries are not “destroyed” or “created” under point transformations,
but the “nature” of the symmetry changes. In addition, Lie symmetries can be used to construct new
similarity solutions for a given differential equation by applying the adjoint representation of the Lie
group [10].

It is possible that a given differential equation admits more than one similarity solution when
the given differential equation admits a “large” number of Lie point symmetries. Hence, in order
for someone to classify a differential equation according to the admitted similarity solutions, all the
inequivalent Lie subalgebras of the admitted Lie symmetries should be determined.

The first group classification problem was carried out by Ovsiannikov [11], who demonstrated the
construction of the one-dimensional optimal system for the Lie algebra. Since then, the classification of
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the one-dimensional optimal system has become a main tool for the study of nonlinear differential
equations [12–15].

In this work, we focus on the classification of the one-dimensional optimal system for the
two-dimensional rotating ideal gas system described by the following system of PDEs [16–18]:

ht + (hu)x + (hv)y = 0, (1)

ut + uux + vuy + hγ−2hx − f v = 0, (2)

vt + uvx + vvy + hγ−2hy + f u = 0. (3)

where u and v are the velocity components in the x and y directions, respectively, h is the density of
the ideal gas, f is the Coriolis parameter, and γ is the polytropic parameter of the fluid. Usually, γ is
assumed to be γ = 2 where Equations (1)–(3) reduce to the shallow water system. However, in this
work, we consider that γ > 2. In this work, polytropic index γ is defined as Cp

Cv
= γ− 1.

Shallow water equations describe the flow of a fluid under a pressure surface. There are various
physical phenomena that are described by the shallow water system with emphasis on atmospheric
and oceanic phenomena [19–21]. Hence, the existence of the Coriolis force becomes critical in the
description of the physical phenomena.

In the case of γ = 2, the complete symmetry analysis of the system (1)–(3) is presented in [22].
It was found that for γ = 2, the given system of PDEs is invariant under a nine-dimensional Lie
algebra. The same Lie algebra, but in a different representation, is also admitted by the nonrotating
system, i.e., f = 0. One of the main results of [22] is that the transformation that relates the two
representations of the admitted Lie algebras for the rotating and nonrotating system transforms the
rotating system (1)–(3) into the nonrotating one. For other applications of Lie symmetries on shallow
water equations, we refer the reader to [23–28].

For the case of an ideal gas [17], i.e., parameter γ > 1 from our analysis, it follows that this
property is lost. The nonrotating system and the rotating one are invariant under a different number of
Lie symmetries and consequently under different Lie algebras. For each of the Lie algebras, we have
the one-dimensional optimal system and all the Lie invariants. The results are presented in tables.
We demonstrate the application of the Lie invariants by determining some similarity solutions for the
system (1)–(3) for γ > 2. The paper is structured as follows.

In Section 2, we briefly discuss the theory of Lie symmetries for differential equations and the
adjoint representation. The nonrotating system (1)–(3) is studied in Section 3. Specifically, we determine
the Lie points symmetries, which form an eight-dimensional Lie algebra. The commutators and the
adjoint representation are presented. We make use of these results, and we perform, a classification of
the one-dimensional optimal system. We found that in total, there are twenty-three one-dimensional
independent Lie symmetries and possible reductions, and the corresponding invariants are determined
and presented in tables. In Section 4, we perform the same analysis for the rotating system.
There, we find that the admitted Lie symmetries form a seven-dimensional Lie algebra, while there are
twenty independent one-dimensional Lie algebras. We demonstrate the results by reducing the system
of PDEs (1)–(3) into an integrable system of three first-order ODEs, the solution of which is given by
quadratures. In Section 5, we discuss our results and draw our conclusions. Finally, in Appendix A,
we present the tables, which include the results of our analysis.

2. Lie Symmetry Analysis

Let HA (xi, ΦA, ΦA
i , ...

)
= 0 be a system of partial differential equations (PDEs) where ΦA denotes

the dependent variables and xi are the independent variables. At this point, it is important to mention
that we make use of the Einstein summation convention. By definition, under the action of the
infinitesimal one-parameter point transformation (1PPT):

x̄i = xi
(

xj, ΦB; ε
)

, Φ̄A = ΦA
(

xj, ΦB; ε
)

, (4)
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which connects two different points P
(

xj, ΦB) → Q
(

x̄j, Φ̄B, ε
)
, the differential equation HA = 0

remains invariant if and only if H̄A = HA, that is [2]:

lim
ε→0

H̄A (ȳi, ūA, ...; ε
)
− HA (yi, uA, ...

)
ε

= 0. (5)

The latter condition means that the ΦA (P) and ΦA (Q) are connected through the transformation.
The lhs of Expression (5) defines the Lie derivative of HA along the vector field X of the

one-parameter point transformation (4), in which X is defined as:

X =
∂x̄i

∂ε
∂i +

∂Φ̄
∂ε

∂A.

Thus, Condition (5) is equivalent to the following expression: [2]

LX

(
HA

)
= 0, (6)

where L denotes the Lie derivative with respect to the vector field X[n], which is the nth-extension of
generator X of the transformation (4) in the jet space

{
xi, ΦA, ΦA

,i , ΦA
,ij, ...

}
given by the expression [2]:

X[n] = X + η[1]∂ΦA
i
+ ... + η[n]∂ΦA

ii ij ...in
, (7)

in which:

η[n] = Diη
[n−1] − ui1i2...in−1 Di

(
∂x̄j

∂ε

)
, i � 1 , η[0] =

(
∂Φ̄A

∂ε

)
. (8)

Condition (6) provides a system of PDEs whose solution determines the components of the
X, consequently the infinitesimal transformation. The vector fields X, which satisfy condition (6),
are called Lie symmetries for the differential equation HA = 0. The Lie symmetries for a given
differential equation form a Lie algebra.

Lie symmetries can be used in different ways [2] in order to study a differential equation.
However, their direct application is on the determination of the so-called similarity solutions. The steps
that we follow to determine a similarity solution are based on the determination and application of the
Lie invariant functions.

Let X be a Lie symmetry for a given differential equation HA = 0, then the differential equation
X (F) = 0, where F is a function, provides the Lie invariants where by replacing in the differential
equation HA = 0, we reduce the number of the independent variables (in the case of PDEs) or the
order of the differential equation (in the case of ordinary differential equations (ODEs)).

Optimal System

Consider the n-dimensional Lie algebra Gn with elements X1, X2, ... Xn. Then, we shall say that
the two vector fields [2]:

Z =
n

∑
i=1

aiXi , W =
n

∑
i=1

biXi , ai, bi are constants. (9)

are equivalent iff there:
W = limn

j=i Ad (exp (εiXi))Z (10)

or:
W = cZ , c = const. (11)
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where the operator [2]:

Ad (exp (εXi)) Xj = Xj − ε
[
Xi, Xj

]
+

1
2

ε2 [Xi,
[
Xi, Xj

]]
+ ... (12)

is called the adjoint representation.
Therefore, in order to perform a complete classification for the similarity solutions of a given

differential equation, we should determine all the one-dimensional independent symmetry vectors of
the Lie algebra Gn.

We continue our analysis by calculating the Lie point symmetries for the system (1)–(3) for the
case where the system is rotating ( f �= 0) and nonrotating ( f = 0).

3. Symmetries and the Optimal System for Nonrotating Shallow Water

We start our analysis by applying the symmetry condition (6) for the Coriolis free system (1)–(3)
with f = 0. We found that the system of PDEs admits eight Lie point symmetries, as are presented in
the following [11]:

X1 = ∂t , X2 = ∂x , X3 = ∂y ,

X4 = t∂x + ∂u , X5 = t∂y + ∂v ,

X6 = y∂x − x∂y + v∂u − u∂v,

X7 = t∂t + x∂x + y∂y,

X8 = (γ− 1)
(

x∂x + y∂y + u∂u + v∂v
)
+ 2h∂h.

The commutators of the Lie symmetries and the adjoint representation are presented in Table 1
and Table A1, respectively.

Table 1. Commutators of the admitted Lie point symmetries for the nonrotating 2D shallow water.

[ , ] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 0 X2 X3 0 − (γ− 1) X1 0
X2 0 0 0 0 0 −X3 0 (γ− 1) X2
X3 0 0 0 0 0 X2 0 (γ− 1) X3
X4 −X2 0 0 0 0 −X5 (γ− 1) X4 (γ− 1) X4
X5 −X3 0 0 0 0 X4 (γ− 1) X5 (γ− 1) X5
X6 0 X3 −X2 X5 −X4 0 0 0
X7 (γ− 1) X1 0 0 − (γ− 1) X4 − (γ− 1) X5 0 0 0
X8 0 − (γ− 1) X2 − (γ− 1) X3 − (γ− 1) X4 − (γ− 1) X5 0 0 0

We continue by determining the one-dimensional optimal system. Let us consider the generic
symmetry vector:

Z8 = a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6 + a7X7 + a8X8

From Table A1, we see that by applying the following adjoint representations:

Z′8 = Ad (exp (ε5X5)) Ad (exp (ε4X4)) Ad (exp (ε3X3)) Ad (exp (ε2X2)) Ad (exp (ε1X1)) Z8

parameters ε1, ε2, ε3, ε4, and ε5 can be determined such that:

Z′8 = a′6X6 + a′7X7 + a′8X8
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Parameters a6, a7, and a8 are the relative invariants of the full adjoint action. Indeed, in order to
determine the relative invariants, we solve the following system of partial differential equations [1]:

Δ (φ (ai)) = Ck
ija

i ∂

∂aj

where Ck
ij are the structure constants of the admitted Lie algebra as presented in Table 1.

Consequently, in order to derive all the possible one-dimensional Lie symmetries, we should study
various cases were none of the invariants are zero, one of the invariants is zero, two of the invariants
are zero, or all the invariants are zero.

Hence, for the first three cases, infer the following one-dimensional independent Lie algebras:

X6 , X7 , X8 , ξ(67) = X6 + αX7 , ξ(68) = X6 + αX8

ξ(78) = X7 + αX8 , ξ(678) = X6 + αX7 + βX8.

We apply the same procedure for the rest of the possible linear combinations of the symmetry
vectors, and we find the one-dimensional-dependent Lie algebras:

X1, X2 , X3 , X4 , X5 , ξ(12) = X1 + αX2 , ξ(13) = X1 + αX3 , ξ(23) = X2 + αX3 , ξ(14) = X1 + αX4 ,

ξ(15) = X1 + αX5 , ξ(16) = X1 + αX6, ξ(34) = X3 + αX4 , ξ(25) = X2 + αX5 ξ(45) = X4 + αX5 ,

ξ(123) = X1 + αX2 + βX3 ξ(145) = X1 + αX4 + βX5 , ξ(125) = X1 + αX2 + βX5 , ξ(134) = X1 + αX3 + βX4,

in which α and β are constants.
Therefore, by applying one of the above Lie symmetry vectors, we find all the possible reductions

from a system of 1 + 2 PDEs to a system of 1 + 1 PDEs. The reduced system will not admit all the
remaining Lie symmetries. The Lie symmetries that survive under a reduction process are given as
described in the following example.

Let a PDE admit the Lie point symmetries Γ1, Γ2, which are such that [Γ1, Γ2] = C1
12X1,

with C1
12 �= 0. Reduction with the symmetry vector Γ1 leads to a reduced differential equation,

which admits Γ2 as the Lie symmetry. On the other hand, reduction of the mother equation with
respect to the Lie symmetry Γ2 leads to a different reduced differential equation, which does not admit
as a Lie point symmetry the vector field Γ1. In case the two Lie symmetries form an Abelian Lie algebra,
i.e., C1

12 = 0, then under any reduction process, symmetries are preserved by any reduction.
We found that the optimal system admits twenty-three one-dimensional Lie symmetries and

possible independent reductions. All the possible twenty-three Lie invariants are presented in
Tables A2 and A3.

An application of the Lie invariants is presented below.

Application of ξ145

Let us now demonstrate the results of Tables A2 and A3 by the Lie invariants of the symmetry
vector ξ145 and construct the similarity solution for the system.

The application of ξ145 in the nonrotating system (1)–(3) reduces the PDEs in the following system:

(hu)z + (hv)w = 0 (13)

α + uuz + vuw + hγ−2hz = 0 (14)

β + uvz + vvw + hγ−2hw = 0 (15)

where z = x− α
2 t2 and w = y− β

2 t2.
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System (13)–(15) admits the Lie point symmetries:

∂z , ∂w , z∂z + w∂w +
2

γ− 1
h∂h + u∂u + v∂v (16)

Reduction with the symmetry vector ∂z + c∂w provides the following system of first-order ODEs:

Fhσ = (cα− β) h2, (17)

Fvσ =
(α− cβ) chγ − αh (v− cu)2

v− cu
, (18)

Fhσ =
(α− cβ) cuγ − βh (v− cu)2

v− cu
. (19)

where F =
(
1 + c2) hγ − h (v− cu)2 and σ = z + cw.

By performing the change of variable dσ = f dτ, function f can be removed from the above
system. For h (τ) = 0, the system (17)–(19) admits a solution u = u0, v = v0, which is a critical point.
The latter special solutions are always unstable when αc > β.

We proceed with our analysis by considering the rotating system.

4. Symmetries and Optimal System for Rotating Shallow Water

For the rotating system ( f �= 0), the Lie symmetries are:

Y1 = ∂t , Y2 = ∂x , Y3 = ∂y ,

Y4 = y∂x − x∂y + v∂u − u∂v ,

Y5 = sin ( f t) ∂x + cos ( f t) ∂y + f (cos ( f t) ∂u − sin ( f t) ∂v)

Y6 = cos ( f t) ∂x − sin ( f t) ∂y − f (sin ( f t) ∂u + cos ( f t) ∂v)

Y7 = (γ− 1)
(

x∂x + y∂y + u∂u + v∂v
)
+ 2h∂h

The commutators and the adjoint representation are given in Table 2 and Table A4. The Lie
symmetries for the rotating system form a smaller dimension Lie algebra than the non-rotating
system. That is not the case when γ = 2, where the two Lie algebras have the same dimension and
are equivalent under point transformation [22]. Therefore, for γ > 2, the Coriolis force cannot be
eliminated by a point transformation as in the γ = 2 case.

Table 2. Commutators of the admitted Lie point symmetries for the rotating 2D shallow water.

[ , ] Y1 Y2 Y3 Y4 Y5 Y6 Y7

Y1 0 0 0 0 f Y6 − f Y5 0
Y2 0 0 0 −Y3 0 0 (γ− 1)Y2
Y3 0 0 0 Y2 0 0 (γ− 1)Y3
Y4 0 Y3 −Y2 0 −Y6 Y5 0
Y5 − f Y6 0 0 Y6 0 0 (γ− 1)Y5
Y6 f Y5 0 0 −Y5 0 0 (γ− 1)Y6
Y7 0 − (γ− 1)Y2 − (γ− 1)Y3 0 − (γ− 1)Y5 − (γ− 1)Y6 0

As for the admitted Lie symmetries admitted by the given system of PDEs with or without the
Coriolis terms for γ > 2, we remark that the rotating and the nonrotating systems have a common Lie
subalgebra of one-parameter point transformations consisting of the symmetry vectors Y1, Y2, Y3, Y4,
and Y7 or for the nonrotating system X1, X2, X3, X6, and X8.

76



Symmetry 2019, 11, 1115

We proceed with the determination of the one-dimensional optimal system and the invariant
functions. Specifically, the relative invariants for the adjoint representation are calculated to be
a1 , a7 and a8. From Table 2 and Table A4, we can find the one-dimensional optimal system, which is:

Y1, Y2, Y3, Y4, Y5, Y6, Y7, χ12 = Y1 + αY2, χ13 = Y1 + αY3,

χ14 = Y1 + αY4 , χ15 = Y1 + αY5, χ16 = Y1 + αY6, χ17 = Y1 + αY7,

χ23 = Y2 + αY3 , χ45 = Y4 + αY5, χ46 = Y4 + αY6, χ56 = Y5 + αY6

χ47 = Y4 + αY6 , χ123 = Y1 + αY2 + βY3, χ147 = Y1 + αY4 + βY7.

The Lie invariants, which correspond to all the above one-dimensional Lie algebras, are presented
in Tables A5 and A6.

Let us demonstrate the application of the Lie invariants by the following, from which we can
see that the Lie invariants reduce the nonlinear field equations into a system of integrable first-order
ODEs, which can be solved with quadratures.

4.1. Application of χ12

We consider the travel-wave similarity solution in the x-plane provided by the symmetry vector
χ12 and the vector field Y3. The resulting equations are described by the following system of first
order ODEs:

vz = f
u

α− u
(20)

F̄uz = f (α− u) vh (21)

F̄hz = f vh2 (22)

where F̄ = hγ − (a− u)2 h and z = t − αx. Because we performed reduction with a subalgebra
admitted by the nonrotating system, by setting f = 0 in (20)–(22), we get the similarity solution for the
nonrotating system, where in this case, it is found to be h (z) = h0, u (z) = u0 and v (z) = v0.

We perform the substitution dz = F̄
f v dτ, and the latter system is simplified as follows:

v
F̄

vτ =
u

α− u
(23)

uτ = (α− u) h (24)

hτ = h2 (25)

from which we get the solution:

h (τ) = (h0 − τ)−1 , u (τ) = α + u0 −
u0

h0
τ (26)

and:

v (t)2 = 2
∫ (

a + u0 − u0
h0

τ
)

u0
h0

(h0 − τ)

(
(h0 − τ)−γ +

(
u0

h0

)2
τ − (u0)

2

h0

)
dτ. (27)

4.2. Application of χ23

Consider now the reduction with the symmetry vector fields χ23. The resulting system of 1 + 1
differential equations admits five Lie point symmetries, and they are:

∂t, ∂w , (sin ( f t) + α cos ( f t)) ∂w + f (sin ( f t) ∂u + cos ( f t) ∂v)

(α sin ( f t)− cos ( f t)) ∂w − f (cos ( f t) ∂u − sin ( f t) ∂v) , (γ− 1) (∂w + u∂u + v∂v) + 2h∂h.
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where w = y− αx. For simplicity of our calculations, let us assume γ = 3.
Reduction with the scaling symmetry provides the following system of first order ODEs:

Ht = 2H (αU −V) , (28)

Ut = αH2 + u (αU −V) + f V, (29)

Vt = −H2 − v (αU −V)− f U, (30)

where h = wH, u = wU, and v = wU. The latter system is integrable and can be solved
with quadratures.

Reducing with respect to the symmetry vector (α sin ( f t)− cos ( f t)) ∂w − f (cos ( f t) ∂u − sin ( f t) ∂v),
we find the reduced system:

Ht

H
= −α cos ( f t) + sin ( f t)

cos ( f t)− α sin ( f t)
, (31)

Ut = −α f
sin ( f t)V − cos ( f t)U

cos ( f t)− α sin ( f t)
, (32)

Vt = − f
sin ( f t)V − cos ( f t)U

cos ( f t)− α sin ( f t)
, (33)

where now:

h = H (t) , (34)

u =
cos ( f t)

cos ( f t)− α sin ( f t)
f w + U (t) , (35)

v = − sin ( f t)
cos ( f t)− α sin ( f t)

f w + V (t) . (36)

System (31)–(33) is integrable, and the solution is expressed in terms of quadratures.

5. Conclusions

In this work, we determined the one-dimensional optimal system for the two-dimensional ideal
gas equations. The nonrotating system was found to be invariant under an eight-dimensional group of
one-parameter point transformations. and there were twenty-three independent one-dimensional Lie
algebras. One the other hand, when the Coriolis force was introduced, the dynamical admitted seven
Lie point symmetries and twenty one-dimensional Lie algebras.

For all the independent Lie algebras, we determined all the invariant functions, which corresponded
to all the independent similarity solutions.

In a future work, we plan to classify all the independent one-dimensional Lie algebras, which lead
to analytic forms for the similarity solutions.
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discussion on the subject.

Conflicts of Interest: The author declare no conflict of interest.

Appendix A

In this Appendix, we present the Tables A1–A6, which are referenced in the main article.
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Abstract: In this paper, we consider the problem of characterizing the minimum energy configurations
of a finite system of particles interacting between them due to attractive or repulsive forces given
by a certain intermolecular potential. We limit ourselves to the cases of three particles arranged in a
triangular array and that of four particles in a tetrahedral array. The minimization is constrained to
a fixed area in the case of the triangular array, and to a fixed volume in the tetrahedral case. For a
general class of intermolecular potentials we give conditions for the homogeneous configuration
(either an equilateral triangle or a regular tetrahedron) of the array to be stable that is, a minimizer
of the potential energy of the system. To determine whether or not there exist other stable states,
the system of first-order necessary conditions for a minimum is treated as a bifurcation problem
with the area or volume variable as the bifurcation parameter. Because of the symmetries present
in our problem, we can apply the techniques of equivariant bifurcation theory to show that there
exist branches of non-homogeneous solutions bifurcating from the trivial branch of homogeneous
solutions at precisely the values of the parameter of area or volume for which the homogeneous
configuration changes stability. For the triangular array, we construct numerically the bifurcation
diagrams for both a Lennard–Jones and Buckingham potentials. The numerics show that there exist
non-homogeneous stable states, multiple stable states for intervals of values of the area parameter,
and secondary bifurcations as well.

Keywords: molecular arrays; constrained optimization; equivariant bifurcation theory

1. Introduction

Consider a system of N molecules, modeled as identical spherical particles, enclosed in a bounded
region B of R3. At any given instant (or in an equilibrium configuration), the total potential energy of
the molecular array is given by:

E = ∑
i<j

φ(
∥∥�ri −�rj

∥∥), (1)

where φ is the intermolecular potential energy with ‖·‖ the standard Euclidean or two-vector norm,
and�r1, . . . ,�rN ∈ R3 are the positions of the particles. More general energy potentials have been
considered of which (1) is a special case (cf. [1,2]), or those based on the eigenvalues of adjacency
matrices like in [3]. The problem of minimizing (1) subject to certain type of global or local conditions
have been studied extensively (see e.g., [4–6] and the references there in). In these models either
the array is infinite, with some local repeating structure, or finite but with N → ∞. In this paper,
none of these conditions are required but we expect that our results can be extrapolated to such more
general scenarios. Also, we do not commit to any particular intermolecular potential φ (but give
examples for instance for Lennard–Jones type potentials) so that our results are applicable to any such
smooth potential.

The particular problems that we consider in this paper are those of characterizing the minimum
energy configurations of (1) in the case of three particles (N = 3) arranged in a triangle and that of four
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particles (N = 4) in a tetrahedral array. The minimization problem is subject to the constraint of fixed
area for the triangular array and of fixed volume in the tetrahedral case. We are particularly interested
on the dependence of the minimizing states on the parameter of area or volume in the constraint. Both
problems have the particularity that they can be formulated in terms of the intermolecular distances
only, that is, without specifying the coordinates corresponding to the positions of the particles, thus
substantially reducing the number of unknowns in each problem.

The motivation to study these problems comes from the following phenomena observed both
in laboratory experiments and molecular dynamics simulations (see e.g., [7,8]). As the density of a
fluid is progressively lowered (keeping the temperature constant), there is a certain “critical” density
such that if the density of the fluid is lower than this critical value, then bubbles or regions with very
low density appear within the fluid. This phenomenon is usually called “cavitation” and it has been
extensively studied as well in solids. (See for instance [9,10] for discussions and further references.)
When using discrete models of materials like (1), distinguishing between regions of low vs. high
density, or whether bubbles or holes have form within the array, is not obvious since one is dealing
essentially with a set of points. (See for instance [11,12] for the use of Voronoi polyhedra to study
such arrays.) Thus, to study this phenomenon within this discrete model, one is naturally led to study
or characterize the stability of homogeneous energy minimizing configurations of such an array, as
the density of the array changes. The problems considered in this paper are the simplest problems
within such a model. Our main contribution is on the application of global bifurcation theory (as
opposed to just local) to study the set of equilibrium configurations for (1) under the stated constraints.
In particular, to give specific conditions in terms of the intermolecular potential φ for the existence of
nontrivial states.

In Section 3 we consider the problem of three particles. By Heron’s formula for the area of
a triangle, any three numbers (representing the intermolecular distances) that yield a positive value
for the area formula, represent a triangle. In this case, we show that the functional (1) subject to
the constraint of fixed area A, has for any value of A, a critical point representing an equilateral
triangle. Moreover, in Theorem 2 we give a necessary and sufficient condition (cf. (22)), in terms of the
intermolecular potential, for this equilibrium point to be a (local) minimizer of the energy functional.
This condition leads to a set of values A for the area parameter A for which the equilateral triangle is
a stable configuration. We give examples of how this set looks for various intermolecular potentials
including the classical Lennard–Jones [13] and Buckingham [14] potentials, and those that model hard
and soft springs including the usual Hooke’s law.

Next in Section 3.2 we turn to the question of whether there exists other (not equilateral)
equilibrium configurations for those values of the area parameter A for which the equilateral triangle
becomes unstable, that is, when it ceases to be a local minimizer. To answer this question, we treat the
system of equations characterizing the equilibrium points (cf. (13)) as a bifurcation problem with the
parameter A as a bifurcation parameter, and the set of equilateral equilibrium configurations as the
trivial solution branch. We find that the necessary condition for bifurcation from the trivial branch
for this system occurs exactly at the boundary points of the set A given by the stability condition (22).
To check the sufficiency condition for bifurcation, one must consider the linearization of the system (13)
about the trivial branch at a boundary point A0 of A. However, since the kernel of this linearization is
two-dimensional we cannot immediately apply the usual or standard results from bifurcation theory
(cf. [15–18]). Because of the symmetries present in this problem (cf (32)), we can apply bifurcation
equivariant theory (cf. [16,19]) to construct a suitable reduced problem corresponding to isosceles
triangular equilibrium configurations. The linearization of the reduced problem at the point where
A = A0 has now a one-dimensional kernel and provided that a certain transversality condition is
satisfied (cf. (34)), we can show that there are three branches corresponding to isosceles triangles
bifurcating from the trivial branch at the point where A = A0. Since the stability of these bifurcating
branches can only be determined numerically (because one must linearize about an unknown solution),
in Section 5 we construct numerically the bifurcation diagrams, with their respective stability patterns,
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for instances of the Lennard–Jones and Buckingham potentials. These examples show that the primary
bifurcations off the trivial branch are of trans-critical type, and that at least for the Lennard–Jones
potential, there are secondary bifurcations corresponding to stable scalene triangles. Moreover, there
are intervals of values of the area parameter, for which there exists multiple stable states of the system
for each value of A in such an interval.

In Section 4 we consider an array of four molecules in a tetrahedron. The general treatment in this
case is similar to the three particle case but with two main differences. First the characterization of
when six numbers (representing the lengths of the sides of the tetrahedron) determine a tetrahedron,
is given in terms of the Cayley-Menger determinant and the triangle inequalities of one of its faces
(cf. [20]). The next complication arises from the fact that the tetrahedron has 24 symmetries as compared
to only six for the triangle! To deal with this many possibilities, once again we make use of the basic
techniques of equivariant theory to get suitable reduced problems to work with. As the Cayley–Menger
determinant is proportional to the volume of the corresponding tetrahedron, the volume constraint in
our problem is basically that of setting this determinant to a given value V for the volume. In this case
we show in Section 4.1 that the functional (1) subject to the constraint of fixed volume V, has for any
value of V a critical point representing a regular or equilateral tetrahedron. Moreover, in Theorem 4
we give necessary and sufficient conditions (cf. (43)), in terms of the intermolecular potential, for this
equilibrium point to be a (local) minimizer of the energy functional. As for the triangular case,
these conditions determine a set of values V for the volume parameter V for which the equilateral
tetrahedron is a stable configuration.

In Section 4.2 we consider the question of the existence of non-equilateral equilibrium
configurations. The equilibrium configurations in this case are given as solutions to a nonlinear
system of seven equations in eight unknowns (cf. (40)). We treat this system as a bifurcation problem
with the parameter V as a bifurcation parameter, and the set of equilateral tetrahedrons as the trivial
solution branch. The necessary condition for bifurcation from the trivial branch for this system occurs
exactly at the boundary points of the set V given by the stability conditions (43). At a boundary
point V0 of V there are two possibilities: the kernel of the linearization has dimension two or three.
Using some of the machinery of equivariance theory as in [16], we can construct suitable reduced
problems in each of these two cases, which enables us to establish the existence of non-equilateral
equilibrium configurations and to get a full description of the symmetries of the bifurcating branches
(cf. Theorems 5–7). As in the triangular case, the stability of this bifurcating branches can only be
established numerically because one must linearize about the unknown bifurcating branch.

Notation: We let Rn denote the n dimensional space of column vectors with elements denoted by
�x, �y,. . . The inner product of�x,�y ∈ Rn is denoted either by 〈�x,�y〉 or�xt�y, where the superscript “t”
denotes transpose. We denote the set of n×m matrices by Rn×m. For L ∈ Rn×m, we let ker(L) = {�x ∈
Rn : L�x = �0} and Range(L) = {L�x : �x ∈ Rn}. For a function�F : Rn → Rm, we denote its Fréchet
derivative by D�F which is given by the m× n matrix of partial derivatives of the components of �F.
If the variables in�F are given by (�x,�y), then D�x

�F denotes the derivative of�F with respect to the vector
of variables�x, i.e., the matrix of the partial derivatives of the components of �F with respect to the
variables corresponding to�x.

2. Equivariant Bifurcation from a Simple Eigenvalue

In this section, we provide an overview on some of the basic results on bifurcation theory from
a simple eigenvalue for mappings between finite dimensional spaces, where the maps possess certain
symmetries. The literature on this subject is extensive but we refer to [6,15,17] for details on the material
presented in this section and further developments like for instance, the infinite dimensional case.
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Let�F : U ×R→ Rn where U is an open subset of Rn, be a C2 function, and consider the problem
of characterizing the solution set of:

�F(�x, A) =�0, (�x, A) ∈ U ×R. (2)

We assume that there exists a (known) smooth function�g(·) such that:

�F(�g(A), A) =�0, ∀ A.

The set T = {(�g(A), A) : A ∈ R} is called the trivial branch of solutions of (2). We say that
(�x0, A0) ∈ T is a bifurcation point off the trivial branch T , if every neighborhood of (�x0, A0) contains
solutions of (2) not in T . If we let

L(A) = D�x
�F(�g(A), A),

then by the Implicit Function Theorem, a necessary for (�x0, A0) to be a bifurcation point is that L(A0)

must be singular, a condition well known to be not sufficient.
In many applications of bifurcation theory and for the problems considered in this paper,

the mapping �F possesses symmetries due to the geometry of the underlying physical problem.
The use of these symmetries in the analysis is useful for example to deal with problems in which
dim ker(L(A0)) > 1. Thus, we assume that for a proper subgroup G of Rn×n, characterizing the
symmetries in the problem, the mapping�F satisfies:

�F(P�x, A) = P�F(�x, A), ∀ P ∈ G. (3)

Let�v ∈ ker(L(A0)) and define the isotropy subgroup of G at�v by

H = {P ∈ G : P�v = �v} , (4)

and theH–fixed point set by
R

n
H = {�x ∈ R

n : P�x =�x, ∀P ∈ H} . (5)

Clearly�v ∈ Rn
H.

Let PH : Rn → Rn be a linear map that projects onto Rn
H that is Range(PH) = Rn

H and PH(Rn
H) =

Rn
H. With UH = PH(U ) = U ∩Rn

H, we define�FH : UH ×R→ Rn
H by:

�FH(�u, A) = PH�F(�u, A), (�u, A) ∈ UH ×R. (6)

An easy calculation now gives that

D�u
�FH(�u, A) = PH�F�x(�u, A)PH.

We assume that�g(A) ∈ Rn
H for all A, so that

�FH(�g(A), A) =�0, ∀ A.

It follows now that LH(A) : Rn
H → Rn

H is given by:

LH(A) = D�u
�FH(�g(A), A) = PHL(A)PH.

Clearly�v ∈ ker(LH(A0)). TheH-reduced problem is now given by:

�FH(�u, A) =�0, (�u, A) ∈ UH ×R. (7)
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An important property relating (2) and (7) is that (�x, A) ∈ UH ×R is a solution of (2) if and only
if (�x, A) is a solution of (7). The following result provides the required sufficient conditions for (�x0, A0)

to be a bifurcation point of theH-reduced problem.

Theorem 1 (Equivariant Bifurcation Theorem [19]). Assume that for A = A0 there exists�v ∈ ker(L(A0))

that defines a proper isotropy subgroupH such that:

ker(LH(A0)) = span {�v} , L′H(A0)�v /∈ Range(LH(A0)).

Then there exists a branch CH of nontrivial solutions of�FH(�u, A) =�0 bifurcating from the trivial branch
T at the point where A = A0 and such that either:

1. CH is unbounded in Rn+1;
2. the closure of CH intersects the boundary ∂U of U ;
3. CH intersects T at a point (�x∗, A∗) where A∗ �= A0.

The proof of this theorem is basically an application of a result from Krasnoselski [18] that uses
the homotopy invariance of the topological degree. The three alternatives in the statement of the
theorem are usually referred to as the Crandall and Rabinowitz alternatives. The local version of
this result (cf. [6]) that is, without the Crandall and Rabinowitz alternatives, can be obtained via the
Lyapunov–Schmidt reduction method. A useful consequence of this reduction is an approximate
formula for the bifurcating branch in a neighborhood of the bifurcation point. Let ker(LH(A0)

t) =

span {�v∗}, where 〈�v∗,�v〉 = 1, so that Range(LH(A0)) =
{
�y ∈ Rn

H : 〈�v∗,�y〉 = 0
}

. Now if we define

A0 = 〈�v∗, (D�u�u
�F0
H�v)�v〉, B0 = 〈�v∗, L′H(A0)�v〉. (8)

(here the zero superscripts mean evaluated at (�x0, A0)), then the bifurcating branch have the following
asymptotic expansion (cf. [16]):

(�x, A) =
(
�g(A0 + ε) + εm�v + O(ε2), A0 + ε

)
, (9)

where

m = −2B0

A0 , A0 �= 0. (10)

3. The Three Particle Case

In this section, we consider the case in which the molecular array consists of three particles.
The intermolecular energy is given by a smooth function φ : (0, ∞)→ R called the potential. If (a, b, c)
are the distances between the particles in the array, the total energy of the system is given by:

E(a, b, c) = φ(a) + φ(b) + φ(c), a, b, c > 0. (11)

Also, the square of the area of the triangular array is given by Heron’s formula:

g(a, b, c) ≡ s(s− a)(s− b)(s− c),

where s = (a + b + c)/2.
For any given number A > 0, we consider the following constrained minimization problem:{

min
a,b,c>0

E(a, b, c)

subject to g(a, b, c) = A2.
(12)
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Thus, we are looking for minimizers of the energy functional E subject to the constraint that the
area of the array is A. The first-order necessary conditions for a solution of this problem are given by:{

g(a, b, c)− A2 = 0,
�∇E(a, b, c) + λ�∇g(a, b, c) = �0,

(13)

where λ ∈ R is the Lagrange multiplier corresponding to the restriction g(a, b, c) = A2. For any given
value of A > 0, this is a nonlinear system of equations for the unknowns (λ, a, b, c) in terms of A.
In general this system can have multiple solutions depending on the characteristics of the potential φ

and the value of A.

3.1. Existence and Stability of Trivial States

An easy calculation shows that:

�∇E =

⎡⎢⎣ φ′(a)
φ′(b)
φ′(c)

⎤⎥⎦ , �∇g =
1
4

⎡⎢⎣ a(b2 + c2 − a2)

b(a2 + c2 − b2)

c(a2 + b2 − c2)

⎤⎥⎦ . (14)

Thus, the system (13) is equivalent to:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
8 (a2b2 + a2c2 + b2c2)− 1

16 (a4 + b4 + c4)− A2 = 0,
φ′(a) + λ

4 a(b2 + c2 − a2) = 0,
φ′(b) + λ

4 b(a2 + c2 − b2) = 0,
φ′(c) + λ

4 c(a2 + b2 − c2) = 0.

(15)

This system always has a solution with a = b = c. In fact, upon setting a = b = c in (15), this
system reduces to:

3
16

a4 = A2, φ′(a) = −λa3

4
. (16)

Thus, we have the following result:

Lemma 1. For any value of A > 0, the system (15) has a solution of the form (λA, aA, aA, aA, A) where:

aA =
2
√

A
4
√

3
, λA = −4φ′(aA)

a3
A

. (17)

We now characterize for which values of A, the solution provided in Lemma 16 is actually a
minimizer, i.e., a solution of (12). To do this we need to examine the matrix

[
∇2E + λ∇2g

]
(�vA) where

�vA = (λA, aA, aA, aA), over the subspace:

M =
{
(x, y, z) : �∇g(�vA) · (x, y, z) = 0

}
. (18)

A straightforward calculation gives that:

∇2E =

⎡⎢⎣ φ′′(a) 0 0
0 φ′′(b) 0
0 0 φ′′(c)

⎤⎥⎦ , (19)

∇2g =
1
4

⎡⎢⎣ b2 + c2 − 3a2 2ab 2ac
2ab a2 + c2 − 3b2 2bc
2ac 2bc a2 + b2 − 3c2

⎤⎥⎦ . (20)

90



Symmetry 2019, 11, 158

It follows now that

[
∇2E + λ∇2g

]
(�vA) =

⎡⎢⎢⎣
φ′′(aA)− λAa2

A
4

λAa2
A

2
λAa2

A
2

λAa2
A

2 φ′′(aA)− λAa2
A

4
λAa2

A
2

λAa2
A

2
λAa2

A
2 φ′′(aA)− λAa2

A
4

⎤⎥⎥⎦ , (21)

and that
M = {(x, y, z) : x + y + z = 0} .

Using (17) one can show now that the matrix (21) is positive definite overM if and only if:

φ′′(aA) +
3

aA
φ′(aA) > 0. (22)

Thus, we have the following result:

Theorem 2. Let φ : (0, ∞) → R be twice continuously differentiable function. Then the uniform array
(a, b, c) = (aA, aA, aA) in Lemma 1 is a relative minimizer for the problem (12) for those values of A for
which (22) holds.

Example 1. Consider the case of a potential that has the following form:

φ(r) =
c1

rδ1
− c2

rδ2
, (23)

where c1, c2 are positive constants and δ1 > δ2 > 2. (These constants determine the physical properties of the
particle or molecule in question. The classical Lennard–Jones [13] potential is obtained upon setting δ1 = 12
and δ2 = 6.) For this function:

φ′(r) = − c1δ1

rδ1+1 +
c2δ2

rδ2+1 , φ′′(r) =
c1δ1(δ1 + 1)

rδ1+2 − c2δ2(δ2 + 1)
rδ2+2 ,

so that:

φ′′(r) +
3
r

φ′(r) =
c1δ1(δ1 − 2)

rδ1+2 − c2δ2(δ2 − 2)
rδ2+2 .

Since aA is directly proportional to
√

A (see (17)), we have that for (23), the stability condition (22) holds
if and only if A < A0, where A0 is determined from the condition:

c1δ1(δ1 − 2)

aδ1+2
A

− c2δ2(δ2 − 2)

aδ2+2
A

= 0,

from which it follows that:

A0 =

√
3

4

[
c1δ1(δ1 − 2)
c2δ2(δ2 − 2)

] 2
δ1−δ2

. (24)

Thus, (17) is a (local) solution of (12) if and only if A < A0. We will show that for A > A0 there exist
solutions that break the symmetry a = b = c.

Example 2. A Buckingham potential has the form ([14,21]):

φ(r) = αe−βr − γ

rη , (25)
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where α, β, γ, η are positive constants. Thus

φ′(r) = −αβe−βr +
γη

rη+1 , φ′′(r) = αβ2e−βr − γη(η + 1)
rη+2 ,

from which it follows that:

φ′′(r) +
3
r

φ′(r) = αβ

[
β− 3

r

]
e−βr − γη(η − 2)

rη+2 .

After rearrangement, the stability condition (22) is equivalent to:

F(aA) > G(aA), (26)

where

F(r) = αβ(βr− 3)e−βr, G(r) =
γη(η − 2)

rη+1 .

These functions generically look as in Figure 1 where for G we assumed that η > 2. Now clearly
F(r) < G(r) for r sufficiently large. Thus generically we expect the set of values of A for which (26) is
satisfied to be of the form (A0, A1). Since F has a maximum at rm = 4

β , a sufficient condition for this is that
F(rm) > G(rm), or after rearrangement that the coefficients and exponents in (25) satisfy:

αβe−4 > γη(η − 2)
(

β

4

)η+1
. (27)

To check this condition against the results in [21], we let D, R, ξ > 0 with ξ > η, and define

α =
Dηeξ

ξ − η
, β =

ξ

R
, γ =

DξRη

ξ − η
. (28)

It follows that (25) is now given in terms of D, R, ξ by:

φ(r) = D
[

η

ξ − η
eξ(1− r

R ) − ξ

ξ − η

(
R
r

)η]
.

It is easy to check now that provided ξ > η + 1, then φ has negative minimum value at r = R. The
results in ([21], Table 1, Page 202) show that the best fit of a normalized Buckingham potential to a normalized
Lennard–Jones (12-6) potential (δ1 = 12 and δ2 = 6 in (23)) is achieved for ξ = 14.3863 and η = 5.6518. For
these values one can check that (28) satisfy the inequality (27) independent of the values of D and R.

Example 3. Consider a potential of the form

φ(r) =
1
2

kr2 +
1
4

βr4, (29)

with k > 0 and β ∈ R. This potential corresponds to a Hook-type spring when β = 0, a hard spring if
β > 0, and a soft spring if β < 0. (More general versions of (29) have been used in the study of the control of
multi-agent systems, e.g., [22,23].) For this potential

φ′′(r) +
3
r

φ′(r) = 4k + 6βr2.

Please note that the stability condition (22) holds when β ≥ 0 independent of the value of A! That is,
the symmetric state (17) is a minimizer for all values of A. In the case β = 0 is easy to show that this state is
a global minimizer.
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On the other hand, if β < 0, the stability condition holds if and only if A < A0 where

A0 = − k
2
√

3 β
.

F
(r
)

G
(r
)

r

r

4
β

Figure 1. Generic graphs of the functions F and G appearing in the stability condition (26) for
a Buckingham potential.

3.2. Existence and Stability of Nontrivial Solutions

We say that solutions of (13) are trivial if a = b = c and call the set

T = {(λA, aA, aA, aA, A) : λA, aA given by (17), A > 0} , (30)

the trivial branch parametrized by A. In this section, we show that there exist nontrivial solutions of (13)
that bifurcate from the trivial branch.

If we let�x = (λ, a, b, c) and �G : R× (0, ∞)4 → R4 be the left-hand side of (15), then this system
is equivalent to �G(�x, A) =�0. An easy calculation gives that

D�x
�G(�x, A) =

[
0 (�∇g)t

�∇g ∇2E + λ∇2g

]
. (31)

If we evaluate now at the trivial branch (17), we get that

D�x
�G(�vA, A) =

⎡⎢⎢⎢⎣
0 γ γ γ

γ α β β

γ β α β

γ β β α

⎤⎥⎥⎥⎦ ,
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where�vA = (λA, aA, aA, aA) and

α = φ′′(aA)−
λAa2

A
4

, β =
λAa2

A
2

, γ =
a3

A
4

.

The eigenvalues of this matrix are α− β, which is a double eigenvalue with geometric multiplicity
two, and the simple eigenvalues

1
2

[
α + 2β±

√
(α + 2β)2 + 12γ2

]
,

which are always nonzero. A pair of linearly independent eigenvectors corresponding to α− β is{
(0,−1, 1, 0)t, (0,−1, 0, 1)t}. Since

α− β = φ′′(aA)−
3
4

λAa2
A = φ′′(aA) +

3
aA

φ′(aA),

the double eigenvalue α− β becomes zero exactly at the value A0 where the stability condition (22)
fails by becoming zero. Thus according to standard theory of bifurcation theory, we can have either
none, two or four branches of solutions of (15) bifurcating at the point where A = A0. We now show
that there are exactly four branches bifurcating from such a point: the trivial branch and three branches
corresponding to isosceles triangles.

To avoid the complications of dealing with the two-dimensional kernel of (31) when evaluated at
the trivial branch at A = A0, we make use of the symmetries possessed by the mapping �G. In particular,
if we denote by G the subgroup of R4×4 of permutations that permute just the a, b, c components of
any�x = (λ, a, b, c) ∈ R4, then

�G(P�x, A) = P�G(�x, A), ∀ P ∈ G. (32)

Please note that every permutation in G changes the eigenvectors
{
(0,−1, 1, 0)t, (0,−1, 0, 1)t} of

α− β. However, the eigenvector

�v ≡ (0,−2, 1, 1)t = (0,−1, 1, 0)t + (0,−1, 0, 1)t,

is unchanged by the proper subgroup of permutationsH of G that permutes just the b, c components of
any�x = (λ, a, b, c) ∈ R4. Thus,H is the isotropy subgroup of G at�v. TheH fixed point set is given by:

R
4
H =

{
(λ, a, b, b)t : λ, a, b ∈ R

}
.

The projection PH : R4 → R4
H has matrix representation:

PH =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1

2
1
2

0 0 1
2

1
2

⎤⎥⎥⎥⎦ ,

and theH reduced problem is now:

�GH(�u, A) ≡ PH�G(�u, A) =�0, (�u, A) ∈ R
4
H × (0, ∞).

Since T ⊂ R4
H × (0, ∞), it follows that T is a branch of solutions for the H reduced problem.

Also, since
D�u

�GH(�u, A) = PHD�x
�G(�u, A)PH.
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we have that LH(A) : R4
H → R4

H is given by:

LH(A) = D�u
�GH(�vA, A) = PHD�x

�G(�vA, A)PH.

Let
μ(A) = α− β = φ′′(aA) +

3
aA

φ′(aA). (33)

We now establish a result for the existence of bifurcating branches for the reduced problem.

Theorem 3. Let μ(A0) = 0 and assume that

dμ

dA
(A0) �= 0. (34)

Consider the system (13) and its trivial branch of solutions (30). Then from the point (λ0, a0, a0, a0) ∈ T
bifurcate three branches of nontrivial solutions of (13) each corresponding to isosceles triangles.

Proof. With the definitions and notation as above, a lengthy but otherwise elementary calculation
shows that for any A > 0, μ(A) is a simple eigenvalue of LH(A) restricted to R4

H with corresponding
eigenvector�v = (0,−2, 1, 1)t. Thus

LH(A)�v = μ(A)�v, ∀ A > 0.

In particular ker(LH(A0)) = span{�v}. If we differentiate with respect to A in the equation above
and set A = A0, we get that

L′H(A0)�v = μ′(A0)�v.

Since LH(A0) is symmetric, we have that Range(LH(A0)) =
{
�y ∈ Rn

H : 〈�v,�y〉 = 0
}

. Thus,
the hypotheses in Theorem 1 are satisfied if and only if μ′(A0) �= 0. Thus, we get a branch of
solutions of the reduced problem, equivalently (15), bifurcating from the trivial branch at the point
where A = A0. Since this branch belongs to R4

H × R, we can use (32) to get that there exist two
additional branches of solutions, one belonging to

{
(λ, b, a, b, A)t : λ, a, b, A ∈ R

}
and the other in{

(λ, b, b, a, A)t : λ, a, b, A ∈ R
}

.

4. Four Particles in a Tetrahedron

We now consider the case of four particles arranged in a tetrahedron T. Let a, b, c, A, B, C be the
distances between the particles where a, b, c denote the lengths of the edges joining a vertex of T, A the
length of the edge opposite to a, B the length of the edge opposite to b, and C the length of the edge
opposite to c. The six-tuple�a = (a, b, c, A, B, C)t generates a tetrahedron ([20]) if and only if

g(�a) > 0, A < B + C, B < A + C, C < A + B, (35)

where g(�a) is given by the Cayley–Menger determinant:

g(�a) =

∣∣∣∣∣∣∣∣∣∣∣

0 a2 b2 c2 1
a2 0 C2 B2 1
b2 C2 0 A2 1
c2 B2 A2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣
. (36)

If we let R+ denote the set of positive real numbers, then we define

S =
{
�a = (a, b, c, A, B, C)t ∈ R

6
+ : (35) holds

}
.
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Please note that S is open in R6. Moreover, any regular tetrahedron in which a = b = c = A =

B = C > 0, is contained in S .
If�a = (a, b, c, A, B, C)t generates a tetrahedron, then so does P�a where P = RQ and

1. R permutes (a, b, c) and (A, B, C) with the same permutation of three elements;
2. Q is any permutation of (a, b, c, A, B, C) in which the base of the tetrahedron is changed to another

face. For example, (c, A, B, C, a, b) corresponds to reorienting the tetrahedron so that the base is
given by (C, a, b).

Since there are six permutations of the type R and four of the type Q, we get that there are
24 permutations of the form P = RQ. These 24 permutations form a subgroup R of the group of
permutations of six letters. Also, it is easy to show that

g(P�a) = g(�a), ∀ P ∈ R. (37)

As the Cayley–Menger determinant is directly proportional to the square of the volume of the
tetrahedron (cf. (39)), this identity simply states that the volume of the tetrahedron remains the same
after rotations of the base and independent of which face we use as the base.

The total energy of the system of four particles is given now by:

E(�a) = φ(a) + φ(b) + φ(c) + φ(A) + φ(B) + φ(C), (38)

where the intermolecular potential φ is as before. For any V > 0 we consider the constrained
minimization problem: {

min
S

E(�a)

subject to g(�a) = 288V2.
(39)

The constraint here specifies that the tetrahedron determined by�a has volume V (cf. [20]). The
first-order necessary conditions for a solution of this problem are given by (Since the inequality
constraints in the definition of the set S are strict (non-active), the multipliers corresponding to these
constraints are zero.): confirm. {

g(�a)− 288V2 = 0,
�∇E(�a) + λ�∇g(�a) = �0,

(40)

which is now a nonlinear system for the seven unknowns (λ,�a) in terms of the parameter V.

4.1. Existence and Stability of Trivial States

Expanding the determinant in (36) and computing its partial derivatives, we get that

�∇g(�a) = 4
[
a(A2(b2 + c2 + B2 + C2 − 2a2 − A2) + (b2 − c2)(B2 − C2)),

b(B2(a2 + c2 + A2 + C2 − 2b2 − B2) + (a2 − c2)(A2 − C2)),

c(C2(a2 + b2 + A2 + B2 − 2c2 − C2) + (a2 − b2)(A2 − B2)),

A(a2(b2 + c2 + B2 + C2 − 2A2 − a2)− (b2 − C2)(c2 − B2)),

B(b2(a2 + c2 + A2 + C2 − 2B2 − b2)− (a2 − C2)(c2 − A2)),

C(c2(a2 + b2 + A2 + B2 − 2C2 − c2)− (a2 − B2)(b2 − A2))
]
.

Since �∇E(�a) = (φ′(a), φ′(b), φ′(c), φ′(A), φ′(B), φ′(C))t, the system (40) when evaluated at the
regular tetrahedron�a = (a, a, a, a, a, a), reduces to

4a6 = 288V2, φ′(a) + 4λa5 = 0.

Thus, we have the following result.
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Lemma 2. For any V > 0 the system (40) has the solution (λV ,�aV , V) where�aV = (aV , aV , aV , aV , aV , aV) and

a3
V = 6

√
2 V, λV = −φ′(aV)

4a5
V

. (41)

We now examine the stability of the trivial state (41). A lengthy but otherwise elementary
calculation shows that

HV ≡ [∇2E + λV∇2g](�aV) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α β β 0 β β

β α β β 0 β

β β α β β 0
0 β β α β β

β 0 β β α β

β β 0 β β α

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (42)

where
α = φ′′(aV) +

3
aV

φ′(aV), β = − 2
aV

φ′(aV).

Since �∇g(�aV) = 4a5
V(1, 1, 1, 1, 1, 1)t, we need examine the structure of HV on the subspace of R6

given by
M =

{
�y ∈ R

6 : y1 + y2 + y3 + y4 + y5 + y6 = 0
}

.

We have now the following result:

Theorem 4. Let φ : (0, ∞)→ R be twice continuously differentiable function. Then the matrix (42) is positive
definite overM if and only if α > 0 and α− 2β > 0, which in turn are equivalent to

φ′′(aV) +
3

aV
φ′(aV) > 0, φ′′(aV) +

7
aV

φ′(aV) > 0. (43)

Thus, the regular tetrahedron�aV is a relative minimizer for the problem (39) for those values of V for which
conditions (43) hold.

Proof. It is easy to check thatM = range(M) where

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−1 −1 −1 −1 −1
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix corresponding to the quadratic form of HV restricted to M is now given by UV =

MtHV M. The eigenvalues of UV are:

α (double), α− 2β,
1
2

[
7α− 6β±

√
16α2 + 9(α− 2β)2

]
.

Since the product of the last two of these eigenvalues is 6α(α− 2β), and 7α− 6β = 3(α− 2β) + 4α,
we can conclude now that they are all positive if and only if α > 0 and α− 2β > 0. Thus, HV restricted
toM is positive definite provided these two conditions hold, which in turn implies that�aV is a relative
minimizer for problem (39). That α > 0 and α − 2β > 0 are equivalent to (43) follows from the
definitions of α and β.
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Example 4. For the Lennard–Jones potential (23) we have that:

φ′′(r) +
3
r

φ′(r) =
c1δ1(δ1 − 2)

rδ1+2 − c2δ2(δ2 − 2)
rδ2+2 ,

φ′′(r) +
7
r

φ′(r) =
c1δ1(δ1 − 6)

rδ1+2 − c2δ2(δ2 − 6)
rδ2+2 .

For simplicity, we assume δ1 > 6. We now have two cases:

1. Assume that δ2 ∈ (2, 6]. Then the second condition in (43) is automatically satisfied and the first condition
holds if and only if V < V0, where V0 is determined from the condition (cf. (41)):

c1δ1(δ1 − 2)

rδ1+2
0

− c2δ2(δ2 − 2)

rδ2+2
0

= 0, r0 = aV0 ,

from which it follows that:

V0 =

√
2

12

[
c1δ1(δ1 − 2)
c2δ2(δ2 − 2)

] 3
δ1−δ2

.

Thus, in this case the regular tetrahedron�aV is a (local) solution of (39) if and only if V < V0.
2. If δ2 > 6, then the second condition in (43) holds if and only if V < V1, where V1 is determined from

the condition:
c1δ1(δ1 − 6)

rδ1+2
1

− c2δ2(δ2 − 6)

rδ2+2
1

= 0, r1 = aV1 ,

from which it follows that:

V1 =

√
2

12

[
c1δ1(δ1 − 6)
c2δ2(δ2 − 6)

] 3
δ1−δ2

.

Since δ1 > δ2 > 6, it follows that V1 < V0. Thus, in this case the regular tetrahedron�aV is a (local)
solution of (39) if and only if V < V1.

Example 5. For the Buckingham (25), we have that

φ′′(r) +
3
r

φ′(r) = αβ

[
β− 3

r

]
e−βr − γη(η − 2)

rη+2 ,

φ′′(r) +
7
r

φ′(r) = αβ

[
β− 7

r

]
e−βr − γη(η − 6)

rη+2 .

Please note that the first condition in (43) holds for an interval (V0, V1) of volume values under the
conditions (27) in Example 2. The analysis now becomes rather complicated and we just describe it qualitatively.
If η > 6, then the second condition in (43) would hold as well for values of V in an interval of the form
(V2, V3) provided some condition similar to (27) holds. Depending as to whether or not the intersection
(V0, V1) ∩ (V2, V3) is non-empty, we might get stable regular tetrahedrons. On the other hand, if η ∈ (2, 6],
then the second condition in (43) would hold as well for values of V in an interval of the form (V4, ∞) and again
the existence of trivial states will depend on whether the corresponding intersection is non-empty.

Example 6. For the potential (29)

φ′′(r) +
3
r

φ′(r) = 4k + 6βr2, φ′′(r) +
7
r

φ′(r) = 8k + 10βr2.

Please note that the stability conditions (43) holds when β ≥ 0 independent of the value of V! That is, the
regular tetrahedron�aV is a relative minimizer for the problem (39) for all values of V. In the case β = 0, since
the functional (38) is convex, this state is a global minimizer.
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On the other hand, if β < 0, the first condition in (43) holds if V < V1 and the second condition if
V < V2 where

V2
1 = − k3

243 β3 , V2
2 = − 8k3

1125 β3 .

Since V1 < V2 we get that conditions (43) hold both for V < V1. For V > V1 either one or both
conditions fail.

4.2. Existence and Stability of Nontrivial States

Let �G : R× S × (0, ∞)→ R7 be given by the left-hand side of (40):

�G(�x, V) =

[
g(�a)− 288V2

�∇E(�a) + λ�∇g(�a)

]
,

where�x = (λ,�a). We have now that

D�x
�G(�x, V) =

[
0 (�∇g(�a))t

�∇g(�a) ∇2E(�a) + λ∇2g(�a)

]
. (44)

It follows from (37) that

�∇g(P�a) = P�∇g(�a), (45a)

∇2g(P�a) = P∇2g(�a)Pt, P ∈ R, (45b)

with similar relations for the total energy E. It follows now from (45a) that

�G(Q�x, V) = Q�G(�x, V), Q ∈ G, (46)

where

G =

{
Q =

[
1 �0t

�0 P

]
: P ∈ R

}
.

Thus, the system (40) remains the same, up to reordering of the equations, when�x = (λ,�a) is
replaced by Q�x.

We now begin the analysis of the existence of solutions of the system (40) bifurcating from the
trivial branch:

T = {(λV ,�aV , V) : λV , �aV given by (41), V > 0} .

If we evaluate (44) at the trivial state (λV ,�aV , V), then this matrix reduces to:

D�x
�G(λV ,�aV , V) =

[
0 (�∇g(�aV))

t

�∇g(�aV) HV

]
, (47)

where �∇g(�aV) = 4a5
V(1, 1, 1, 1, 1, 1)t and HV is given by (42). The matrix (47) has two eigenvalues

which are nonzero for every value of V > 0, with the remaining eigenvalues given by:

1. μ1(V) = φ′′(aV) +
3

aV
φ′(aV) with algebraic and geometric multiplicity three, and corresponding

eigenvectors:

(0,−1, 0, 0, 1, 0, 0)t, (0, 0,−1, 0, 0, 1, 0)t, (0, 0, 0,−1, 0, 0, 1)t. (48)

2. μ2(V) = φ′′(aV) +
7

aV
φ′(aV) with algebraic and geometric multiplicity two, and corresponding

eigenvectors:
(0,−1, 1, 0,−1, 1, 0)t, (0,−1, 0, 1,−1, 0, 1)t. (49)
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Remark 1. Please note that the expressions for these eigenvalues are the ones that appear in Theorem 4
characterizing the stability of the trivial state (λV ,�aV , V). Thus, the trivial state can change stability exactly
when one of these two eigenvalues becomes zero.

To deal with these kernels with dimension greater than one, we proceed as in the previous section
by considering a suitable reduced problem in each case. These reductions are determined by the
symmetries present in this problem which are embodied in (46).

4.2.1. The Eigenvalue μ1(V)

Let us take the eigenvector�g = (0, 0, 0,−1, 0, 0, 1)t of the eigenvalue μ1(V) above. (The analysis
for the other two eigenvectors is similar.) By inspection it is easy to get that the isotropy subgroupH
of G at�g is given by:

H =

{(
λ a b c A B C
λ a b c A B C

)
,

(
λ a b c A B C
λ b a c B A C

)
,(

λ a b c A B C
λ B A c b a C

)
,

(
λ a b c A B C
λ A B c a b C

)}
.

TheH-fixed point set is now given by:

R
7
H =

{
(λ, a, a, c, a, a, C)t : λ, a, c, C ∈ R

}
. (50)

The projection PH : R7 → R7
H has matrix representation:

PH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1

4
1
4 0 1

4
1
4 0

0 1
4

1
4 0 1

4
1
4 0

0 0 0 1 0 0 0
0 1

4
1
4 0 1

4
1
4 0

0 1
4

1
4 0 1

4
1
4 0

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and theH reduced problem is now:

�GH(�u, V) ≡ PH�G(�u, V) =�0, (�u, V) ∈ R
7
H × (0, ∞).

Since T ⊂ R7
H × (0, ∞), it follows that T is a branch of solutions for the H reduced problem.

Also, since
D�u

�GH(�u, V) = PHD�x
�G(�u, V)PH.

we have that LH(V) : R7
H → R7

H is given by:

LH(V) = D�u
�GH(λV ,�aV , V) = PHD�x

�G(λV ,�aV , V)PH.

It easy to check now that μ1(V) is a simple eigenvalue of LH(V) restricted to R7
H with

corresponding eigenvector�g that is

LH(V)�g = μ1(V)�g, ∀V > 0.

We now have the result for the existence of bifurcating branches for the reduced problem. We
omit the proof as it is similar to that of Theorem 3.
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Theorem 5. Let μ1(V1) = 0 and assume that dμ1
dV (V1) �= 0. Then the system (40) has a branch of nontrivial

solutions in R7
H × (0, ∞) bifurcating from the trivial branch T at the point where V = V1, where R7

H is given
by (50).

Remark 2. It follows from (46) that there are two additional branches of nontrivial solutions of the system (40)
of the forms:

{(λ, a, c, a, a, C, a) : λ ∈ R, a, c, C > 0} ,

{(λ, c, a, a, C, a, a) : λ ∈ R, a, c, C > 0} .

We now consider the case of the eigenvector �g = (0,−1,−1,−1, 1, 1, 1)T of μ1(V). This
eigenvector is obtained by adding the three eigenvectors in (48). By inspection, the isotropy subgroup
H of G at �g is given by those permutations in G that permute the symbols (a, b, c) and (A, B, C) in
(λ, a, b, c, A, B, C) with the same permutation. (Thus, H has six elements.) The H–fixed point set is
now given by:

R
7
H =

{
(λ, a, a, a, A, A, A)t : λ, a, A ∈ R

}
. (51)

The projection PH : R7 → R7
H has matrix representation:

PH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1

3
1
3

1
3 0 0 0

0 1
3

1
3

1
3 0 0 0

0 1
3

1
3

1
3 0 0 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

It follows now that for theH reduced problem, μ1(V) is a simple eigenvalue with corresponding
eigenvector�g. The proof of the following result is as that of Theorem 3.

Theorem 6. Let μ1(V1) = 0 and assume that dμ1
dV (V1) �= 0. Then the system (40) has a branch of nontrivial

solutions in R7
H × (0, ∞) bifurcating from the trivial branch T at the point where V = V1, where R7

H is given
by (51).

Remark 3. By applying all the transformations in G , it follows from (46) that there are three additional branches
of solutions of the system (40) of the forms:

{(λ, A, A, a, a, a, A) : λ ∈ R, a, A > 0} ,

{(λ, a, A, A, A, a, a) : λ ∈ R, a, A > 0} ,

{(λ, A, a, A, a, A, a) : λ ∈ R, a, A > 0} .

Thus, combining both theorems, we get that there are seven branches of nontrivial solutions bifurcating
from the trivial branch {(λV ,�aV , V) : V > 0} at the value of V = V1 where μ1(V1) = 0 and μ′1(V1) �= 0.

4.2.2. The Eigenvalue μ2(V)

We now consider the case of the eigenvector�g = (0,−2, 1, 1,−2, 1, 1)T of μ2(V). This eigenvector
is obtained by adding the eigenvectors in (49). By inspection, the isotropy subgroup H of G at�g is
given by
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H =

{(
λ a b c A B C
λ a b c A B C

)
,

(
λ a b c A B C
λ a c b A C B

)
,(

λ a b c A B C
λ A C b a c B

)
,

(
λ a b c A B C
λ A b C a B c

)
,(

λ a b c A B C
λ A B c a b C

)
,

(
λ a b c A B C
λ A c B a C b

)}
,

withH–fixed point set given by:

R
7
H = {(λ, a, b, b, a, b, b) : λ, a, b ∈ R} . (52)

The projection PH : R7 → R7
H has matrix representation:

PH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1

2 0 0 1
2 0 0

0 0 1
4

1
4 0 1

4
1
4

0 0 1
4

1
4 0 1

4
1
4

0 1
2 0 0 1

2 0 0
0 0 1

4
1
4 0 1

4
1
4

0 0 1
4

1
4 0 1

4
1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

It follows now that for theH-reduced problem, μ2(V) is a simple eigenvalue with corresponding
eigenvector�g. The proof of the following result is as that of Theorem 3.

Theorem 7. Let μ2(V2) = 0 and assume that dμ2
dV (V2) �= 0. Then the system (40) has a branch of nontrivial

solutions in R7
H × (0, ∞) bifurcating from the trivial branch T at the point where V = V2, where R7

H is given
by (52).

Remark 4. By applying all the transformations in G , it follows from (46) that there are two additional branches
of solutions of the system (40) of the forms:

{(λ, b, a, b, b, a, b) : λ ∈ R, a, b > 0} ,

{(λ, b, b, a, b, b, a) : λ ∈ R, a, b > 0} .

5. Numerical Examples

In this section, we present some numerical examples illustrating the results of the previous
sections. For simplicity we limit ourselves to the three particle problem. The examples show that the
structure of the bifurcation diagrams is quite rich and complex. To construct the pictures in this section,
we use the results of Theorem 3, in particular the symmetries given by (32), together with various
numerical techniques to get full or detailed descriptions of the corresponding bifurcation diagram.

To compute approximations of the bifurcating solutions predicted by Theorem 3, one employs
a predictor-corrector continuation method (cf. [24,25]). The bifurcation points off the trivial branch
can be determined, by Theorem 3, from the solutions of the equation μ(A) = 0 (cf. (17), (33)).
Secondary bifurcation points off nontrivial branches can be detected by monitoring the sign of a certain
determinant. Once a sign change in this determinant is detected, the bifurcation point can be computed
by a bisection or secant type iteration. After detection and computation of a bifurcation point, then
one can use formulas (8)–(10) to get an approximate point on the solution curve from which the
continuation of the bifurcating branch can proceed.
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Any trivial or nontrivial computed solution (�x∗, A∗) will be called stable, if the matrix (∇2E +

λ∇2g)(�x∗, A∗) (cf. (31)) is positive definite when restricted to the tangent space at�x∗ of the constraint
of fixed area. Otherwise the point (�x∗, A∗) will be called unstable. We recall that the tangent space at�x∗

of the constraint of fixed area is given by

M =
{
(x, y, z) : �∇g(�x∗) · (x, y, z) = 0

}
.

Please note that since this space depends on the point�x∗, then except for the trivial branch where
the solution is known explicitly, the stability of a solution can only be determined numerically.

In our first example we consider the Lennard–Jones potential (23) with c1 = 1, c2 = 2, δ1 = 12,
and δ2 = 6. (We obtained similar results for other values of c1, c2 like those for argon in which
c1/c2 = 3.46 Å6.) From equation (24) we get that the bifurcation point off the trivial branch is given
approximately by A0 = 0.5877. For the case of Theorem 3 in which a = b, we show in Figure 2
a close-up of the bifurcating branch near this bifurcation point, for the projection onto the A–a plane.
In this figure and the others, the color red indicates unstable solutions while the stable ones are marked
in green. Please note that the bifurcation is of the trans-critical type. It is interesting to note that for an
interval of values of the parameter A to the left of A0 in the figure (approximately (0.5855, 0.5877)),
there are multiple states (trivial and nontrivial) which are stable, the trivial one with an energy less
than the nontrivial state in this case. In Figure 3 we look at the same branches of solutions, again the
projection onto the A–a plane, but for a larger interval of values of A. We now discover that there are
two secondary bifurcation points (In Figure 3 there are bifurcations only corresponding to the values of
A0 = 0.5877, A1 = 0.6251 and A2 = 0.6670. The apparent crossing of a branch of scalene triangles and
the trivial branch is just an artifact of the projection onto the A–a plane.) at approximately A1 = 0.6251
and A2 = 0.6670, and once again we have multiple stable states (with different symmetries) existing
for an interval of values of the parameter A. The branches of solutions bifurcating at these values
of A correspond to stable scalene triangles. Once a branch of solutions is computed, we can use the
symmetries (32) to generate other branches of solutions. In Figure 4 we show all the solutions obtained
via this process, projected to the abc space (no A dependence). Figure 5 show the same set of solution
but with the branch or axis of trivial solutions coming out of the page. The figures clearly show the
variety of solutions (stable and unstable) for the problem (12) as well as the rather complexity of the
corresponding solution set.

0.584 0.586 0.588 0.59 0.592 0.594 0.596 0.598 0.6

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

A

a

trivial branch

nontrivial branch

Figure 2. Bifurcation diagram for the a component vs. A for the system (13) in the case a = b and a
Lennard–Jones potential. The points in green represent local minima of (12) while those in red are
either maxima or none.
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Figure 3. Bifurcation diagram for the system (13) in the case of a Lennard–Jones potential for a larger
interval of values of A. There are secondary bifurcations into stable scalene triangles.
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Figure 4. Solution set for the system (13) in the case of a Lennard–Jones potential without the
A dependence.

For our next numerical example, we consider the Buckingham potential (25) with parameter
values α = β = γ = 1 and η = 4, which satisfy (27). In this case, we have two bifurcation points off
the trivial branch (which correspond to solutions of μ(A) = 0) at approximately A0 = 5.3154 and
A1 = 74.2253. The trivial branch is stable for A ∈ (A0, A1) and unstable otherwise. Both bifurcations
are into isosceles triangles, and both are of trans-critical type but with different stability patterns.
In Figure 6 we show the solution set for the case a = b. The plot shows the dependence of the a and
c components on the area parameter A. In Figure 7 we show the projection of this set onto the c vs.
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A plane where one can appreciate somewhat better the stability patterns at each bifurcation point, and
that there is a turning point for A ≈ 46 on the branch bifurcating from A0. Please note that once again
we have multiple stable states existing for an interval of values of the parameter A. No secondary
bifurcations were detected in this case.
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Figure 5. Solution set for the system (13) in the case of a Lennard–Jones potential without the A
dependence with the branch of trivial solutions coming out of the page.
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Figure 6. Dependence of the a and c components on the parameter A for the system (13) in the case
a = b and for a Buckingham potential.
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Figure 7. Projection onto the c vs. A plane of the set in Figure 6.

6. Final Comments

The variety or type of solutions obtained from Theorems 3, 5–7, could be predicted generically
from an analysis of the symmetries present in our problem as given by (32) and (46). However, such
an analysis does not guaranty the existence of solutions with the predicted symmetries. It is the
application of the Equivariant Bifurcation Theorem 1 that actually yields the result that such solutions
exist. The generic analysis however is a preliminary step in identifying the spaces in which Theorem 1
can be applied. We should also point out that the results on the bifurcating branches in Theorems 3, 5–7
are global in the sense that the so-called Crandall and Rabinowitz alternatives in Theorem 1 hold. That
is, any bifurcating branch is either unbounded, or it intersects the boundary of the domain of definition
of the operator in the equilibrium conditions, or it intersects the trivial branch at another eigenvalue.

The results of this paper might be useful in the analysis of the more general and complex problem
of arrays with many particles. As the total area or volume of such an array is increased, thus reducing
its density, one might expect that locally situations similar to the ones discussed in this paper might be
taking place in different parts of the array. It is interesting to note here that the existence of multiple
stable configurations detected in the numerical examples of Section 5, opens the possibility for the
existence of multiple equilibrium (local) states in a large molecular array, reminiscent of the bubble
formation phenomena mentioned in the introduction. Thus, as further analysis either via molecular
dynamics simulations or theoretically would be the questions as to whether the local results in this
paper are related or can predict the initiation of cavitation bubbles of different sizes in actual fluid
or gases.
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Abstract: Coupled systems of Lane–Emden equations are of considerable interest as they model
several physical phenomena, for instance population evolution, pattern formation, and chemical
reactions. Assuming a complex variational structure, we classify the generalized system of
Lane–Emden type equations in relation to Noether-like operators and associated first integrals.
Various forms of functions appearing in the considered system are taken, and it is observed that the
Noether-like operators form an Abelian algebra for the corresponding Euler–Lagrange-type systems.
Interestingly, we find that in many cases, the Noether-like operators satisfy the classical Noether
symmetry condition and become the Noether symmetries. Moreover, we observe that the classical
Noetherian integrals and the first integrals we determine using the complex Lagrangian approach
turn out to be the same for the underlying system of Lane–Emden equations.

Keywords: generalized Lane–Emden systems; Noether-like operator; conservation laws

1. Introduction

The famous Noether theorem [1] establishes an important connection between the conservation
laws and symmetry properties of a system describable by a Lagrangian. From a mathematical point of
view, it is the case that the essential physical explanation of a Euler–Lagrange system is hidden in its
Lagrangian. The Lagrangian function, on the one hand, describes the time behavior of a mechanical
system through the Euler–Lagrange equation, and on the other hand, it connects symmetries with first
integrals of motion if they arise through Noether’s theorem. The availability of a Noether symmetry is
essential from two aspects: first, to determine conservation laws and, second, to reduce the underlying
equation. A significant number of studies on Noether symmetries and first integrals have been reported
in recent years. It is well known that if an equation possesses enough conserved quantities, it can be
easily reduced to an integrable form.

In recent papers, the authors of [2,3] introduced the complex symmetry approach, which has
been established as an appealing and elegant technique to study integrability properties of systems of
ordinary differential equations (ODEs). Following the idea of [3–5], several studies have been done to
view integrability properties of systems of partial differential equations (PDEs) and ODEs. For instance,
the use of the complex variable technique to discuss linearization of systems of two second-order
ODEs and PDEs has been presented in [6]. The procedure of converting a system of two second-order
ODEs admitting Lie algebra of dimension d (d ≤ 4) into linearizable form with the help of complex
Lie point symmetries of the base equation was given in [7]. Using semi-invariants, Mahomed et al. [8]
studied systems of two linear hyperbolic PDEs when they arise from a complex scalar ODE. They
found that the semi-invariants under linear transformations correspond to complex semi-invariants of
the (1 + 1) linear hyperbolic equation in the complex domain. They also succeeded in linking these
hyperbolic equations by introducing a complex variable structure on the manifold to the geometry of
underlying differential equations. Qadir and Mahomed [9] employed the complex variable technique
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to study three- and four-dimensional systems of ODEs and PDEs that are transformable to a single
complex ODEs. They showed that the acquired systems of ODEs are entirely different from the class
that is obtained from single splitting of systems of two ODEs. Naz and Mahomed [10,11] presented a
detailed analysis of the computation of Lie and Noether point symmetries of the kth-order system of n
ODEs by working in the complex domain. They also discussed the transonic gas flow, Maxwellian
distribution, Klein–Gordon equation, dissipative wave, and Maxwellian tails by introducing complex
variables. Wafo Soh and Mahomed [12] showed that by utilizing hypercomplexification, one can
linearize Ermakov systems. Transforming systems of some Riccati-type equations to a single base
equation, they constructed invariants of Able-type systems.

In the current study, we use the formulation of the Noether-like theorem presented in [3–5]
and classify systems of Lane–Emden equations with respect to Noether-like operators they admit
and related first integrals. On applying the complex symmetry approach, we see that additional
insights are obtainable by utilizing the fact that a complex Lagrangian encodes information of two real
Lagrangians, and it is derivable from a variational principle. As a consequence of the present study,
many important symmetry properties can easily be analyzed using complex Lagrangians, and these
help us to determine the invariant quantities of physically-coupled systems represented by ODEs.

The celebrated Lane–Emden (LE) equation given below is the simplest second-order ODE,
which appears frequently in modeling one-dimensional problems in physics, astrophysics,
and engineering, and it is still a subject of extensive analysis. A review by Wang [13], even though very
selective in its list of references, covered almost all possible generalizations and qualitative properties
of the LE equation.

Consider the well-known second-order LE equation:

y′′ +
n
t

y′ + f (y) = 0, (1)

where n is a real number and f (y) an arbitrary continuous function of y. The LE equation (1) has many
physical applications. For instance, for fixed values of n and f (y), it specifically models the thermal
behavior of a spherical cloud of gas, stellar structure, an isothermal gaseous sphere, and the theory
of thermionic currents [14–16]. In the literature, various techniques have been proposed concerning
the solutions of Equation (1); see for example [17–20]. Several authors have proven existence and
uniqueness results for the LE systems [21–24] (see also the references in these papers) and other related
systems. Some other works that involve Noether symmetries and exact solutions of LE-type equations
can be found in [25]. Moreover, the Noether symmetries of Equation (1) and exact solutions by taking
various forms of f (y) were investigated in [26].

Before going to the main discussion, it is important to recall studies in view of the Noether
symmetry classification of coupled systems of LE equations. Recently, the authors of [27] took a system
of LE equations given by a natural extension of (1), classified it with respect to Noether symmetries,
and constructed first integrals of:

f ′′ +
n
x

f ′ + F1(g) = 0, g′′ +
n
x

g′ + F2( f ) = 0, (2)

where n is a real number constant and F1(g) and F2( f ) are arbitrary functions. From a Noether
symmetry, Muatjetjeja and Khalique [28], extended their own work and studied the classification of
another system of LE equations given by:

f ′′ +
n
x

f ′ + h(x)gq = 0, g′′ +
n
x

g′ + h(x) f p = 0, (3)

with respect to Noether symmetries and their first integrals. In this paper, we shall make a kind of
comparison of how the complex Lagrangian formulation and the classical Noether symmetry approach
generate the same first integrals for the following general class of the LE system:
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f ′′ +
n1

x
f ′ − n2

x
g′ + F1( f , g) = 0, g′′ +

n2

x
f ′ +

n1

x
g′ + F2( f , g) = 0. (4)

The famous LE system (4) has been used in modeling various physical problems such as pattern
recognition, chemical reactions, and population evolution, to name a few. This system attracted the
attention of many authors and has been an area of extensive research during the last couple of years
(see [21–24,29,30] and the references therein).

We shall consider various forms of F1 and F2 to construct conserved quantities of the ensuing
systems and show that reduction via quadrature can be obtained only in a few cases. We point
out that the Noether-like operators we find for systems of Euler–Lagrange LE equations also satisfy
the classical Noether symmetry condition for one of the known equivalent Lagrangians, emerge
as Noether symmetries, and hence yield Noetherian first integrals for the subsequent systems.
Thus, the Noetherian first integrals and the first integrals we obtain employing a complex Lagrangian
approach turn out to be the same with respect to the Lagrangians for the underlying systems of ODEs.
We shall see that many interesting insights can be obtained for systems of ODEs through the complex
symmetry approach.

The layout of the paper is the following: in the next section, we briefly recall some basic definitions
of Noether-like operators and the Noether-like theorem. Section 3 deals with the classification of
Noether-like operators and associated first integrals for the system (4). In the last section, we present
our concluding remarks.

2. Preliminaries on Noether-Like Operators and First Integrals

Before we consider the generalized system of LE equations in relation to their Noether-like
operators and corresponding first integrals, it is instructive to have relevant definitions of these
operators and the Noether-like theorem that will be used in our discussion. Moreover, to make
the comparison, we also recall expressions for classical Noether symmetries and Noether’s theorem.
The contents of this section are taken from [3,4] (for more details, the reader is urged to see the
references therein).

Consider the following system of nonlinear second-order ODEs:

f ′′i = wi(x, f1, f ′1, f2, f ′2), i = 1, 2. (5)

Equation (5) represents a general class of a system of second-order ODEs and models various
physical problems. However, here, we merely deal with those systems in (5) that are equivalent
to a single scalar complex ODE, i.e., there exist transformations f = f1 + i f2, w = w1 + iw2 that
reduce the system (5) to a complex ODE, f ′′ = w(x, f , f ′), which retain a variational structure. It is
generally conceded that the construction of a Lagrangian for systems of nonlinear ODEs has been
proven to be a complicated problem. However, we see here how one can study symmetry properties
of Euler–Lagrange-type LE equations straightforwardly with the help of a complex Lagrangian, which
encodes two real Lagrangians and enables us to cast the system (5) in a variational form.

Here, our aim is to determine the Noether-like operators and related first integrals of a coupled
system of two LE equations. We start by assuming that the system (5) admits a complex Lagrangian
L(x, f , f ′), i.e. L = L1 + iL2. Therefore, we have two Lagrangians L1 and L2, which when utilized
result in the following Euler–Lagrange-type system corresponding to (5):

∂L1

∂ f1
+

∂L2

∂ f2
− d

dx
(

∂L1

∂ f ′1
+

∂L2

∂ f ′2
) = 0,

∂L2

∂ f1
− ∂L1

∂ f2
− d

dx
(

∂L2

∂ f ′1
− ∂L1

∂ f ′2
) = 0.

(6)
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The operators X1 = ς1(x, f1, f2)
∂

∂x + χ1(x, f1, f2)
∂

∂ f1
+ χ2(x, f1, f2)

∂
∂ f2

and X2 = ς2(x, f1, f2)
∂

∂x +

χ2(x, f1, f2)
∂

∂ f1
− χ1(x, f1, f2)

∂
∂ f2

are known as Noether-like operators of (5) for the Lagrangians L1 and
L2 if the following conditions hold:

X
(1)
1 L1 − X

(1)
2 L2 + (Dxς1)L1 − (Dxς2)L2 = Dx A1,

X
(1)
1 L2 − X

(1)
2 L1 + (Dxς1)L2 + (Dxς2)L1 = Dx A2,

(7)

for appropriate functions A1 and A2. Here, Dx = d
dx .

Noether-like theorem:
If X1 and X2 are two Noether-like operators with respect to real Lagrangians L1 and L2, then (5)

possesses the following two first integrals:

I1 = ς1L1 − ς2L2 +
∂L1

∂ f ′1
(χ1 − f ′1ς1 − f ′2ς2)−

∂L2

∂ f ′1
(χ2 − f ′1ς2 − f ′2ς1)− A1,

I2 = ς1L2 + ς2L1 +
∂L2

∂ f ′1
(χ1 − f ′1ς1 − f ′2ς2) +

∂L1

∂ f ′1
(χ2 − f ′1ς2 − f ′2ς1)− A2.

(8)

Classical Noether symmetry condition:
A vector field X = ς(x, f1, f2)

∂
∂x + χ(x, f1, f2)

∂
∂ f1

+ η(x, f1, f2)
∂

∂ f2
with its prolongation

X[1] = X + (χ̇− ḟ1ς̇) ∂
∂ ḟ1

+ (η̇ − ḟ2ς̇) ∂
∂ ḟ2

where ‘·′ = d
dx is known as a Noether point symmetry

corresponding to the function L(x, f1, f2, f ′1, f ′2) of (5) if the following equation holds:

X[1](L) + Dx(ς)L = Dx(A) (9)

Noether’s theorem:
For X to be a Noether symmetry generator for the Lagrangian L(x, f1, f2, f ′1, f ′2), the

following equation:

I = A−
[
ςL + (χ− ς ḟ1)

∂L
∂ ḟ1

+ (η − ς ḟ2)
∂L
∂ ḟ2

]
, (10)

provides the Noetherian first integral of (5) related to X.

3. Noether-Like Operators and First Integrals for Different forms of F1 and F2 in (4)

Major computational difficulties occur when trying to classify the general nonlinear LE equation
with respect to Noether symmetry operators and corresponding first integrals. We see here how the
Noether-like operators play an important role in deriving conserved quantities for dynamical systems
and their reduction via quadrature.

Consider the following nonlinear system, which is a generalized coupled LE-type system:

f ′′1 +
n1 f ′1 − n2 f ′2

x
+ F1( f1, f2) = 0,

f ′′2 +
n1 f ′2 + n2 f ′1

x
+ F2( f1, f2) = 0,

(11)

for which we have analyzed eight cases separately. Here, n1, n2 are constants and F1, F2 are arbitrary
functions of f1 and f2, respectively. We take different forms of F1 and F2 in (11) and determine
Noether-like operators and conserved quantities for the subsequent systems. Therefore, for this,
we proceed as: one can readily verify that the pair of Lagrangians for the system (11) when invoking (6)
is given by:
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L1 =
1
2

xn1 [cosθ( f ′21 − f ′22 )− 2sinθ f ′1 f ′2]− xn1 [cosθ
∫
(F1d f1 − F2d f2)− sinθ

∫
(F2d f1 + F1d f2)],

L2 =
1
2

xn1 [2cosθ( f ′1 f ′2) + sinθ( f ′21 − f ′22 )]− xn1 [cosθ
∫
(F2d f1 + F1d f2) + sinθ

∫
(F1d f1 − F2d f2)],

(12)

where θ = n2 ln x.
Case 1. F1( f1, f2) and F2( f1, f2) are linear in f1 and f2, respectively.
In this case, we have a system of two linear ODEs. Using appropriate transformations, one can

reduce the system of linear equations to a system of free particle equations, viz. f ′′1 = 0, f ′′2 = 0,
which possesses nine Noether-like operators associated with the coupled Lagrangians (11), and they
give ten first integrals. This case is well known and can be found in detail in [4].

Case 2. For n1, n2 = 0 and F1( f1, f2), F2( f1, f2) arbitrary and non-linear, as given in Case 1.
Equations (7) and (12), after some straightforward calculations, show that ς1 = 1, ς2 = 0,

χ1 = χ2 = 0, and A1, A2 are constants. Therefore, we have a single Noether-like operator X = ∂
∂x .

Using the pair of Lagrangians (12) and Noether-like operator X in (8), we obtain the following two
first integrals:

I1 =
1
2
( f ′2 − g′2) +

∫
[F1d f − F2dg],

I2 = f ′g′ +
∫
[F1dg + F2d f ].

(13)

Interestingly, the Noether-like operator X is also a Noether symmetry for each of the Lagrangians (12),
and (10) generates the same first integrals as given in (13) for System (11).

Case 3. If:

F1( f1, f2) =
α

2
log( f 2

1 + f 2
2 ) + γ f1 + δ, α �= 0,

F2( f1, f2) = α arctan(
f2

f1
) + γ f2, α �= 0

(14)

and n1, n2 = 0 and δ = 0, we obtain ς1 = x, ς = 0, χ1 = χ2 = 0 with A1, A2 as constants. This falls
into Case 2.

Case 4. For:

F1( f1, f2) =
α

2
[ f1 log( f 2

1 + f 2
2 )− f2 arctan( f2/ f1)] + γ f1 + δ, α �= 0,

F2( f1, f2) =
α

2
[ f1 arctan( f2/ f1) + f2 log( f 2

1 + f 2
2 )] + γ f2 + δ, α �= 0.

(15)

If n1, n2 = 0, we obtain ς1 = x, ς2 = 0, χ1 = χ2 = 0, and A1 = A2 = k, k being a constant.
This also bring us back to Case 2.

Case 5. If F = αur, α �= 0, r �= 0, 1.
Here, we discuss the following three cases:
Case 5.1. For n1 = r+3

r−1 and n2 = 0, the Noether-like symmetry conditions (7) result
in ς1 = x, ς2 = 0, χ1 = 2

1−r f1, χ2 = 2
1−r f2, with A1, A2 as constants. Therefore, we get two

Noether-like operators:

X1 = x
∂

∂x
+

2
1− r

(
f1

∂

∂ f1
+ f2

∂

∂ f2

)
, X2 =

2
1− r

(
f2

∂

∂ f1
− f1

∂

∂ f2

)
. (16)
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Utilizing (16) with (12), Equation (8) gives rise to two first integrals:

I1 =
1
2

xn1+1( f ′21 − f ′22 )− α

r + 1
xn1+1( f 2

1 + f 2
2 )

r+1
2 cosθ +

2
1− r

xn1( f1 f ′1 − f2 f ′2)− xn1+1( f ′21 − f ′22 ),

I2 = xn1+1 f ′1 f ′2 −
α

r + 1
xn1+1( f 2

1 + f 2
2 )

r+1
2 sinθ +

2
1− r

xn1( f1 f ′2 + f ′1 f2)− 2xn1+1 f ′1 f ′2,
(17)

for (11). Here, θ = (r + 1) arctan( f2/ f1). Utilization of transformations f1 = w1x
ν+1
1−r and f2 = w2x

ν+1
1−r

converts the above system (17) into an integrable form as:

∫ dw
±
√

4(1− r)−2w2 − 2α(1 + r)−1 f r+1 − C1
= lnxC2, (18)

where C1 and C2 are constants. Here, we can see that the Lie algebra of Noether-like operators is
Abelian, i.e., [X1, X2] = 0.

Case 5.2. If we set n1 = 2, n2 = 0, and r = 5, Equations (6) and (12) yield the famous
Emden–Fowler system [3] given by:

f ′′1 +
2
x

f ′1 + α( f 5
1 − 10 f 3

1 f 2
2 + 5 f1 f 4

2 ) = 0,

f ′′2 +
2
x

f ′2 + α( f 5
2 − 10 f 2

1 f 3
2 + 5 f 4

1 f2) = 0,
(19)

while the associated Lagrangians are:

L1 =
1
2

x2( f ′21 − f ′22 )− α

6
x2[ f 6

1 − 15 f 4
1 f 2

2 + 15 f 2
1 f 4

2 − f 6
2 ],

L1 = x2 f ′1 f ′2 −
α

3
x2[3 f 5

1 f2 − 10 f 3
1 f 3

2 + 3 f1 f 5
2 ].

(20)

It is easy to see that the Emden–Fowler system (19) admits the following two
Noether-like operators:

X1 = 2x
∂

∂x
− f1

∂

∂ f1
− f2

∂

∂ f2
, X2 = f

∂

∂ f2
− f2

∂

∂ f1
. (21)

Utilizing these operators in Equations (8) and (20), we obtain the following constant quantities:

I1 = x3( f ′21 − f ′22 ) + x2( f1 f ′1 − f2 f ′2) +
1
3

x3( f 6
1 + 15 f 2

1 f 4
2 − 15 f 4

1 f 2
2 − f 6

2 ),

I2 = x3 f ′1 f ′2 +
1
2

x2( f1 f ′2 + f ′1 f2) + x3( f1 f 5
2 −

10
3

f 3
1 f 3

2 + f 5
1 f2),

(22)

for (19). Upon checking, we see that for L1 and L2, the above system (19) admits X1 as a Noether
symmetry. Therefore, from the classical Noether theorem, we can deduce the first integrals I1 and I2

(Noetherian integrals) for (19).

Case 5.3. If n1 = r+3
r+1 with r �= −1, we have ς1 = x

r−1
r+1 , ς2 = 0, χ1 = − 2

r+1 x
−2
r+1 f1,

χ2 = − 2
r+1 x

−2
r+1 f2, and A1 = 2

2(r+1)2 ( f 2
1 − f 2

2 ) + q, A2 = 4
(r+1)2 f1 f2, where q is constant. By invocation

of the Noether-like theorem, the Noether-like operators given in (24) provide:

I1 =
1
2

x2( f ′21 − f ′22 ) +
α

r + 1
x2( f 2

1 + f 2
2 )

r+1
2 cosθ +

2
r + 1

x( f1 f ′1 − f2 f ′2) +
2

(1 + r)2 ( f 2
1 − f 2

2 ),

I2 = x2 f ′1 f ′2 +
α

r + 1
x2( f 2

1 + f 2
2 )

r+1
2 sinθ +

2
r + 1

x( f1 f ′2 + f ′1 f2) +
4

(r + 1)2 f1 f2,
(23)
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where θ = (r + 1) arctan( f2/ f1). In this case, Noether-like operators are of the form:

X1 = x
r−1
r+1

∂

∂x
− 2

r + 1
x−

2
r+1

(
f1

∂

∂ f1
+ f2

∂

∂ f2

)
, X2 = − 2

r + 1
x−

2
r+1

(
f2

∂

∂ f1
− f1

∂

∂ f2

)
. (24)

Applying the transformations f1 = w1x
−ν−1
r+1 and f2 = w2x

−ν−1
r+1 , System (23) can be converted into

the variable separable form:

∫ dw
±
√
−2α(r + 1)−1wr+1 + C1

=
r + 1

2
x

2
r+1 + C2, (25)

where C1 and C2 are arbitrary constants.
Case 6. If F1 and F2 are nonlinear and are of the form F1( f1, f2) = α( f 2

1 − f 2
2 )+ β f1 +γ, F2( f1, f2) =

2α f1 f2 + β f2, α, β, γ are constants, and α �= 0.
Here, the following subcases arise:

Case 6.1. If n1 = 5 and n2 = 0, β = 0 and γ = 0, we obtain from (7) that ς1 = x, ς2 = 0,
χ1 = −2 f1, χ2 = −2 f2, and A1, A2 are constants. This case falls into Case 5.1.
Case 6.2. If n1 = 5, n2 = 0, β2 = 4αγ, Equations (7) and (12) yield ς1 = x, ς2 = 0, χ1 = −(2 f1 +
β
α ), χ2 = −2 f2, A1 = βγ

6α x6, and A2 = 0. Therefore, Noether-like operators are of the form:

X1 = x
∂

∂x
− (2 f1 +

β

α
)

∂

∂ f1
− 2 f2

∂

∂ f2
, X2 = (2 f1 +

β

α
)

∂

∂ f2
− 2 f2

∂

∂ f1
. (26)

Invocation of the Noether-like theorem (8) along with Lagrangians and Noether-like operators X1

and X2 results in two first integrals:

I1 =
1
2

x6( f ′21 − f ′22 ) +
1
3

αx6( f 3
1 − 3 f1 f 2

2 ) +
1
2

βx6( f 2
1 − f 2

2 ) + γx6 f + 2x5( f1 f ′1 − f2 f ′2) +
β

α
x5 f ′1

+
βγ

6α
x6

I2 = x6 f ′1 f ′2 +
1
3

αx6(3 f 2
1 f2 − f 3

2 ) + βx6 f1 f2 + γx6 f2 + 2x5( f1 f ′2 + f ′1 f2) +
β

α
x5 f ′2,

(27)

for (11). Using the transformations w1 = x1+ν f1 +
β

2α xν+1 and w1 = xν+1 f2, one can map the
system (27) to a separable form:

C = 2w2 − 1
2

x2w′2 − α

3
w3, (28)

where w(x) = w1 + iw2.
It can be verified that the Noether-like operator X1 in (26) is also a Noether symmetry for the

Lagrangians L1 and L2 in Equation (12). The classical Noether’s theorem generates the same Noetherian
first integrals I1 and I2 given in Equation (27) with Lagrangians L2 and L1, respectively, for the resulting
system of LE equations. Furthermore, we observe that [X1, X2] = 0, so these operators form an
Abelian algebra.

Case 6.3. For n1 = 5
3 , n2 = 0, β = 0, and γ = 0, Equation (7) taking L1 and L2 from (12) with simple

calculations gives ς1 = x
1
3 , χ1 = − 2

3 x
−2
3 f1, χ2 = − 2

3 x
−2
3 f2, and A1 = 2

9 ( f 2
1 − f 2

2 ) + k, A2 = 4
9 ( f1 f2),

and k is a constant. This case falls into Case 5.2.
Case 7. For F1( f1, f2) = αeβ f1 cos(β f2) + γ f1 + δ, F2( f1, f2) = αeβ f1 sin(β f2) + γ f2, where α, β, δ

are constants and α �= 0, β �= 0. Therefore, (11) takes the form:

f ′′1 +
n1 f ′1 − n2 f ′2

x
+ αexp(β f1)cos(β f2) + γ f1 + δ = 0,

f ′′2 +
n1 f ′2 + n2 f ′1

x
+ αexp(β f1)sin(β f2) + γ f2 = 0,

(29)
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For n1 = 1, n2 = 0, γ = 0, δ = 0, and β = 1, we obtain ς1 = x, ς2 = 0, χ1 = −2, χ2 = 0, and
A1, A2 = q, where q is a constant. Therefore, the system (29) possesses the Noether-like operators:

X1 = x
∂

∂x
− 2∂

∂ f1
, X2 =

∂

∂ f2
. (30)

with the corresponding pair of Lagrangians:

L1 =
1
2

x( f ′21 − f ′22 )− αxe f1 cos f2,

L2 = x f ′1 f ′2 − αxe f1 sin f2.
(31)

Utilizing the Noether-like operators and Lagrangians given above, Equation (8) implies the
first integrals:

I1 =
1
2

x2( f ′21 − f ′22 ) + αx2e f1 cos f2 + 2x f ′1

I2 = x2 f ′1 f ′2 + αx2e f1 sin f2 + 2x f ′2.
(32)

It is important to mention here that the system (29) admits Noether-like operator X1 as a Noether
symmetry [3], as it satisfies the classical Noether symmetry condition with Lagrangians L1 and L2 given
in (31). Therefore, application of the classical Noether theorem remarkably generates two Noetherian
first integrals, namely I1 and I2 given in (32). Here, again, the Lie bracket gives [X1, X2] = 0, which
shows that the algebra of these operators is Abelian.

Case 8. Here, n1, n2 are nonzero, and F1( f1, f2), F2( f1, f2) are arbitrary, but not of the form
contained in the cases given above.

From Equation (7), after simple manipulations, we find that ς1 = ς2 = 0, χ1 = χ2 = 0, and A1, A2

are constants. We deduce that no Noether-like operators exist in this case.

4. Conclusions

In this paper, we have applied the complex Noether approach and attempted to classify a
two-dimensional coupled system of LE equations that appears in physics and applied mathematics
with respect to Noether-like-operators and corresponding first integrals by taking the functions F1 and
F2 in their more general forms in Equation (11). In this study, we have observed that for some of the
systems of LE equations, every pair of Noether-like operators forms an Abelian Lie algebra. We have
also highlighted that for certain pairs of Lagrangians, the Noether-like operators become Noether
symmetries of the Euler–Lagrange systems of LE equations and give rise to the same Noetherian first
integrals as we determined from our complex approach. Therefore, the study of invariant quantities of
many dynamical systems can be made with the help of complex Lagrangian formalism, which seems
to be more simple and elegant.
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Abstract: To address issues involving inconsistencies, this paper proposes a stochastic multi-criteria
group decision making algorithm based on neutrosophic soft sets, which includes a pair of asymmetric
functions: Truth-membership and false-membership, and an indeterminacy-membership function.
For integrating an inherent stochastic, the algorithm expresses the weights of decision makers and
parameter subjective weights by neutrosophic numbers instead of determinate values. Additionally,
the algorithm is guided by the prospect theory, which incorporates psychological expectations of
decision makers into decision making. To construct the prospect decision matrix, this research
establishes a conflict degree measure of neutrosophic numbers and improves it to accommodate
the stochastic multi-criteria group decision making. Moreover, we introduce the weighted average
aggregation rule and weighted geometric aggregation rule of neutrosophic soft sets. Later, this study
presents an algorithm for neutrosophic soft sets in the stochastic multi-criteria group decision making
based on the prospect theory. Finally, we perform an illustrative example and a comparative analysis
to prove the effectiveness and feasibility of the proposed algorithm.

Keywords: neutrosophic soft sets; inconsistent information; prospect theory; stochastic multi-criteria
group decision making

1. Introduction

Many complex issues in engineering, economics, environmental science and medical science
involve uncertainties. In order to address these issues, the theory of possibility, fuzzy set [1], rough set [2],
and interval mathematic [3] have been developed successively. However, the above theories have their
inherent defects, which are mainly reflected in the inadequacy of parameterization tools [4]. In 1999,
Molodtsov [4] initiated the soft set theory for modeling uncertainties from the parameterized point
of view.

After Molodtsov, the research interests in the soft set theory have been growing rapidly, such as
the algebraic structure [5,6], topology [7,8], normal parameter reduction [9], medical diagnosis [10],
game theory [4], and decision making under uncertainties [11,12]. In addition, the study of hybrid
models that are developed by combining the soft set theory with other mathematical tools, such as rough
sets [13], fuzzy sets [14], and intuitionistic fuzzy sets [15], has also been an important research topic.

Under uncertain environments, a mass of inconsistent information appears due to diversities
of source platforms and the differences in the acquisition time. To address issues involving
inconsistencies, Smarandache [16] initiated neutrosophic sets from the perspective of philosophy.
Subsequently, Maji [17] integrated neutrosophic sets into soft sets to propose neutrosophic soft
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sets, which retain the characteristics of neutrosophic sets and have adequate parameterization tools.
Neutrosophic soft sets are characteristic by three independent functions, including a pair of asymmetric
functions: Truth-membership and false-membership, and an indeterminacy-membership function.
Among them, the truth-membership and false-membership represent the degree of belongingness and
non-belongingness of an element with respect to parameters. The indeterminacy-membership shows
the neutrality degree of an element related to parameters.

In recent years, the theory extensions of neutrosophic soft sets have made a rapid progress.
Sahin and Küçük [18] constructed generalised neutrosophic soft sets. Deli and Broumi [19] refined
the concept and operations of Maji’s neutrosophic soft sets. In addition, they also studied the
neutrosophic soft matrix and their operators. Considering that the approximate range is usually
used to describe complex situations when there is no sufficient information, Deli [20] expanded the
values of the truth-membership, indeterminacy-membership, and false-membership to the form of
interval values to construct interval-valued neutrosiphic soft sets. Karaaslan [21] introduced the
possibility of neutrosophic soft sets by assigning probability to the three function values and defined
related properties and operations. In addition, the concepts of single-valued neutrosophic refined soft
sets [22], generalized neutrosophic soft expert sets [23], and neutrosophic soft rough sets [24] were
presented successively.

Meanwhile, neutrosophic soft sets are also employed in the fields of clustering, prediction and
decision making under uncertainties, among which decision making under uncertainties is the most
widely applied. Deli [20] proposed a decision making method of interval-valued neutrosophic soft
sets by level soft sets, and illustrated it by an example. Peng and Liu [25] constructed three decision
making algorithms of neutrosophic soft sets by evaluation based on the distance from average solution
(EDAS), similarity measure, and level soft sets, respectively. Abu Qamar and Hassan [26] presented
the similarity, distance, and fuzzy degree measures of Q-neutrosophic soft sets, and put forward the
corresponding decision rule. Karaaslan [21] constructed a decision making method for the possibility
of neutrosophic soft sets based on the and-product.

However, the existing studies mainly focus on decision making methods under a single decision
maker, few scholars have studied group decision making problems by neutrosphic soft sets. At the
same time, we also noticed that the existing methods have the following defects. On one hand,
the above methods are mainly based on the expected utility theory, which assumes that decision
makers are completelyrational. Actually, in decision making processes, decision makers do not make
decisions in a complete rational manner, mainly showing that psychological expectations will greatly
affect the actual decision making behavior. On the other hand, the parameter subjective weights are
directly given determinate values [25], which do not fully reflect the hesitancies of decision makers’
judgments under uncertain environments.

To make up for the gaps of existing researches, this study constructs an algorithm for the stochastic
multi-criteria group decision making based on neutrosophic soft sets. Stochastic means that the weights
of decision makers and parameters are uncertain or completely unknown under uncertainties. In this
paper, neutrosophic numbers rather than determinate values are adopted to express the stochastic
of the weights of decision makers and parameters. This method employs the prospect theory [27]
rather than the expected utility theory to integrate the hesitancies of alternatives by decision makers’
judgements. The prospect theory, a new theory of bounded rationality, is proposed from the point of
view of cognitive psychology. In addition, it integrates the influence of psychological expectations on
actual decision making behaviors into the decision making model. Therefore, the prospect theory is
more in line with actual decision making behaviors under uncertainties [28]. Then, to establish the
prospect decision matrix, we put forward the conflict degree measure of neutrosophic numbers and
modify it to adapt group decision making. Moreover, on the purpose of aggregating in group decision
making processes, this study proposes the weighted average aggregation rule and weighted geometric
aggregation rule of neutrosophic soft sets.
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To promote our discussion, some fundamental concepts of neutrosophic sets, soft sets, neutrosophic
soft sets, and prospect theory are reviewed in Section 2. In Section 3, we establish the measures of
determinacy degree and conflict degree, and construct the weighted average aggregation rule and
weighted geometric aggregation rule of a neutrosophic soft set. In Section 4, this paper presents an
algorithm for neutrosophic soft sets in the stochastic multi-criteria group decision making based on the
prospect theory. In Section 5, to demonstrate the feasibility and effectiveness of the proposed algorithm,
we perform an illustrative example and a comparative analysis.

2. Preliminaries

In this section, we briefly recall some basic concepts of neutrosophic sets, soft sets, neutrosophic
soft sets, and prospect theory. More detailed conceptual basics can be found in references [4,16,17,27]
(pp. 1–2).

2.1. Neutrosophic Soft Sets

Definition 1 [16] (p. 1). Let U be the initial universal set, a neutrosophic set A =
{
< u : TA(u), IA(u), FA(u) >, u ∈ U

}
consists of the truth-membership TA(u), the indeterminacy-membership IA(u), and false-membership FA(u)
of element u ∈ U to set A, where T, I, F : U→]−0, 1+[ . ]−0, 1+[ is a non-standard interval, and the
left and right borders of it are imprecise. Between them, (−0) = {0− x : x ∈ R∗, x is infinitesimal},
and (1+) = {1 + x : x ∈ R∗, x is infinitesimal}.

For convenience, we employ u =< T, I, F > to represent the element u in the neutrosophic set A,
and it can be called a neutrosophic number.

Considering that neutrosophic sets are proposed from the philosophical point of view, it is difficult
to apply to practical problems, such as management and engineering problems. Then, Haibin et al. [29]
developed single valued neutrosophic sets.

Definition 2 [29]. Let U be the universal set, a single valued neutrosophic set A over U can be defined as
A =

{
< u : TA(u), IA(u), FA(u) >, u ∈ U

}
, where T, I, F : U→ [0, 1] . Similarly, the values of TA(u), IA(u) and

FA(u) stand for the truth-membership, indeterminacy-membership, and false-membership of u to
A, respectively.

Definition 3 [30]. Let u =< T, I, F > be a neutrosophic number, then the score function, accuracy function and
certainty function are defined as follows, respectively.

s(u) =
2 + T − I − F

3
, (1)

a(u) = T − F, (2)

c(u) = T, (3)

The score function is an important index for evaluating neutrosophic numbers. For a neutrosophic
number R =< Tr, Ir, Fr >, the truth-membership Tr is positively correlated with the score function,
and the indeterminacy-membership Ir and false-membership Fr are negatively correlated with the score
function. In terms of the accuracy function, the greater the difference between the truth-membership
Tr and false-membership Fr is, the more affirmative the statement is. Additionally, in regard to the
certainty function, it positively depends on the truth-membership Tr.

On the basis of Definition 3, the comparison method between two neutrosophic numbers is
represented as follows.
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Definition 4 [30]. Let u1 =< T1, I1, F1 >, u2 =< T2, I2, F2 > be two neutrosophic numbers, the comparison
relationships between u1 and u2 are as follows:

1. If s(u1) > s(u2), u1 is superior to u2 and it can be denoted by u1 � u2;
2. If s(u1) = s(u2), a(u1) > a(u2), u1 is superior to u2 and is denoted by u1 � u2;
3. If s(u1) = s(u2), a(u1) = a(u2) and c(u1) > c(u2), u1 is superior to u2 and is denoted by u1 � u2;
4. If s(u1) = s(u2), a(u1) = a(u2) and c(u1) = c(u2), u1 is equal to u2, denoted by u1 � u2.

Example 1. For two neutrosophic numbers u1 =< 0.8, 0.2, 0.4 > and u2 =< 0.7, 0.4, 0.1 >, we can obtain that
s(u1) = 2.2/3, s(u2) = 2.2/3, a(u1) = 1.2/3, a(u2) = 1.8/3, c(u1) = 2.4/3 and c(u2) = 2.1/3 based on
Definition 3. Considering Definition 4, we can infer that u2 is superior to u1, as denoted by u2 � u1.

Definition 5 [31]. Let u1 =< T1, I1, F1 >, u2 =< T2, I2, F2 > be two neutrosophic numbers, then the
normalized Hamming distance between u1 and u2 is defined as follows:

D�(u1, u2) =
(|T1 − T2|+|I1 − I2|+|F1 − F2|)

3
. (4)

Definition 6 [4] (p. 1). Let U be the set of initial universe, E be the parameter set, and P(U) be the power set of
U. Then a pair (F, E)is called a soft set over U where F is a mapping given by F : E→ P(U) .

Remark 1 [32]. On account of the single valued neutrosophic set is an instance of the neutrosophic set, it is
natural to infer that a single valued neutrosophic soft set is an instance of the neutrosophic soft set. However,
Maji only considers neutrosophic soft sets, which take value from the standard subset of [0, 1] rather than
]−0, 1+[, so the definition of the single valued neutrosophic soft set is exactly the same as the concept of the
neutrosophic soft set defined by Maji.

Definition 7 [17] (p. 1). Let U be the initial universal set, E be a set of parameters, and P(U) be the set of all
neutrosophic subsets of U. The collection (F, E) is regarded as a neutrosophic soft set over U, where F refers to
the mapping F : E→ P(U) .

Example 2. Assume U = {u1, u2, u3} is a set of three cars under consideration, and E ={
e1 = cheap, e2 = equipment, e3 = fuel consumption

}
be the set of parameters for describing the three.

In this case, we can define a function F : E→ P(U) as a neutrosophic soft set (F, E), and it is represented
as follows:

(F, E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(e1) = {< u1, 0.8, 0.4, 0.3 >,< u2, 0.5, 0.7, 0.3 >,< u3, 0.2, 0.5, 0.8 >}
F(e2) = {< u1, 0.5, 0.7, 0, 4 >,< u2, 0.7, 0.3, 0.2 >,< u3, 0.5, 0.8, 0.5 >}
F(e3) = {< u1, 0.4, 0.6, 0.3 >,< u2, 0.9, 0.3, 0.1 >,< u3, 0.4, 0.7, 0.5 >}

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

2.2. Prospect Theory

The prospect theory [27] (p. 2), proposed by Tversky and Kahneman, is a mainstream theory of
behavioral science, and it studies human judgments or decision making behaviors under uncertain
environments. The prospect theory mainly considers the value function and decision weight function.
It implies three characteristics: Reference dependence, diminishing sensitivity and lose aversion.
Reference dependence refers to the change of people’s perception depending on the change of the
relative value. Diminishing sensitivity means that utility decreases as income increases. Additionally,
loss aversion signifies that people value losses more than gains.
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The prospect theory states that decision makers choose the optimal alternative based on the
prospect value, which is determined by the value function and decision weight function. The prospect
value can be obtained as follows:

V =
∑

v(x− r)ω(pt). (5)

v(x− r) is the value function as defined follows:

v(x− r) =

⎧⎪⎪⎨⎪⎪⎩(x− r)α, x ≥ r

−λ(x− r)β, x < r
, (6)

where x is the evaluation value of an object, r is the reference point, then (x − r) represents losses
or gains. x ≥ r means gains, and the value function is concave; x < r means losses, and the value
function is convex. So α, β stand for the concave degree and convexity degree of the value function,
respectively. λ is the risk aversion coefficient, and λ > 1 indicates that decision makers value risk
more. By experimental verification, Tversky and Kahneman took the value of parameters as follows:
α = β = 0.88, λ = 2.25.

ω(Pt) is the decision weight function as defined follows:

ω(pt) =
pt
γ

((ptγ) + ((1− pt)
γ))

1
γ

, (7)

where pt is the objective possibility, and Tversky and Kahneman took the value of parameter γ as 0.61.

3. The Measures of Determinacy Degree and Conflict Degree and Neutrosophic Soft Set
Aggregation Rules

In this section, we initiate the determinacy degree measure and conflict degree measure of
neutrosophic numbers, and then develop two kinds of aggregation rules of a neutrosophic soft set.

3.1. The Measures of Determinacy Degree and Conflict Degree

This paper employs the Hamming distance of information theory, which is a well-known
measure designed to provide insights into the similarity of information [33,34] and has been widely
employed in distance measures [26,35], to measure the determinacy degree and conflict degree.
Before this, we present the concept of a minimum conflict neutrosophic number and maximum conflict
neutrosophic number.

Definition 8. Let Minc =< 1, 0, 0 > be the minimum conflict neutrosophic number, which means that the
belongingness degree of an object is 1, and the non-belongingness degree and the neutrality degree of an object be
zero, respectively. That is, the conflict degree of information is the smallest.

Additionally, let Maxc =< 0.5, 1, 0.5 > be the maximum conflict neutrosophic number. That is,
the neutrosophic number, whose neutrality degree is one, and the belongingness degree and non-belongingness
degree is 0.5. In order words, the conflict degree of information is the greatest.

Definition 9. Let u =< T, I, F > be a neutrosophic number, the determinacy degree of u based on Equation (4)
can be defined as follows:

dΔ(u) =
(|T − 1|+ I + F)

3
, (8)

which measures the normalized Hamming distance between u and the minimum conflict neutrosophic number.
Similarly, the conflict degree of u is determined by the normalized Hamming distance between u and the

maximum conflict neutrosophic number, and defined as follows:

cΔ(u) =
(|T − 0.5|+ |I − 1|+ |F− 0.5|)

3
(9)
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Example 3. Considering Example 1, the determinacy degree and conflict degree of u1 can be computed as
follows: dΔ(u1) = 0.8/3, cΔ(u1) = 1.2/3.

3.2. Aggregation Rules of a Neutrosophic Soft Set

In this subsection, we define two kinds of aggregation rules of a neutrosophic soft set, namely the
weighted average aggregation rule and weighted geometric aggregation rule.

Definition 10. Weighted average aggregation rule. Let U be the initial universal set, E be the set of parameters,
(F, E) be a neutrosophic soft set over U, as represented by F(ej)(xi) =< FT(ej)(xi), FI(ej)(xi), FF(ej)(xi) >
(i = 1, 2, . . . , m; j = 1, 2, . . . , n). Then, the weighted average aggregation rule of (F, E) can be denoted by
(F, E)Γ =

{
FΓ(x1), FΓ(x2), . . . , FΓ(xm)

}
, and defined as

FΓ(xi) =
n∏

j=1

F(ej)(xi)ω j =< 1−
n∏

j=1

(1− FT(ej)(xi))

ω j

,
n∏

j=1

(FI(ej)(xi))

ω j

,
n∏

j=1

(FF(ej)(xi))

ω j

> (10)

where the vector ω = {ω1,ω2, . . . ,ωn} stands for the weights of parameters, and
n∑

j=1
ω j = 1.

Based on Definition 10, the weighted geometric aggregation rule of a neutrosophic soft set is constructed.

Definition 11. Weighted geometric aggregation rule. Considering the neutrosophic soft set (F, E) in Definition
10, we define the weighted geometric aggregation rule as (F, E)Θ = {FΘ(x1), FΘ(x2), . . . , FΘ(xm)}, and

FΘ(xi) =
n∏

j=1
(F(ej)(xi))

ω j =<
n∏

j=1
(FT(ej)(xi))

ω j

, 1− n∏
j=1

(1− (FI(ej)(xi)))
ω j

, 1− n∏
j=1

(1− (FF(ej)(xi)))
ω j

> (11)

where the vector ω = {ω1,ω2, . . . ,ωn}stands for the weights of parameters, and
n∑

j=1
ω j = 1.

Example 4. Consider Example 2. Assume that the weight vector of parameters isω = {0.4, 0.2, 0.3}, then we can
obtain the results of the weighted average aggregation and weighted geometric aggregation as follows, respectively.

(F, E)Γ = {< u1, 0.6077, 0.5537, 0.3584 >,< u2, 0.7015, 0.4749, 0.2244 >,< u3, 0.3169, 0.6512, 0.6467 >}.
(F, E)Θ = {< u1, 0.6049, 0.9905, 0.9987 >,< u2, 0.6837, 0.9973, 0.9998 >,< u3, 0.3474, 0.9798, 0.9885 >}

4. Algorithm for Neutrosophic Soft Sets in Stochastic Multi-Criteria Group Decision Making
Based on Prospect Theory

4.1. Problem Description

In this section, we give a concise description of a stochastic multi-criteria group decision
making problem under neutrosophic soft sets. Let U = {x1, x2, . . . , xm} be a set of m alternatives,
E = {e1, e2, . . . , en} be a set of n parameters and DM =

{
Z1, Z2, . . .Zp

}
be a set of p decision makers.

Assume that ω(t) =< ω
(t)
T ,ω(t)

I ,ω(t)
F > (t = 1, 2, . . . , p) is the neutrosophic weight of decision maker

Zt, δ
(t)
j =< δ

(t)
Tj , δ(t)I j , δ(t)Fj > is the neutrosophic subjective weight assigned for parameter ej by decision

maker Zt, and the evaluation value of alternative xi related to parameter ej by decision maker Zt

is expressed as F(t)(ej)(xi) =< F(t)
T (ej)(xi), F(t)

I (ej)(xi), F(t)
F (ej)(xi) >. Given p neutrosophic soft sets

(F(t), E) (t = 1, 2, . . . , p) of alternatives evaluated by decision makers, and the tabular representation of
(F(t), E) (t = 1, 2, . . . , p) is shown in Table 1.
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4.2. Determining the Determinacy Degree of Decision Makers

In stochastic multi-criteria group decision making problems, the weights of decision makers are
stochastic and indeterminate. Therefore, how to obtain the weights as determinate values has become
an important research topic. In this paper, we express the weights of decision makers as a neutrosophic
number, and then compute the determinacy degree of decision makers to replace traditional weights.

Considering Definition 9, let ωt =< ωT
t ,ωI

t,ω
F
t > (t = 1, 2, . . . , p) be the neutrosophic weight of

decision maker Zt, then the determinacy degree of Zt can be computed as follows by Equation (8):

dΔ(t) =
1− 1

3 (|ωT
t − 1|+ωI

t +ωF
t

)
p∑

t=1
1− 1

3

(∣∣∣ωT
t − 1|+ωI

t +ωF
t

) (t = 1, 2, . . . , p), (12)

Table 1. Tabular representation of neutrosophic soft sets (F(t), E) of alternatives.

(F(1), E)

e1 e2 . . .
en

x1 F(1)(e1)(x1) F(1)(e2)(x1) . . .
F(1)(en)(x1)

x2 F(1)(e1)(x2) F(1)(e2)(x2) . . .
F(1)(en)(x2)

...
...

. . .
...

xm F(1)(e1)(xm) F(1)(e2)(xm) . . .
F(1)(en)(xm)

(F(2),E)

e1 e2 . . .
en

x1 F(2)(e1)(x1) F(2)(e2)(x1) . . .
F(2)(en)(x1)

x2 F(2)(e1)(x2) F(2)(e2)(x2) . . .
F(2)(en)(x2)

...
...

...
. . .

...

xm F(2)(e1)(xm) F(2)(e2)(xm) . . .
F(2)(en)(xm)

...
...

...
...

...
(F(p),E)

e1 e2 . . .
en

x1 F(p)(e1)(x1) F(p)(e2)(x1) . . .
F(p)(en)(x1)

x2 F(p)(e1)(x2) F(p)(e2)(x2) . . .
F(p)(en)(x2)

...
...

...
. . .

...

xm F(p)(e1)(xm) F(p)(e2)(xm) . . .
F(p)(en)(xm)

4.3. Calculating the Comprehensive Weights of Parameters

In this paper, the parameter weights are determined by combining subjective weights with objective
weights. Among them, subjective weights are obtained by aggregating neutrosophic subjective weights
provided by decision makers, which is more accurate than the way directly given by determinate
values [25] (p. 2). The objective weights are calculated by the information entropy method [35]. Then,
the principle of minimum information entropy [36] is employed to obtain comprehensive weights
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of parameters by integrating subjective weights and objective weights. The system framework is
presented in Figure 1.

 
Figure 1. The system framework of the computing comprehensive weights of parameters.

4.3.1. Computing the Subjective Weights

Under the stochastic environment, the judgements of decision makers are full of hesitancies.
Considering this situation, instead of giving determinate values, this paper firstly aggregates
neutrosophic subjective weights of parameters to obtain subjective weights in the form of neutrosophic
numbers. Based on this, subjective weights are computed by the score function as Equation (1).

Assume parameter set E =
{
e1, e2, . . . , ej

}
is the initial universal set, the set of decision

makers Z = {z1, z2, . . . , zt} is the parameter set, and P(Z) is the set of all neutrosophic subsets of
E. The neutrosophic soft set (F, Z) over E can be integrated by the weighted geometric aggregation
rule as (F, Z)Θ =

{
FΘ(e1), FΘ(e2), . . . , FΘ(em)

}
, and

FΘ(ej) =

p∏
t=1

δ
(t)
j

ψt

=<

p∏
t=1

δ
(t)
Tj

ψt

, 1−
p∏

t=1

(1− δ(t)I j )

ψt

, 1−
p∏

t=1

(1− δ(t)Fj )

ψt

>, (13)

where δ(t)j =< δ
(t)
jT , δ(t)I j , δ(t)Fj > ( j = 1, 2, . . . , n) is the neutrosophic subjective weight assigned for

parameter ej by Zt, and ψt is the determinacy degree of Zt.
Then, the subjective weights can be computed by the score function as shown below:

SWj =

2 +
p∏

t=1
δ
(t)
Tj

ψt

− (1−
p∏

t=1
(1− δ(t)I j )

ψt

) − (1−
p∏

t=1
(1− δ(t)Fj )

ψt

)

3
. (14)

4.3.2. Obtaining the Objective Weights: Information Entropy Method

Considering that the computation of objective weights is not the focus of this paper, we obtain
objective weights by the information entropy method. The information entropy is used to measure the
uncertainty of events. The greater the information entropy is, the greater the uncertainty degree. That is,
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the smaller the amount of information it carries, the smaller the weight is. Note that the uncertainty of
neutrosophic numbers consists of two factors, one is the truth-membership and false-membership,
and the other is the indeterminacy-membership.

Based on the information entropy method, we can obtain that the information entropy of parameter
ej given by decision maker Zt is defined as:

Et
j = 1− 1

m

∑m

i=1

(
F(t)

T

(
ej
)
(xi) + F(t)

F

(
ej
)
(xi)

)
|F(t)

I

(
ej
)
(xi) − F(t)

I
c
(
ej
)
(xi)|( j = 1, 2, . . . , n). (15)

Then, the comprehensive information entropy of parameter ej is defined as follows:

Ej =

p∑
t=1

ϕtEt
j( j = 1, 2, . . . , n) (16)

where ϕt is the determinacy degree of decision maker Zt computed by Equation (8).
So, the objective weights are obtained as:

OWj =
1− Ej

n∑
j=1

1− Ej

( j = 1, 2, . . . , n). (17)

4.3.3. Calculating the Comprehensive Weights

Based on the principle of the minimum information entropy, the comprehensive weight of
parameter 
 j can be calculated as follows:


 j =

√
OWj · SWj

n∑
j=1

√
OWj · SWj

, (18)

where SWj and OWj represent the subjective weight and objective weight of parameter ej, respectively.

4.4. Computing the Comprehensive Prospect Values

The comprehensive prospect values of alternatives are determined by the prospect decision matrix
and the comprehensive weights of parameters. Next, we expound how to generate the prospect
decision matrix and obtain comprehensive values of alternatives, respectively.

4.4.1. Constructing the Prospect Decision Matrix

The core of constructing the prospect decision matrix is to compute the value function and decision
weight function. In terms of the value function, we need to analyze the distance between the reference
point and the actual value. This paper regards the maximum conflict neutrosophic number as the
reference point, then the distance can be treated as the conflict degree of the actual value. Additionally,
actual values refer to the alternative evaluation values with respect to the parameters. As for the
decision weight function, the objective possibility is seen as the determinacy degree of the decision
makers. The system framework of constructing the prospect decision matrix is shown in Figure 2.
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Figure 2. The system framework of constructing the prospect decision matrix.

We assume that the neutrosophic soft sets of alternatives and neutrosophic subjective weights of
parameters are both provided by decision makers. So, the conflict degree of the alternative evaluation
values with respect to the parameters should take the neutrosophic subjective weights of parameters
into account. Based on the conflict degree measure given by Definition 9, we develop a modified
conflict degree measure by introducing the neutrosophic subjective weights of parameters.

Assume F(ej)(xi) =< FT(ej)(xi), FI(ej)(xi), FF(ej)(xi) > is a neutrosophic number, which represents
the value of alternative xi related to parameter ej, and α j =< α jT,α jI,α jF > is the neutrosophic subjective
weight of parameter ej. Considering the sum of α jT,α jI and α jF may not be one, this paper normalizes
them to be more consistent with the reality. Therefore, the measure of the modified conflict degree of
F(ej)(xi) is defined as follows:

mcΔ(F(ej)(xi)) =
α jT ·

∣∣∣FT(ej)(xi) − 0.5
∣∣∣

α jT + α jI + α jF
+
α jI ·

∣∣∣FI(ej)(xi) − 1
∣∣∣

α jT + α jI + α jF
+
α jF ·

∣∣∣FF(ej)(xi) − 0.5
∣∣∣

α jT + α jI + α jF
. (19)

Subsequently, calculate the prospect value of each alternative with respect to the parameters
as follows:

Vij =

p∑
t=1

w(zt)v(F(t)(ej)(xi) − x0), (20)

where

v(F(t)(ej)(xi) − x0) =

⎧⎪⎪⎨⎪⎪⎩(mcΔ(F(t)(ej)(xi), x0))
0.88

, F(t)(ej)(xi) ≥ x0

−2.25(mcΔ(F(t)(ej)(xi), x0))
0.88

, F(t)(ej)(xi) < x0
, (21)

ω(Zt) =
(ψt)

0.61

((ψt)
0.61 + (1−ψt)

0.61)
1

0.61

. (22)

Then, we can obtain the prospect decision matrix.
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4.4.2. Computing the Comprehensive Prospect Values

Based on comprehensive weights of parameters and the prospect decision matrix, we can compute
the comprehensive prospect values for alternatives as follows:

Vi =
n∑

j=1


 jVij. (23)

The system framework of computing the comprehensive prospect values is shown in Figure 3.

 
Figure 3. The system framework of computing the comprehensive prospect values of alternatives.

4.5. Algorithm for Neutrosophic Soft Sets in Stochastic Multi-Criteria Group Decision Making Based on
Prospect Theory

In this section, a novel algorithm for neutrosophic soft sets in stochastic multi-criteria group
decision making based on the prospect theory is proposed. The detailed operation steps of Algorithm
1 are presented below.

Algorithm 1: Neutrosophic soft sets in stochastic multi-criteria group decision making based on the
prospect theory

Step 1: Input a neutrosophic set, which represents neutrosophic weights of decision makers and two
neutrosophic soft sets, including alternatives description as shown in Table 1 and neutrosophic subjective
weights of parameters evaluated by decision makers.
Step 2: Normalize the neutrosophic soft sets of alternatives as follows:

(
�

F(t), E) =

⎧⎪⎪⎨⎪⎪⎩(F
(t)
T (ej)(xi), F(t)I (ej)(xi), F(t)F (ej)(xi)), ej is a benefit parameter

(F(t)F (ej)(xi), 1− F(t)I (ej)(xi), F(t)T (ej)(xi)), ej is a cos t parameter
(24)

Step 3: Compute the determinacy degree vector ψt = (ψ1,ψ2, . . . ,ψp) of decision makers by Equation (8);
Step 4: Construct the prospect decision matrix based on Equation (20).
Step 5: Obtain the comprehensive weight vector 
 j = (
1,
2, . . . ,
n) by Equation (18);
Step 6: Calculate the comprehensive prospect value Vi for each alternative through Equation (23).
Step 7: Make a decision by ranking alternatives based on comprehensive prospect values.

5. An Application of the Proposed Algorithm

In order to verify the feasibility of the proposed algorithm, we discuss the investment decision of
a finance institution. Meanwhile, the existing five methods [17,25,37] (pp. 1–2) are employed for a
comparative analysis to prove the feasibility and superiority of the proposed algorithm.

5.1. Example Analysis

Credit scoring can help financial institutions reduce financial risks and non-performing loans.
Generally, financial institutions assess the credit score of borrowers based on basic information, such as
age, profession, education, income, capital gains, residence and borrowing frequency. Recently,
a financial institution wants to invest an amount of money in borrowers. The institution initially selects
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five borrowers as candidates. In addition, the institution makes a decision by analyzing the following
four parameters: Highly educated, higher borrowing frequency, higher income and higher capital
gains. Subsequently, the institution assembles a team composed of three decision makers to make
the investment decision. Suppose that U = {u1, u2, u3, u4, u5} is the set of candidates, E = {e1, e2, e3, e4}
is the parameter set, and DM = {Z1, Z2, Z3} is the set of decision makers. Let the neutrosophic soft
sets (F(t), E) (t = 1, 2, 3) be the alternative evaluation values with respect to the parameters given by
decision makers as follows.

(F(1), E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(1)(e1) =
{
< u1

0.60,0.35,0.80 >,< u2
0.70,0.50,0.60 >,< u3

0.80,0.40,0.70 >,< u4
0.65,0.50,0.50 >,< u5

0.75,0.30,0.60 >
}

F(1)(e2) =
{
< u1

0.50,0.80,0.20 >,< u2
0.60,0.30,0.70 >,< u3

0.70,0.35,0.80 >,< u4
0.80,0.30,0.70 >,< u5

0.80,0.20,0.55 >
}

F(1)
1(e3) =

{
< u1

0.60,0.50,0.80 >,< u2
0.70,0.50,0.20 >,< u3

0.80,0.60,0.30 >,< u4
0.70,0.40,0.70 >,< u5

0.85,0.30,0.60 >
}

F(1)(e4) =
{
< u1

0.50,0.80,0.60 >,< u2
0.40,0.70,0.30 >,< u3

0.60,0.40,0.70 >,< u4
0.60,0.35,0.80 >,< u5

0.70,0.30,0.40 >
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(F(2), E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(2)(e1) =
{
< u1

0.60,0.35,0.80 >,< u2
0.70,0.50,0.60 >,< u3

0.80,0.40,0.70 >,< u4
0.65,0.50,0.50 >,< u5

0.75,0.30,0.60 >
}

F(2)(e2) =
{
< u1

0.50,0.80,0.20 >,< u2
0.60,0.30,0.70 >,< u3

0.70,0.35,0.80 >,< u4
0.80,0.30,0.70 >,< u5

0.80,0.20,0.55 >
}

F(2)(e3) =
{
< u1

0.60,0.50,0.80 >,< u2
0.70,0.50,0.20 >,< u3

0.80,0.60,0.30 >,< u4
0.70,0.40,0.70 >,< u5

0.85,0.30,0.60 >
}

F(2)(e4) =
{
< u1

0.50,0.80,0.60 >,< u2
0.40,0.70,0.30 >,< u3

0.60,0.40,0.70 >,< u4
0.60,0.35,0.80 >,< u5

0.70,0.30,0.40 >
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(F(3), E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(3)(e1) =
{
< u1

0.60,0.35,0.80 >,< u2
0.70,0.50,0.60 >,< u3

0.80,0.40,0.70 >,< u4
0.65,0.50,0.50 >,< u5

0.75,0.30,0.60 >
}

F(3)(e2) =
{
< u1

0.50,0.80,0.20 >,< u2
0.60,0.30,0.70 >,< u3

0.70,0.35,0.80 >,< u4
0.80,0.30,0.70 >,< u5

0.80,0.20,0.55 >
}

F(3)(e3) =
{
< u1

0.60,0.50,0.80 >,< u2
0.70,0.50,0.20 >,< u3

0.80,0.60,0.30 >,< u4
0.70,0.40,0.70 >,< u5

0.85,0.30,0.60 >
}

F(3)(e4) =
{
< u1

0.50,0.80,0.60 >,< u2
0.40,0.70,0.30 >,< u3

0.60,0.40,0.70 >,< u4
0.60,0.35,0.80 >,< u5

0.70,0.30,0.40 >
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The neutrisophic set D represents the neutrosophic weights of decision makers, and the

neutrisophic soft set (F, Z) stands for neutrosophic subjective weights of parameters. They are
valued as follows:

D = {< Z1, 0.3, 0.5, 0.7 >,< Z2, 0.1, 0.4, 0.6 >,< Z3, 0.6, 0.5, 0.2 >}

(F, Z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
F(Z1) =

{
< e1

0.40,0.60,0.50 >,< e2
0.35,0.70,0.60 >,< e3

0.40,0.60,0.55 >,< e4
0.40,0.60,0.75 >

}
F(Z2) =

{
< e1

0.70,0.45,0.30 >,< e2
0.50,0.80,0.60 >,< e3

0.70,0.55,0.40 >,< e4
0.70,0.40,0.65 >

}
F(Z3) =

{
< e1

0.65,0.70,0.40 >,< e2
0.60,0.35,0.75 >,< e3

0.40,0.65,0.70 >,< e4
0.35,0.60,0.50 >

}
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Step 1: Input the neutrosophic soft sets (F(t), E)(t = 1, 2, 3), (F, Z) and the neutrosophic set D.
Step2: There is no need to normalize the neutrosophic soft sets (F(t), E)(t = 1, 2, 3) of alternatives,

because the parameters adopted in this study are benefit parameters.
Step 3: Compute the determinacy degree vector of decision makers based on Equation (8)

as follows:
ψt = {0.3478, 0.4130, 0.2391}

Step 4: Construct the prospect decision matrix based on Equation (20).

Vij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3878 0.2846 0.3574 0.2274
0.3035 0.3751 0.3571 0.2712
0.4536 0.3834 0.3226 0.3180
0.3345 0.3294 0.3120 0.3776
0.3482 0.4482 0.4055 0.3481

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Step 5: Determine the comprehensive weight vector 
 j = (
1,
2, . . . ,
n) for the parameters as
Equation (18), and the neutrosophic subjective weights are aggregated by the weighted geometric
aggregation rule as Equation (11).


 j = (0.2991, 0.2260, 0.2898, 0.1851)

Step 6: Obtain the comprehensive prospect value Vi by Equation (23).

V1 = 0.3269, V2 = 0.3292, V3 = 0.3746, V4 = 0.3348, V5 = 0.3874.

Step 7: Make a decision by ranking the comprehensive prospect value of the five candidates.

x5 � x3 � x4 � x2 � x1

Therefore, we can see that the optimal candidate is x5. x3, x4 are suboptimal, and x2, x1 are
the worst.

Furthermore, we also utilize the weighted average aggregation rule to compute the subjective
weights of parameters. In addition, the computational procedure is shown as follows.

Step 1–4: Be consistent with the above steps 1–4.
Step 5: Determine the comprehensive weight vector 
 j = (
1,
2, . . . ,
n) for the parameters

as Equation (18), and the neutrosophic subjective weights are aggregated by the weighted average
aggregation rule.


 j = (0.2903, 0.2127, 0.2523, 0.2447).

Step 6: Obtain the comprehensive prospect value Vi by Equation (23).

V1 = 0.3254, V2 = 0.3295, V3 = 0.3744, V4 = 0.3348, V5 = 0.3876.

Step 7: Make a decision by ranking the five candidates.

x5 � x3 � x4 � x2 � x1.

So the best optimal is still x5, the following are x3, x4, and the worst are x2, x1.
Obviously, we can see that the ranking orders obtained by two aggregation rules of the neutrosophic

soft set are the same.

5.2. Comparative Analysis

A comparative analysis with existing methods is performed to justify the feasibility and superiority
of the proposed method. The existing methods include the method proposed by Maji [17] (p. 1),
the three methods carried out by Peng and Liu [25] (p. 2) and the aggregated neutrosophic set
method [37] (p. 11).

In the decision making method outlined by Maji [17] (p. 1), the final ranking is obtained based on
the comparison matrix through briefly comparing with three membership function values. The three
neutrosophic soft decision making methods [25] (p. 2) include the non-linear weighted comprehensive
method to determine parameter comprehensive weights by combining objective weights and subjective
weights. Objective weights are computed by the grey system method, and subjective weights are
directly given determinate values. Then, three neutrosophic soft decision making methods are
constructed based on EDAS, similarity measure, and the level soft set to rank alternatives in practical
problems. Among the three, EDAS and the similarity measure methods obtain the final ranking based
on the accurate calculation of alternative evaluation values. In addition, the level soft set method makes
a decision by roughly comparing the threshold value with alternative evaluation values. In terms of
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the aggregated neutrosophic set method [37] (p. 11), alternatives are aggregated using the arithmetic
average and sorted by TOPSIS.

Note that there are two crucial issues. On one hand, the above methods all make decisions under
a single decision maker. In order to successfully apply them to group decision making, this paper
employs the weighted average algorithm to the score of alternatives to all decision makers, based on the
decision maker determinacy degree of this study. On the other hand, the method in [17] (p. 1) and [37]
(p. 11) does not take parameter weights into consideration. Although the EDAS, similarity measure and
level soft set methods [25] (p. 2) comprehensively consider objective weights and subjective weights,
the subjective weights are directly given determinate values, which cannot reflect the hesitancies of
decision makers under uncertainties. Considering this, the comparative analysis applies the subjective
weights obtained from this study to the three methods in [25] (p. 2).

The final ranking of the stochastic multi-criteria group decision making problem mentioned in
Section 5.1 are presented in Table 2, by utilizing the proposed method and the methods in [17,25,37]
(pp. 1–2, 11). By comparison, the results of the proposed method are consistent with those of most
comparison methods, which prove the effectiveness of the proposed method.

Table 2. A comparative study with some existing methods.

Method The Final Ranking The Optimal Alternative

The proposed method

Weighted geometric neutrosophic rule x5 � x3 � x4 � x2 � x1 x5
Weighted average neutrosophic rule x5 � x3 � x4 � x2 � x1 x5

The determinacy degree of decision makers ψt = {0.3913, 0.2826, 0.3261}
Maji [17] x5 � x4 � x3 � x2 � x1 x5

EDAS [25] x5 � x3 � x4 � x2 � x1 x5
Similarity [25] x5 � x3 � x4 � x2 � x1 x5

Level soft set [25] x5 � x4 � x3 � x2 � x1 x5
TOPSIS [37] x5 � x3 � x4 � x2 � x1 x5

From Table 2, we can find that the final rankings of the proposed algorithm are different from
Maji’s method and the level soft set method. The difference can be attributed to two reasons. One is
that both methods are approximate comparisons of the alternative evaluation values, and the original
evaluation values are not used to the greatest extent. The other is that the threshold value difference of
the level soft set method can directly lead to different final rankings. However, decision makers can
hardly decide which threshold value to use.

Through comparison, the final rankings of the other three methods are consistent with the
proposed method. Among them, EDAS also adopts the aggregation method just as the proposed
method. Different from EDAS, the proposed method considers the psychological expectation of
decision makers in the borrower selection issue. Thus, in complex group decision making problems,
the proposed method can produce more reasonable results than existing methods.

From the above analysis, the main superiorities of the proposed method can be summarized
into three aspects. Firstly, this study originally employs neutrosophic soft sets for handling stochastic
multi-criteria group decision making problems, which cannot be solved in existing methods. Secondly,
the proposed method expresses the weights of subjective weights of parameters by neutrosophic
numbers, which can fully reflect the hesitancies of decision makers. Meanwhile, this study presents the
weights of decision makers by neutrosophic numbers, which can better incorporate stochastic into the
decision making process. Thirdly, the proposed method considers the psychological expectations of
decision makers in the borrower selection process. Therefore, it is able to analyze the decision making
behavior more objectively.
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6. Conclusions

Under uncertain environments, a mass of inconsistent information appears. Neutrosophic soft sets
are powerful tools to address these issues involving inconsistent information. Considering this,
we develop a generalized stochastic multi-criteria group decision making framework under
neutrosophic soft sets, by innovatively integrating the prospect theory and neutrosophic soft sets into
our framework. This paper describes the reference point, the psychological expectations of decision
makers, in the form of neutrosophic sets. Then, in addition, this study demonstrates how to compute
the alternative prospect values as the reference for decision making.

We conduct experiments to test the feasibility and validity of our decision making framework.
The main contributions of this paper are fourfold. Firstly, we construct a new algorithm for the stochastic
multi-criteria group decision making based on neutrosophic soft sets, which can analyze inconsistent
information in decision making effectively. Secondly, the weights of decision makers and parameter
subjective weights are both expressed in the form of neutrosophic numbers. Compared with the way
directly given determinate values in existing methods [25] (p. 2), the proposed method can embody
the stochastic into decision making processes. Thirdly, the research successfully combines the prospect
theory with neutrosophic softs sets to construct the stochastic multi-criteria group decision making
algorithm. Compared with the existing literatures based on the expected utility theory [16,17,25,26]
(pp. 1-2), this research considers the influence of psychological expectations on decision results.
Finally, we explore the conflict degree measure of neutrosophic numbers and two aggregation rules of
neutrosophic soft sets, and further define the measure of the modified conflict degree to accommodate
the multi-criteria group decision making.

The proposed method is not only suitable for credit scoring, but also for decision-making problems
in other fields, especially for decisions with inconsistent information. As a suggestion for future
researches, we shall integrate more advanced decision theories into neutrosophic soft sets and address
stochastic multi-criteria group decision making issues.
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Abstract: We propose a derivative-free iterative method with fifth order of convergence for solving
systems of nonlinear equations. The scheme is composed of three steps, of which the first two steps
are that of third order Traub-Steffensen-type method and the last is derivative-free modification of
Chebyshev’s method. Computational efficiency is examined and comparison between the efficiencies
of presented technique with existing techniques is performed. It is proved that, in general, the new
method is more efficient. Numerical problems, including those resulting from practical problems viz.
integral equations and boundary value problems, are considered to compare the performance of the
proposed method with existing methods. Calculation of computational order of convergence shows
that the order of convergence of the new method is preserved in all the numerical examples, which
is not so in the case of some of the existing higher order methods. Moreover, the numerical results,
including the CPU-time consumed in the execution of program, confirm the accurate and efficient
behavior of the new technique.

Keywords: nonlinear equations; systems; derivative-free methods; fast algorithms;
computational efficiency

1. Introduction

We are concerned with the problem of solving a system of nonlinear equations

F(x) = 0. (1)

This problem can precisely be stated as to find a solution vector α = (α1, α2, ..., αm)T such
that F(α) = 0, where F(x) : D ⊂ Rm −→ Rm is the given nonlinear vector function F(x) =

( f1(x), f2(x), ..., fm(x))T and x = (x1, x2, ..., xm)T . The vector α can be computed as a fixed point
of some function M : D ⊂ Rm → Rm by means of fixed point iteration

x(0) ∈ D,

x(k+1) = M(x(k)), k ≥ 0. (2)

Many applied problems in Science and Engineering are reduced to solve numerically the system
F(x) = 0 of nonlinear equations (see, for example [1–6]). A plethora of iterative methods are developed
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in literature for solving such equations. A classical method is cubically convergent Chebyshev’s method
(see [7])

x(0) ∈ D,

x(k+1) = x(k) −
(

I +
1
2

LF(x(k))
)

F′(x(k))−1F(x(k)), k ≥ 0, (3)

where LF(x(k)) = F′(x(k))−1F′′(x(k))F′(x(k))−1F(xk). This one-point iterative scheme depends
explicitly on the first two derivatives of F. In [7], Ezquerro and Hernández present modification
in Chebyshev’s method that avoids the computation of second derivative F′′ while maintaining
third-order of convergence. It has the following form:

x(0) ∈ D,

y(k) = x(k) − a F′(x(k))−1F(x(k)),

x(k+1) = x(k) − 1
a2 F′(x(k))−1((a2 + a− 1)F(x(k)) + F(y(k))

)
, k ≥ 0. (4)

There is an interest in constructing derivative free iterative processes obtained by considering an
approximation of the first derivative of F from a divided difference of first order. One class of such
methods is called the class of Secant-type methods which is obtained by replacing F′ with the divided
difference operator [x(k−1), x(k) ; F]. Using this operator a family of derivative free methods is given
in [8]. The authors call this family the Chebyshev-Secant-type method and it is defined as

x(−1), x(0) ∈ D,

y(k) = x(k) − a [x(k−1), x(k) ; F]−1F(x(k)),

x(k+1) = x(k) − [x(k−1), x(k) ; F]−1(b F(x(k)) + c F(y(k))
)
, k ≥ 0, (5)

where a, b and c are non-negative parameters.
Another class of derivative free methods is the class of Steffensen-type processes that replaces

F′ with operator [w(x(k)), x(k) ; F], wherein w : Rm → Rm. The work presented in [9] analyzes
Steffensen-type iterative method which is given as

x(0) ∈ D,

y(k) = x(k) − a [w(x(k)), x(k) ; F]−1F(x(k)),

x(k+1) = x(k) − [w(x(k)), x(k) ; F]−1(b F(x(k)) + c F(y(k))
)
, k ≥ 0. (6)

For a = b = c = 1 and w(x(k)) = x(k) + βF(x(k)), β is an arbitrary non-zero constant, this method
possesses third order convergence. In this case y(k) is Traub-Steffensen iteration [6]. For β = 1, y(k)

belongs to Steffensen iteration [10]. Both of these iterations are quadratically convergent.
The two-step third order Traub-Steffensen-type method, i.e., the case of (6) for a = b = c = 1,

can be written as

x(0) ∈ D, w(x(k)) = x(k) + βF(x(k)),

y(k) = M2,1(x(k)),

x(k+1) = M3,1(x(k), y(k)) = y(k) − [w(x(k)), x(k) ; F]−1F(y(k)), k ≥ 0, (7)

where M2,1(x(k)) = x(k) − [w(x(k)), x(k) ; F]−1F(x(k)) is the quadratically convergent Traub-Steffensen
scheme. Here and in the sequel, the symbol Mp,i is used for denoting an i-th iteration function of
convergence order p. It can be observed that the third order scheme (7) is computationally more
efficient than quadratically convergent Traub-Steffensen scheme. The reason is that the convergence
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order is increased from two to three at the cost of only one function evaluation without adding extra
inverse operator. We discuss computational efficiency in later sections.

Researchers have always been trying to develop the iterative method with increasing efficiency
since different methods converge to the solution with different convergence speed. This can be
done either by increasing the convergence order or by decreasing the computational cost or both.
In [11], Ren et al. have derived a fourth order derivative-free method that uses three F, three divided
differences and two matrix inversions per iteration. Zheng et al. [12] have constructed two families
of fourth order derivative-free methods for scalar nonlinear equations, that are extendable to solve
systems of nonlinear equations. First family requires to evaluate three F, three divided differences and
two matrix inversions, whereas the second family needs three F, three divided differences and three
matrix inversions. Grau et al. presented a fourth order derivative-free method in [13] utilizing four F,
two divided differences and two matrix inversions. Sharma and Arora [14] presented a fourth order
derivative-free method that uses the evaluations of three F, three divided differences and one matrix
inversion per each step.

In search of more fast techniques, researchers have also introduced sixth and seventh order
derivative-free methods in [13,15–18]. The sixth order method in [13] proposed by Grau et al. requires
five F, two divided differences and two matrix inverses. Sharma and Arora [17] also developed a
method of at least sixth order which requires evaluation of five functions, two divided difference and
one matrix inversion per iteration. The seventh order method proposed by Sharma and Arora [15]
utilizes four F, five divided differences and two matrix inversions per iteration. The seventh order
methods presented by Wang and Zhang [16] use four F, five divided differences and three matrix
inversions. Ahmad et al. [18] proposed eighth order derivative free method without memory which
uses six functions evaluations, three divided difference and one matrix inversion.

The main goal in this study is to develop a derivative-free method of high computational efficiency,
that means a method with high convergence speed and low computational cost. Consequently,
we present a Traub-Steffensen-type method of fifth order of convergence which requires the evaluations
four F, two divided differences and only one matrix inversion per step. The scheme of the present
contribution is simple and consists of three steps. Of the three steps, the first two are that of cubically
convergent Traub-Steffensen-type scheme (7) whereas the third is derivative-free modification of
Chebyshev’s scheme (3). We show that the proposed method is more efficient than existing methods
of similar nature.

The content of the rest of the paper is summarized as follows. Basic definitions relevant to the
present work are stated in Section 2. In Section 3, the scheme of fifth order method is introduced and
its convergence behavior is studied. In Section 4, the computational efficiency of the new method is
examined and also compared with the existing derivative-free methods. In Section 5, the basins of
attractors are presented to check the stability and convergence of the new method. Numerical tests are
performed in Section 6 to verify the theoretical results as proved in Sections 3 and 4. Section 7 contains
the concluding remarks.

2. Preliminary Results

2.1. Computational Order of Convergence

Let α be a solution of the function F(x) = 0 and x(k−2), x(k−1), x(k) and x(k+1) be the four
consecutive iterations close to α. Then, the computational order of convergence (say, pc) can be
calculated using the formula (see [19])

pc =
log(‖x(k+1) − x(k)‖/‖x(k) − x(k−1)‖)

log(‖x(k) − x(k−1)‖/‖x(k−1) − x(k−2)‖)
. (8)
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2.2. Divided Difference

Divided difference operator for multivariable function F (see [4,5,20]) is a mapping [·, · ; F] :
D× D ⊂ Rm ×Rm → L(Rm) which is defined as

[x, y; F](x− y) = F(x)− F(y), ∀ (x, y) ∈ R
m. (9)

If F is differentiable, we can also define first order divided difference as (see [4,20])

[x + h, x ; F] =
∫ 1

0
F′(x + th) dt, ∀ (x, h) ∈ R

m. (10)

This also implies that
[x, x ; F] = F′(x). (11)

It can be seen that the divided difference operator [x, y ; F] is an m×m matrix and the definitions (9)
and (10) are equivalent (for details see [20]). For computational purpose the following definition
(see [5]), is used

[x, y ; F]ij =
fi(x1, ....., xj, yj+1, ....., ym)− fi(x1, ....., xj−1, yj, ....., ym)

xj − yj
, 1 ≤ i, j ≤ m. (12)

2.3. Computational Efficiency

Computational efficiency of an iterative method for solving F(x) = 0 is calculated by the
efficiency index E = p1/C, (for detail see [21,22]), where p is the order of convergence and C is
the total cost of computation. The cost of computation C is measured in terms of the total number of
function evaluations per iteration and the number of operations (that means products and quotients)
per iteration.

3. The Method and Analysis of Convergence

Let us begin with the following three-step scheme

y(k) = M2,1(x(k)),

z(k) = y(k) − [w(k), x(k) ; F]−1F(y(k)),

x(k+1) = z(k) −
(

I +
1
2

LF(y(k))
)

F′(y(k))−1F(z(k)), (13)

where w(k) = x(k) + βF(x(k)), I is m × m identity matrix and LF(y(k)) =

F′(y(k))−1F′′(y(k))F′(y(k))−1F(yk).
Note that this is a scheme whose first two steps are that of third order Traub-Steffensen-type

method (7) whereas third step is based on Chebyshev’s method (3). The scheme requires first and
second derivatives of F at y(k). To make this a derivative-free method, we describe an approach
as follows:

Consider the Taylor expansion of F(z(k)) about y(k),

F(z(k)) ≈ F(y(k)) + F′(y(k))(z(k) − y(k)) +
1
2

F′′(y(k))(z(k) − y(k))
2
. (14)

Then, it follows that

1
2

F′′(y(k))(z(k) − y(k))
2 ≈ F(z(k))− F(y(k))− F′(y(k))(z(k) − y(k)). (15)
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Using the fact that
F(z(k))− F(y(k)) = [z(k), y(k) ; F](z(k) − y(k)),

(see, for example [4,5]), we can write (15) as

F′′(y(k))(z(k) − y(k)) ≈ 2
(
[z(k), y(k) ; F]− F′(y(k))). (16)

Then, using the second step of (13) in the above equation, it follows that

F′′(y(k))[w(k), x(k) ; F]−1F(y(k)) ≈ −2
(
[z(k), y(k) ; F]− F′(y(k))

)
. (17)

Let us assume F′(y(k)) ≈ [w(k), x(k) ; F], then (17) implies

F′′(y(k))[w(k), x(k) ; F]−1F(y(k)) ≈ −2
(
[z(k), y(k) ; F]− [w(k), x(k) ; F]

)
. (18)

In addition, we have that

LF(y(k)) = F′(y(k))−1F′′(y(k))F′(y(k))−1F(yk)

≈ [w(k), x(k) ; F]−1F′′(y(k))[w(k), x(k) ; F]−1F(yk). (19)

Using (18) in (19), we obtain that

LF(y(k)) ≈ [w(k), x(k) ; F]−1F′′(y(k))[w(k), x(k) ; F]−1F(yk)

≈ −2
(
[w(k), x(k) ; F]−1[z(k), y(k) ; F]− I

)
. (20)

Now, we can write the third-step of (13) in modified form as

x(k+1) = z(k) −
(
2I − [w(k), x(k) ; F]−1[z(k), y(k) ; F]

)
[w(k), x(k) ; F]−1F(z(k)). (21)

Thus, we define the following new method:

y(k) = M2,1(x(k)),

z(k) = M3,1(x(k), y(k)),

x(k+1) = z(k) − H(x(k))[w(k), x(k) ; F]−1F(z(k)), (22)

wherein H(x(k)) = 2I − [w(k), x(k) ; F]−1[z(k), y(k) ; F].
Since the scheme (22) is composed of Traub-Steffensen like steps, we call it the

Traub-Steffensen-like method.
In order to explore the convergence properties of Traub-Steffensen-like method, we recall some

important results from the theory of iteration functions. First, we state the following well-known result
(see [3,23]):

Lemma 1. Assume that M : D ⊂ Rm → Rm has a fixed point α ∈ int(D) and M(x) is Fréchet differentiable
on α. If

ρ(M′(α)) = σ < 1, (23)

then α is a point of attraction for the iteration x(k+1) = M(x(k)), where ρ is a spectral radius of M′(α).

Next, we state a result which has been proven in [24] by Madhu et al. and that shows α is a point
of attraction for a general iteration function of the form M(x) = P(x)−Q(x)R(x).
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Lemma 2. Let F : D ⊂ Rm → Rm be sufficiently Fréchet differentiable at each point of an open convex set
D of α ∈ D, which is a solution of the nonlinear system F(x) = 0. Suppose that P, Q, R : D ⊂ Rm → Rm

are sufficiently Fréchet differentiable functions (depending on F) at each point in the set D with the properties
P(α) = α, Q(α) �= 0, R(α) = 0. Then, there exists a ball

S = S̄(α, ε) = {‖α− x‖ ≤ ε} ⊂ D, ε > 0,

on which the mapping
M : S → R

m, M(x) = P(x)−Q(x)R(x), ∀ x ∈ S

is well defined. Moreover, M(x) is Fréchet differentiable at α, thus

M′(α) = P′(α)−Q(α)R′(α).

Let us also recall the definition (10) of divided difference operator. Then, expanding F′(x + th)
in (10) by Taylor series at the point x and thereafter integrating, we have that

[x + h, x ; F] =
∫ 1

0
F′(x + th) dt = F′(x) +

1
2

F′′(x)h +
1
6

F′′′(x)h2 +
1

24
F(iv)(x)h3 + O(h4), (24)

where hi = (h, h,
i· · · ·, h), h ∈ Rm. Let e(k) = x(k) − α. Assuming that Γ = F′(α)−1 exists,

then expanding F(x(k)) and its first three derivatives in a neighborhood of α by Taylor’s series,
we have that

F(x(k)) = F′(α)
(
e(k) + A2(e(k))2 + A3(e(k))3 + A4(e(k))4 + A5(e(k))5 + O((e(k))6)

)
, (25)

F′(x(k)) = F′(α)
(

I + 2A2e(k) + 3A3(e(k))2 + 4A4(e(k))3 + 5A5(e(k))4 + O((e(k))5)
)
, (26)

F′′(x(k)) = F′(α)
(
2A2 + 6A3e(k) + 12A4(e(k))2 + 20A5(e(k))3 + O((e(k))4)

)
(27)

and
F′′′(x(k)) = F′(α)

(
6A3 + 24A4e(k) + 60A5(e(k))2 + O((e(k))3)

)
, (28)

where Ai =
1
i! ΓF(i)(α) ∈ Li(R

m,Rm) and (e(k))i = (e(k), e(k),
i−times· · · · , e(k)), e(k) ∈ Rm.

We are in a situation to analyze the behavior of Traub-Steffensen-like method. Thus, the following
theorem is proved:

Theorem 1. Let F : D ⊂ Rm → Rm be sufficiently Fréchet differentiable at each point of an open convex set
D of α ∈ Rm, which is a solution of F(x) = 0. Assume that x ∈ S = S̄(α, ε) and F′(x) is continuous and
nonsingular at α, and x(0) close to α. Then, α is a point of attraction of the sequence {x(k)} generated by the
Traub-Steffensen-like method (22). Furthermore, the sequence so developed converges locally to α with order at
least 5.

Proof. First we show that α is a point of attraction of Traub-Steffensen-like iteration. In this case,
we have that

P(x) = z(x), Q(x) = H(x)[w, x ; F]−1, R(x) = F(z(x)).

Now, since F(α) = 0, [α, α ; F] = F′(α) �= O, we have

y(α) = α− [α, α ; F]−1F(α) = α− F′(α)−1F(α) = α,

z(α) = α− [α, α ; F]−1F(α)− [α, α ; F]−1F(α) = α− F′(α)−1F(α)− F′(α)−1F(α) = α,

H(α) = 2I − [α, α ; F]−1[α, α ; F] = I,

P(α) = z(α), P′(α) = z′(α),
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Q(α) = H(α)[α, α ; F]−1 = I [α, α ; F]−1 = [α, α ; F]−1 = F′(α)−1 �= O,

R(α) = F(z(α)) = F(α) = 0,

R′(α) = F′(z(α))z′(α) = F′(α)z′(α),

M′(α) = P′(α)−Q(α)R′(α) = z′(α)− F′(α)−1F′(α)z′(α) = O,

so that ρ(M′(α)) = 0 < 1 and by Lemma 1, α is a point of attraction of (22).
Let e(k)w = w(k) − α = x(k) + βF(x(k))− α = e(k) + βF(x(k)). Then using (25), it follows that

e(k)w = (I + βF′(α))e(k) + βF′(α)
(
(A2(e(k))2 + A3(e(k))3) + O((e(k))4). (29)

Setting x + h = w(k), x = x(k), h = e(k)w − e(k) in Equation (24) and then using (26)–(29),
we can write

[w(k), x(k) ; F] = F′(α)
(

I + X1 A2e(k) + (λA2
2 + X2 A3)(e(k))2 + X1(2λA2 A3

+ X3 A4)(e(k))3 + O((e(k))4)
)
, (30)

where λ = βF′(α), X1 = λ + 2, X2 = λ2 + 3λ + 3 and X3 = λ2 + 2λ + 2.
Expansion of the inverse of preceding divided difference operator is given as

[w(k), x(k) ; F]−1 =
(

I − X1 A2(e(k)) + ((1 + X2)A2
2 − X2 A3)(e(k))2 − X1((2 + X3)A3

2

− 2(1 + X3)A2 A3 + X3 A4)(e(k))3 + O((e(k))3)
)
Γ. (31)

By using (25) and (31) in the first step of method (22), we get

e(k)y = y(k) − α = (−1 + X1)A2(e(k))2 − (X3 A2
2 + (1− X2)A3)(e(k))3 + O((e(k))4). (32)

Taylor expansion of F(yk) about α yields,

F(y(k)) = F′(α)
(
e(k)y + A2(e

(k)
y )2 + O((e(k)y )3)

)
. (33)

From the second step of (22), on using (31) and (33), it follows that

e(k)z = z(k) − α

= X1 A2(e(k))e
(k)
y − A2(e

(k)
y )2 − ((1 + X2)A2

2 − X2 A3)(e(k))2e(k)y + O((e(k))5). (34)

By Taylor expansion of F(zk) about α,

F(z(k)) = F′(α)
(
e(k)z + A2(e

(k)
z )2 + O((e(k)z )3)

)
. (35)

Equation (24), for x + h = z(k), x = y(k) and h = e(k)z − e(k)y , yields

[z(k), y(k) ; F] =F′(α)
(

I + A2(e
(k)
z + e(k)y ) + O((e(k))3)

)
=F′(α)

(
I + (λ + 1)A2

2(e
(k))2 + O((e(k))3)

)
. (36)

From (31) and (36), we have

H(x(k)) = 2I − [w(k), x(k) ; F]−1[z(k), y(k) ; F]

= I + X1 A2e(k) +
(
X2 A3 − (X1 + X2)A2

2
)
(e(k))2 + O((e(k))3). (37)
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Equations (31) and (37) yield

H(x(k))[w(k), x(k) ; F]−1 =
(

I − (λ2 + 5λ + 5)A2
2(e

(k))2 + O((e(k))3)
)
Γ. (38)

Applying Equations (34), (35) and (38) in the last step of method (22) and then simplifying, we get
the error equation

e(k+1) = (λ + 1)(λ + 2)(λ2 + 5λ + 5)A4
2(e

(k))5 + O((e(k))6). (39)

This completes the proof of Theorem 1.

Thus, the Traub-Steffensen-like method (22) defines a one-parameter (β) family of derivative-free
fifth order methods. Now onwards we denote it by M5,1. In terms of computational cost M5,1 utilizes
four functions, two divided difference and one matrix inversion per each step. In the next section we
will compare the computational efficiency of the new method with the existing derivative-free methods.

4. Computational Efficiency

In order to find the computational efficiency we will use the definition given in Section 2.3.
The various evaluations and arithmetic operations that contribute towards the cost of computation
are described as follows. For the computation of F in any iterative function we evaluate m scalar
functions fi , (1 ≤ i ≤ m) and when computing a divided difference [x, y ; F] (see, Section 2.2) we
evaluate m(m− 1) scalar functions, wherein F(x) and F(y) are evaluated separately. Furthermore, one
has to add m2 divisions from any divided difference. For the computation of inverse linear operator,
a linear system can be solved that requires m(m− 1)(2m− 1)/6 products and m(m− 1)/2 divisions
in the LU decomposition process, and m(m− 1) products and m divisions in the resolution of two
triangular linear systems. Moreover, we add m products for the multiplication of a vector by a scalar
and m2 products for multiplying a matrix by a vector or of a matrix by a scalar.

The comparison of computational efficiency of the present method M5,1 is drawn with second
order method M2,1; third order method M3,1; fourth order methods by Ren et al. [11], Grau et al. [13]
and Sharma-Arora [14]; fifth order method by Kumar et al. [25]; sixth order method by Grau et al. [13];
seventh order methods by Sharma-Arora [15] and Wang-Zhang [16]. These methods are expressed
as follows:

Fourth order method by Ren et al. (M4,1):

y(k) = x(k) − [u(k), x(k) ; F]−1F(x(k)),

x(k+1) = y(k) −
(
[y(k), x(k) ; F] + [y(k), u(k) ; F]− [u(k), x(k) ; F]

)−1F(y(k)),

where u(k) = x(k) + F(x(k)).

Fourth order method by Grau et al. (M4,2):

y(k) = x(k) − [u(k), v(k) ; F]−1F(x(k))

x(k+1) = y(k) −
(
2[y(k), x(k) ; F]− [u(k), v(k) ; F]

)−1F(y(k)),

where u = x + F(x) and v = x− F(x).

Sharma-Arora fourth order method (M4,3):

y(k) = x(k) − [w(k), x(k) ; F]−1F(x(k))

x(k+1) = y(k) −
(
3I − [w(k), x(k) ; F]−1([y(k), x(k) ; F] + [y(k), w(k) ; F])

)
× [w(k), x(k) ; F]−1F(y(k)),
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where w(k) = x(k) + βF(x(k)), β is a non-zero constant.

Fifth order method by Kumar et al. (M5,2):

y(k) = x(k) − [w(k), x(k) ; F]−1F(x(k))

z(k) = y(k) − [w(k), x(k) ; F]−1F(y(k))

x(k+1) = z(k) − [x(k), y(k) ; F]−1[w(k), x(k) ; F][w(k), y(k) ; F]−1F(z(k)),

where w(k) = x(k) + F(x(k)).

Sixth order method by Grau et al. (M6,1):

y(k) = x(k) − [u(k), v(k) ; F]−1F(x(k))

z(k) = y(k) −
(
2[y(k), x(k) ; F]− [u(k), v(k) ; F]

)−1F(y(k))

x(k+1) = z(k) −
(
2[y(k), x(k) ; F]− [u(k), v(k) ; F]

)−1F(z(k)).

Wang-Zhang seventh order method (M7,1):

y(k) = x(k) − [u(k), x(k) ; F]−1F(x(k)),

z(k) = y(k) −
(
[y(k), x(k) ; F] + [y(k), u(k) ; F]− [u(k), x(k) ; F]

)−1F(y(k))

x(k+1) = z(k) −
(
[z(k), x(k) ; F] + [z(k), y(k) ; F]− [y(k), x(k) ; F]

)−1F(z(k)),

where u(k) = x(k) + F(x(k)).

Sharma-Arora seventh order method (M7,2):

y(k) = x(k) − [w(k), x(k) ; F]−1F(x(k))

z(k) = y(k) −
(
3I − [w(k), x(k) ; F]−1([y(k), x(k) ; F] + [y(k), w(k) ; F])

)
× [w(k), x(k) ; F]−1F(y(k))

x(k+1) = z(k) − [z(k), y(k) ; F]−1([w(k), x(k) ; F] + [y(k), x(k) ; F]− [z(k), x(k) ; F]
)

× [w(k), x(k) ; F]−1F(z(k)).

Let us denote efficiency indices of the methods Mp,i by Ep,i and their computational costs by Cp,i.
Then, using the definition of the Section 2.3 taking into account the above considerations of evaluations
and operations, we have that

C2,1 =
1
3

m3 + 3m2 +
2
3

m and E2,1 = 21/C2,1 . (40)

C3,1 =
1
3

m3 + 4m2 +
5
3

m and E3,1 = 31/C3,1 . (41)

C4,1 =
2
3

m3 + 8m2 − 2
3

m and E4,1 = 41/C4,1 . (42)

C4,2 =
2
3

m3 + 7m2 +
4
3

m and E4,2 = 41/C4,2 . (43)

C4,3 =
1
3

m3 + 10m2 +
2
3

m and E4,3 = 41/C4,3 . (44)

C5,1 =
1
3

m3 + 9m2 +
8
3

m and E5,1 = 51/C5,1 . (45)

C5,2 = m3 + 11m2 and E5,2 = 51/C5,2 . (46)

C6,1 =
2
3

m3 + 8m2 +
7
3

m and E6,1 = 61/C6,1 . (47)
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C7,1 = m3 + 13m2 − 2m and E7,1 = 71/C7,1 . (48)

C7,2 =
2
3

m3 + 17m2 − 2
3

m and E7,2 = 71/C7,2 . (49)

To compare the efficiency of considered iterative methods, say Mp,i against Mq,j, we consider
the ratio

Rp,i;q,j =
log Ep,i

log Eq,j
=

Cq,j log(p)
Cp,i log(q)

. (50)

It is clear that when Rp,i;q,j > 1, the iterative method Mp,i is more efficient than Mq,j.

M3,1 versus M2,1 case:

For this case the ratio (50) is given by

R3,1;2,1 =

( 1
3 m3 + 3m2 + 2

3 m
)

log(3)( 1
3 m3 + 4m2 + 5

3 m
)

log(2)
.

It can be easily shown that R3,1;2,1 > 1 for m ≥ 2. This implies that E3,1 > E2,1 for m ≥ 2. Thus,
M3,1 is more efficient than M2,1 as we have stated in the introduction section.

M5,1 versus M2,1 case:

The ratio
(
50
)

is given by

R5,1;2,1 =

( 1
3 m3 + 3m2 + 2

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(2)
.

It is easy to prove that R5,1;2,1 > 1 for m ≥ 6. Thus, we conclude that E5,1 > E2,1 for m ≥ 6.

M5,1 versus M3,1 case:

The ratio
(
50
)

is given by

R5,1;3,1 =

( 1
3 m3 + 4m2 + 5

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(3)
.

It can be checked that R5,1;3,1 > 1 for m ≥ 21. Thus, we have that E5,1 > E3,1 for m ≥ 21.

M5,1 versus M4,1 case:

In this case the ratio

R5,1;4,1 =

( 2
3 m3 + 8m2 − 2

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(4)
> 1,

for m ≥ 3, which implies that E5,1 > E4,1 for m ≥ 3.

M5,1 versus M4,2 case:

Here the ratio

R5,1;4,2 =

( 2
3 m3 + 7m2 + 4

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(4)
> 1,

for m ≥ 3 which implies that E5,1 > E4,2 for m ≥ 3.

M5,1 versus M4,3 case:

Here the ratio

R5,1;4,3 =

( 1
3 m3 + 10m2 + 2

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(4)
> 1,
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for m ≥ 2 which implies that E5,1 > E4,3 for m ≥ 2.

M5,1 versus M5,2 case:

In this case the ratio

R5,1;5,2 =
m3 + 11m2

1
3 m3 + 9m2 + 8

3 m
> 1,

for m ≥ 2 which means E5,1 > E5,2 for m ≥ 2.

M5,1 versus M6,1 case:

Here the ratio

R5,1;6,1 =

( 2
3 m3 + 8m2 + 7

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(6)
> 1,

for m ≥ 8 which means E5,1 > E6,1 for m ≥ 8.

M5,1 versus M7,1 case:

Here also the ratio

R5,1;7,1 =

(
m3 + 13m2 − 2m

)
log(5)( 1

3 m3 + 9m2 + 8
3 m
)

log(7)
> 1,

for m ≥ 2 which means E5,1 > E7,1 for m ≥ 2.

M5,1 versus M7,2 case:

Here also the ratio

R5,1;7,2 =

( 2
3 m3 + 17m2 − 2

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(7)
> 1,

for m ≥ 2 which means E5,1 > E7,2 for m ≥ 2.

The above results are summarized in the following theorem:

Theorem 2. We have that

(a) E5,1 > E2,1 f or m ≥ 6.
(b) E5,1 > E3,1 f or m ≥ 21.
(c)

{
E5,1 > E4,1 E5,1 > E4,2

}
f or m ≥ 3.

(d)
{

E3,1 > E2,1, E5,1 > E4,3, E5,1 > E5,2, E5,1 > E7,1, E5,1 > E7,2
}

f or m ≥ 2.
(e) E5,1 > E6,1 f or m ≥ 8.

5. Complex Dynamics of Methods

Our aim is to analyze the complex dynamics of the new method based on graphical tool ‘basins
of attraction’ of the zeros of polynomial P(z) in complex plane. Visual display of the basins gives
important information about the stability and convergence of iterative methods. This idea was
introduced initially by Vrscay and Gilbert [26]. In recent times, many authors have used this concept
in their work, see, for example [27,28] and references therein. We consider the method (22) to analyze
the basins of attraction.

To start with we take the initial point z0 in a rectangular region R ∈ C that contains all the zeros of
a polynomial P(z). The iterative method, when starting from point z0 in a rectangle, either converges
to the zero P(z) or eventually diverges. Stopping condition for convergence is considered as 10−3 to
a maximum of 25 iterations. If the required tolerance is not achieved in 25 iterations, we conclude
that the iterative scheme starting at point z0 does not converge to any root. The strategy adopted is as
follows: A color is allocated to each initial point z0 in the basin of attraction of a zero. If the iteration
initiating at z0 converges, then it represents the attraction basin with that assigned color to it, otherwise
in the failing (divergence) situation in 25 iterations the iteration represents the black color.
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We analyze the basins of attraction of the new method (for the choices β = 10−2, 10−4, 10−8) on
following three polynomials:

Example 1. In the first case, consider the polynomial P1(z) = z2 − 1 which has zeros {±1}. A grid of
400× 400 points in a rectangle D ∈ C of size [−2, 2]× [−2, 2] is used for drawing the graphics. We assign
the color red to each initial point in the basin of attraction of zero ‘1’ and the color green to the points in the
basin of attraction of zero ‘−1’. The graphics are shown in Figure 1 corresponding to β = 10−2, 10−4, 10−8.
Observing the behavior of the basins of the new method, we conclude that the convergence domain becoming
wider as parameter β assumes smaller values since black zones (divergent points) are getting smaller in size.

� �

�

β = 10−2
� �

�

β = 10−4
� �

�

�

β = 10−8

Figure 1. Basins of attraction for polynomial P1(z).

Example 2. Let us consider the next polynomial as P2(z) = z3 − z having zeros {0,±1}. To draw the
dynamical view, we select a rectangle D = [−2, 2]× [−2, 2] ∈ C containing 400× 400 grid points. Then,
allocate the colors green, blue and red to each point in the basin of attraction of 0, 1 and −1, respectively. Basins
for this example are exhibited in Figure 2 corresponding to parameter choices β = 10−2, 10−4, 10−8 in the
proposed methods. In addition, observe that the basins are becoming larger and larger with the smaller values
of β.

� �

�

�

β = 10−2
� �

�

�

β = 10−4
� �

�

�

β = 10−8

Figure 2. Basins of attraction for polynomial P2(z).

Example 3. Lastly, we consider the polynomial as P3(z) = z5 + 2z − 1 having zeros {−0.945068 ±
0.854518i, 0.701874 ± 0.879697i, 0.486389}. To draw the dynamical view, we select a rectangle D =

[−2, 2] × [−2, 2] ∈ C containing 400 × 400 grid points. Then, allocate the colors green, blue, red,
yellow and pink to each point in the basin of attraction of 0.701874 + 0.879697i, −0.945068− 0.854518i,
0.701874− 0.879697i, 0.486389 and−0.945068+ 0.854518i, respectively. Basins for this example are exhibited
in Figure 3 corresponding to parameter choices β = 10−2, 10−4, 10−8 in the proposed methods. We observe
that the basins are getting larger with the smaller values of β.
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� �
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β = 10−2
� �
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β = 10−4
� �

�

�

β = 10−8

Figure 3. Basins of attraction for polynomial P3(z).

6. Numerical Tests

In this section, some numerical tests on different problems are performed to demonstrate the
convergence behavior and computational efficiency of the method M5,1. A comparison between the
performance of M5,1 with the existing methods M2,1, M3,1, M4,j (j = 1, 2, 3), M5,2, M6,1, M7,1 and M7,2

is also drawn. The programs are performed in the processor with specifications Intel (R) Core (TM)
i5-4210U CPU @ 1.70 GHz 2.40 GHz (64-bit Operating System) Microsoft Windows 10 Professional
and are complied by Mathematica 10.0 using multiple-precision arithmetic. We record the number of
iterations (k) required to converge to the solution such that the stopping condition

||x(k+1) − x(k)||+ ||F(x(k))|| < 10−300

is satisfied. In order to verify the theoretical order of convergence, the computational order of
convergence (pc) is obtained by using the Formula (8). In the comparison of performance of considered
methods, we also include the real CPU time elapsed during the execution of program computed by
the Mathematica command “TimeUsed[ ]”.

The methods M2,1, M3,1, M4,3, M5,1 and M7,2 are tested by using the value 0.01 for the parameter
β. In numerical experiments we consider the following five problems:

Example 4. Let us consider the system of two equations (selected from [29]):{
x2 + sin x− ey = 0,
3x− cos x− y = 0.

The initial guess assumed is x(0) = {−1,−2}T for obtaining the solution

α = {−0.90743021707369569 . . . ,−3.3380632251862363 . . .}T .

Example 5. Now considering the mixed Hammerstein integral equation (see [4]):

x(s) = 1 +
1
5

∫ 1

0
G(s, t)x(t)3dt,

wherein x ∈ C[0, 1]; s, t ∈ [0, 1] and the kernel G is

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.
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The above equation is transformed to a finite-dimensional problem by using the Gauss-Legendre
quadrature formula ∫ 1

0
f (t)dt ≈

m

∑
j=1

�j f (tj),

where the weights �j and abscissas tj are obtained for m = 8 by Gauss-Legendre quadrature formula. Then,
setting x(ti) = xi, i = 1, 2, ....., 8, we obtain the following system of nonlinear equations

5 xi − 5−
8

∑
j=1

aijx3
j = 0,

where

aij =

⎧⎪⎨⎪⎩
�jtj(1− ti) if j ≤ i,

i = 1, 2, .....8.
�jti(1− tj) if i < j,

wherein the abscissas tj and the weights �j are known and produced in Table 1 for m = 8. The initial
approximation assumed is

x(0) = {−1, −1, −1, −1, −1, −1, −1, −1}T

and the solution of this problem is:

α = {1.002096245031..., 1.009900316187..., 1.019726960993..., 1.026435743030...,

1.026435743030..., 1.019726960993..., 1.009900316187..., 1.002096245031...}T .

Table 1. Weights and abscissas of Gauss-Legendre quadrature formula for m = 8.

j tj �j

1 0.01985507175123188415821957... 0.05061426814518812957626567...
2 0.10166676129318663020422303... 0.11119051722668723527217800...
3 0.23723379504183550709113047... 0.15685332293894364366898110...
4 0.40828267875217509753026193... 0.18134189168918099148257522...
5 0.59171732124782490246973807... 0.18134189168918099148257522...
6 0.76276620495816449290886952... 0.15685332293894364366898110...
7 0.89833323870681336979577696... 0.11119051722668723527217800...
8 0.98014492824876811584178043... 0.05061426814518812957626567...

Example 6. Consider the system of 20 equations (see [29]):

tan−1 (xi) + 1− 2
20

∑
j=1,j �=i

x2
j = 0, 1 ≤ i ≤ 20,

This problem has the following two solutions:

α1 = {0.1757683176158 . . . , 0.1757683176158 . . . , · · · · ·, 0.1757683176158 . . .}T .

and
α2 = {−0.14968543422 . . . ,−0.14968543422, . . . , · · · · ·,−0.14968543422 . . .}T .

We intend to find the first solution and so choose the initial value: x(0) = {0.5, 0.5, 0.5, · · · · ·, 0.5}T.
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Example 7. Consider the boundary value problem:

y′′ + y3 = 0, y(0) = 0, y(1) = 1.

Assuming the following partitioning of the interval [0, 1]:
u0 = 0 < u1 < u2 < · · · < un−1 < un = 1, uj+1 = uj + h, h = 1/n.

Setting y0 = y(u0) = 0, y1 = y(u1), · · · , yn−1 = y(un−1), yn = y(un) = 1. If we discretize the
problem by using the finite difference approximation for second derivative

y′′m =
ym−1 − 2ym + ym+1

h2 , m = 1, 2, 3, . . . , n− 1,

we obtain a system of n− 1 equations in n− 1 variables:

ym−1 − 2ym + ym+1 + h2y3
m = 0, m = 1, 2, 3, . . . , n− 1.

In particular, let us solve this problem for n = 51, that is for m = 50 by choosing y(0) =

{−1,−1,−1, · · · ,−1}T as the initial value. The solution vector α of this problem is

{0.02071138910 . . . , 0.04142277479 . . . , 0.06213413315 . . . , 0.08284539929 . . . , 0.10355644682 . . . ,
0.12426706739 . . . , 0.14497695018 . . . , 0.16568566142 . . . , 0.18639262397 . . . , 0.20709709683 . . . ,
0.22779815476 . . . , 0.24849466794 . . . , 0.26918528167 . . . , 0.28986839623 . . . , 0.31054214677 . . . ,
0.33120438344 . . . , 0.35185265167 . . . , 0.37248417270 . . . , 0.39309582441 . . . , 0.41368412246 . . . ,
0.43424520189 . . . , 0.45477479913 . . . , 0.47526823468 . . . , 0.49572039629 . . . , 0.51612572294 . . . ,
0.53647818972 . . . , 0.55677129350 . . . , 0.57699803975 . . . , 0.59715093054 . . . , 0.61722195374 . . . ,
0.63720257375 . . . , 0.65708372374 . . . , 0.67685579959 . . . , 0.69650865572 . . . , 0.71603160287 . . . ,
0.73541340802 . . . , 0.75464229671 . . . , 0.77370595761 . . . , 0.79259154985 . . . , 0.81128571300 . . . ,
0.82977457984 . . . , 0.84804379222 . . . , 0.86607851992 . . . , 0.88386348269 . . . , 0.90138297559 . . . ,

0.91862089765 . . . , 0.93556078378 . . . , 0.95218584022 . . . , 0.96847898326 . . . , 0.98442288125 . . .}T .

Example 8. Consider the following Burger’s equation (see [30]):

∂2 f
∂u2 + f

∂ f
∂u
− ∂ f

∂t
+ g(u, t) = 0, (u, t) ∈ [0, 1]2,

where g(u, t) = −10e−2t[et(2 − u + u2) + 10u(1 − 3u + 2u2)] and function f = f (u, t) satisfies the
boundary conditions

f (0, t) = f (1, t) = 0, f (u, 0) = 10u(u− 1) and f (u, 1) = 10u(u− 1)/e.

Assuming the following partitioning of the domain [0, 1]2:

0 =u0 < u1 < u2 < ......... < un−1 < un = 1, uk+1 = uk + h,

0 =t0 < t1 < t2 < ......... < tn−1 < tn = 1, tl+1 = tl + h, h = 1/n.

Let us define fk,l = f (uk, tl) and gk,l = g(uk, tl) for k, l = 0, 1, 2, .......n. Then the boundary conditions
would be f0,l = f (u0, tl) = 0, fn,l = f (un, tl) = 0, fk,0 = f (uk, t0) = 10uk(uk − 1) and fk,n = f (uk, tn) =

10uk(uk − 1)/e. If we discretize Burger’s equation by using the numerical formulas for the partial derivatives(
∂ f
∂u

)
i,j
=

fi+1,j − fi−1,j

2h
,
(

∂ f
∂t

)
i,j
=

fi,j+1 − fi,j−1

2h
,
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(
∂2 f
∂u2

)
i,j
=

fi+1,j − 2 fi,j + fi−1,j

h2 , i, j = 1, 2, ......n− 1,

then we obtain the following system of (n− 1)2 nonlinear equations in (n− 1)2 variables:

fi−1,j(2− h fi,j) + h( fi,j−1 − fi,j+1)− fi,j(4− h fi+1,j) + 2 fi+1,j + 2h2gi,j = 0, (51)

where i, j = 1, 2......n− 1. In particular, we solve this nonlinear system for n = 11 so that m = 100 by selecting
fi,j = 1 for i, j = 1, 2......10 as the initial value. The solution of this system of nonlinear equations is given in
Table 2.

Table 2. The solution of system (51) with the unknowns fi,j for i, j = 1, 2, ......10.

fi,1 fi,2 fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9 fi,10

−0.7546 . . . −0.6892 . . . −0.6290 . . . −0.5750 . . . −0.5236 . . . −0.4817 . . . −0.4306 . . . −0.4214 . . . −0.2583 . . . −0.3068 . . .
−1.3583 . . . −1.2405 . . . −1.1322 . . . −1.0351 . . . −0.9422 . . . −0.8675 . . . −0.7741 . . . −0.7598 . . . −0.4358 . . . −0.5505 . . .
−1.8111 . . . −1.6541 . . . −1.5096 . . . −1.3803 . . . −1.2559 . . . −1.1573 . . . −1.0309 . . . −1.0110 . . . −0.6951 . . . −0.7356 . . .
−2.1130 . . . −1.9298 . . . −1.7611 . . . −1.6106 . . . −1.4649 . . . −1.3511 . . . −1.2014 . . . −1.1768 . . . −0.8755 . . . −0.8606 . . .
−2.2639 . . . −2.0678 . . . −1.8869 . . . −1.7258 . . . −1.5690 . . . −1.4485 . . . −1.2860 . . . −1.2582 . . . −0.9783 . . . −0.9244 . . .
−2.2639 . . . −2.0678 . . . −1.8868 . . . −1.7261 . . . −1.5686 . . . −1.4494 . . . −1.2850 . . . −1.2558 . . . −1.0040 . . . −0.9268 . . .
−2.1129 . . . −1.9300 . . . −1.7609 . . . −1.6112 . . . −1.4637 . . . −1.3534 . . . −1.1987 . . . −1.1700 . . . −0.9534 . . . −0.8672 . . .
−1.8111 . . . −1.6544 . . . −1.5093 . . . −1.3812 . . . −1.2544 . . . −1.1604 . . . −1.0272 . . . −1.0010 . . . −0.8270 . . . −0.7454 . . .
−1.3583 . . . −1.2408 . . . −1.1320 . . . −1.0359 . . . −0.9407 . . . −0.8704 . . . −0.7706 . . . −0.7492 . . . −0.6255 . . . −0.5609 . . .
−0.7546 . . . −0.6893 . . . −0.6289 . . . −0.5755 . . . −0.5227 . . . −0.4834 . . . −0.4285 . . . −0.4152 . . . −0.3496 . . . −0.3128 . . .

In Tables 3–7 we present the numerical results produced for the methods
M2,1, M3,1, M4,j (j = 1, 2, 3), M5,1, M5,2, M6,1, M7,1 and M7,2. Displayed in each table are the
errors ||x(k+1) − x(k)|| of first three consecutive approximations to corresponding solution of
Examples 4–8, number of iterations (k) needed to converge to the required solution, computational
order of convergence pc, computational cost Cp,i, computational efficiency Ep,i and elapsed CPU-time
(e-time) measured in seconds. In each table the meaning of A(−h) is A× 10−h. Numerical values
of computational cost and efficiency are obtained according to the corresponding expressions given
by (40)–(49). The e-time is calculated by taking the average of 50 performances of the program, where
we use ||x(k+1) − x(k)||+ ||F(x(k))|| < 10−300 as the stopping condition in a single performance of
the program.

Table 3. Comparison of performance of methods for Example 4.

Methods ||x(2) − x(1)|| ||x(3) − x(2)|| ||x(4) − x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 9.94(−2) 4.45(−3) 7.14(−6) 9 2.000 16 1.04427 0.2887
M3,1(β = 0.01) 2.93(−2) 8.14(−6) 1.42(−16) 6 3.000 22 1.05120 0.2630
M4,1 3.73(−4) 1.71(−16) 6.94(−66) 5 4.000 36 1.03926 0.3234
M4,2 6.17(−2) 7.75(−7) 5.63(−27) 5 4.000 36 1.03926 0.3165
M4,3(β = 0.01) 5.35(−3) 2.42(−10) 7.56(−40) 5 4.000 44 1.03201 0.3362
M5,1(β = 0.01) 1.76(−3) 4.72(−15) 4.11(−73) 4 5.000 44 1.03726 0.3297
M5,2 1.89(−3) 2.96(−15) 2.04(−74) 4 5.000 52 1.03143 0.3972
M6,1 2.97(−2) 8.66(−12) 1.81(−69) 4 6.000 42 1.04358 0.3120
M7,1 2.23(−7) 4.55(−52) 0.000 3 7.000 56 1.03536 0.3468
M7,2(β = 0.01) 7.93(−5) 4.14(−31) 3.40(−215) 3 7.000 72 1.02740 0.4125
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Table 4. Comparison of performance of methods for Example 5.

Methods ||x(2) − x(1)|| ||x(3) − x(2)|| ||x(4) − x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 0.202 1.44(−3) 7.18(−8) 9 2.000 368 1.001885 0.3437
M3,1(β = 0.01) 1.73(−3) 1.24(−11) 4.56(−36) 5 3.000 440 1.002500 0.2252
M4,1 0.276 6.19(−6) 1.36(−24) 5 4.000 848 1.001636 0.3532
M4,2 9.94(−2) 4.12(−8) 1.23(−33) 5 4.000 800 1.001734 0.3562
M4,3(β = 0.01) 1.86(−2) 4.72(−11) 2.06(−45) 5 4.000 816 1.001700 0.2749
M5,1(β = 0.01) 1.20(−5) 3.49(−30) 7.35(−153) 4 5.000 768 1.002098 0.2312
M5,2 4.50(−2) 1.98(−11) 3.74(−58) 5 5.000 1216 1.001324 0.4234
M6,1 1.39(−2) 3.84(−17) 1.86(−104) 4 6.000 872 1.002057 0.3063
M7,1 1.12(−2) 7.70(−21) 6.01(−148) 4 7.000 1328 1.001467 0.3862
M7,2(β = 0.01) 8.66(−5) 4.24(−36) 3.01(−255) 4 7.000 1424 1.001367 0.3625

Table 5. Comparison of performance of methods for Example 6.

Methods ||x(2) − x(1)|| ||x(3) − x(2)|| ||x(4) − x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 0.336 5.87(−2) 2.05(−3) 10 2.000 3880 1.0001787 4.2530
M3,1(β = 0.01) 0.209 4.29(−3) 6.08(−8) 7 3.000 4300 1.0002555 3.3061
* M4,1 0.370 2.50(−2) 1.37 18 4.000 8520 1.0001627 15.469
M4,2 8.97(−2) 1.02(−5) 2.23(−21) 5 4.000 8160 1.0001699 3.4542
M4,3(β = 0.01) 0.133 2.18(−4) 2.85(−15) 6 4.000 6680 1.0002076 3.8634
M5,1(β = 0.01) 8.15(−2) 3.67(−6) 1.08(−27) 5 5.000 6320 1.0002547 3.3176
M5,2 0.434 7.70(−2) 1.33(−2) 7 5.000 12,400 1.0001298 7.2054
M6,1 3.16(−2) 1.38(−10) 1.12(−60) 4 6.000 8580 1.0002089 3.3585
* M7,1 1.572 3.42(−4) 7.60(−25) 5 7.000 13,160 1.0001478 5.7346
M7,2(β = 0.01) 1.96(−2) 6.66(−13) 3.92(−86) 4 7.000 12,120 1.0001606 4.3594

* The methods M4,1 and M7,1 converge to the solution α2.

Table 6. Comparison of performance of methods for Example 7.

Methods ||x(2) − x(1)|| ||x(3) − x(2)|| ||x(4) − x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 3.828 0.681 1.23(−2) 9 2.000 49,200 1.00001409 0.8928
M3,1(β = 0.01) 0.433 9.62(−5) 1.74(−15) 6 3.000 51,750 1.00002123 0.7183
M4,1 0.840 9.07(−5) 9.18(−21) 5 4.000 103,300 1.00001342 1.0475
M4,2 0.848 9.54(−5) 1.13(−20) 5 4.000 100,900 1.00001374 1.1896
M4,3(β = 0.01) 1.548 3.85(−3) 5.75(−14) 6 4.000 66,700 1.00002078 0.8284
M5,1(β = 0.01) 4.06(−2) 1.22(−12) 2.82(−65) 4 5.000 64,300 1.00002503 0.6102
M5,2 8.16(−2) 3.64(−11) 7.86(−58) 5 5.000 152,500 1.00001055 1.6563
M6,1 0.159 1.20(−11) 2.24(−72) 6 6.000 103,450 1.00001732 1.0313
M7,1 9.92(−2) 1.26(−15) 7.09(−113) 4 7.000 157,400 1.00001236 1.3457
M7,2(β = 0.01) 0.212 6.80(−13) 3.00(−93) 4 7.000 125,800 1.00001547 1.0938
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Table 7. Comparison of performance of methods for Example 8.

Methods ||x(2) − x(1)|| ||x(3) − x(2)|| ||x(4) − x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 1.980 1.78(−2) 2.66(−6) 9 2.000 363,400 1.000001907 7.6572
M3,1(β = 0.01) 0.951 1.31(−4) 4.43(−16) 6 3.000 373,500 1.000002941 5.9846
M4,1 0.158 8.95(−8) 2.27(−25) 6 2.997 746,600 1.000001471 10.503
M4,2 0.418 8.99(−6) 2.28(−19) 6 3.000 736,800 1.000001491 10.249
M4,3(β = 0.01) 0.453 5.14(−6) 9.22(−21) 6 3.001 433,400 1.000002535 6.5627
M5,1(β = 0.01) 0.137 3.08(−12) 3.28(−65) 4 5.001 423,600 1.000003815 4.8255
M5,2 3.12(−2) 5.16(−13) 3.86(−55) 5 3.999 1,110,000 1.000001450 10.876
M6,1 8.38(−2) 6.04(−11) 9.18(−46) 5 4.001 746,900 1.000001856 9.2656
M7,1 1.75(−4) 1.74(−34) 4.89(−213) 4 5.999 1,129,800 1.000001586 10.235
M7,2(β = 0.01) 3.83(−3) 5.44(−25) 1.65(−155) 4 5.996 836,600 1.000002142 8.4533

From the numerical results displayed in Tables 3–7, it can be observed that like that of the existing
methods the proposed new method shows consistent convergence behavior. Seventh order methods
produce approximations with large accuracy due to their higher order of convergence, but they are
less efficient. In Example 6, M4,1 and M7,1 do not converge to the required solution α1. Instead, they
converge to solution α2 which is far off from initial approximation chosen. Calculation of computational
order of convergence shows that the order of convergence of the new method is preserved in all the
numerical examples. However, this is not true for some existing methods, e.g., M4,j (j = 1, 2, 3), M5,2,
M6,1, M7,1 and M7,2, in Example 8. Values of the efficiency index shown in the penultimate column
of each table also verify the theoretical results stated in Theorem 2. The efficiency results are also in
complete agreement with the CPU time utilized in the execution of the program since the method
with large efficiency uses less computing time than the method with small efficiency. Moreover, the
proposed method utilizes less CPU time than existing higher order methods which points to the
dominance of the method. In fact, the new method is especially more efficient for large systems of
nonlinear equations.

7. Conclusions

In the foregoing study, we have developed a fifth order iterative method for approximating
solution of systems of nonlinear equations. The methodology is based on third order Traub-Steffensen
method and further developed by using derivative free modification of classical Chebyshev’s method.
The iterative scheme is totally derivative-free and so particularly suitable to those problems where
derivatives are lengthy to compute. To prove the local fifth order of convergence for the new method, a
development of first-order divided difference operator and direct computation by Taylor’s expansion
are used.

We have examined the computational efficiency of the new method. A comparison of efficiencies
with that of the existing most efficient methods is also performed. It is proved that, in general, the new
algorithm is more efficient. Numerical experiments are performed and the performance is compared
with existing derivative-free methods. From numerical results it has been observed that the proposed
method has equal or better convergence compared to existing methods. Theoretical results related to
convergence order and computational efficiency have also been verified in the considered numerical
problems. Similar numerical tests, performed for a variety of other different problems, have confirmed
the above drawn conclusions to a good extent.
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Abstract: Many optimal order multiple root techniques involving derivatives have been proposed
in literature. On the contrary, optimal order multiple root techniques without derivatives are
almost nonexistent. With this as a motivational factor, here we develop a family of optimal
fourth-order derivative-free iterative schemes for computing multiple roots. The procedure is based
on two steps of which the first is Traub–Steffensen iteration and second is Traub–Steffensen-like
iteration. Theoretical results proved for particular cases of the family are symmetric to each other.
This feature leads us to prove the general result that shows the fourth-order convergence. Efficacy is
demonstrated on different test problems that verifies the efficient convergent nature of the new
methods. Moreover, the comparison of performance has proven the presented derivative-free
techniques as good competitors to the existing optimal fourth-order methods that use derivatives.

Keywords: iterative function; multiple root; composite method; derivative-free method;
optimal convergence
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1. Introduction

We consider derivative-free methods for finding the multiple root (say, α) with multiplicity m of a
nonlinear equation f (t) = 0 , i.e., f (j)(α) = 0, j = 0, 1, 2, . . . , m− 1 and f (m)(α) �= 0.

Several higher order methods, with or without the use of modified Newton’s method [1]

tk+1 = tk −m
f (tk)

f ′(tk)
, (1)

have been derived and analyzed in literature (see, for example, [2–15] and references cited therein).
In such methods, one requires determining the derivatives of either first order or both first and second
order. Contrary to this, higher-order derivative-free methods to compute multiple roots are yet to
be investigated. These methods are important in the problems where derivative f ′ is complicated to
process or is costly to evaluate. The basic derivative-free method is the Traub–Steffensen method [16],
which uses the approximation

f ′(tk) "
f (tk + β f (tk))− f (tk)

β f (tk)
, β ∈ R− {0},

or
f ′(tk) " f [sk, tk],

Symmetry 2019, 11, 1452; doi:10.3390/sym11121452 www.mdpi.com/journal/symmetry157
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for the derivative f ′ in the classical Newton method in Equation (1). Here, sk = tk + β f (tk) and
f [s, t] = f (s)− f (t)

s−t is a divided difference of first order. In this way, the modified Newton method in
Equation (1) transforms to the modified Traub–Steffensen derivative free method

tk+1 = tk −m
f (tk)

f [sk, tk]
. (2)

The modified Traub–Steffensen method in Equation (2) is a noticeable improvement over the
Newton method, because it preserves the convergence of order two without using any derivative.

In this work, we aim to design derivative-free multiple root methods of high efficient quality,
i.e., the methods of higher convergence order that use the computations as small as we please.
Proceeding in this way, we introduce a class of derivative-free fourth-order methods that require
three new pieces of information of the function f per iteration, and hence possess optimal fourth-order
convergence in the terminology of Kung–Traub conjecture [17]. This conjecture states that multi-point
iterative functions without memory based on n function evaluations may attain the convergence order
2n−1, which is maximum. The methods achieving this convergence order are usually called optimal
methods. The new iterative scheme uses the modified Traub–Steffensen iteration in Equation (2)
in the first step and Traub–Steffensen-like iteration in the second step. The methods are examined
numerically on many practical problems of different kind. The comparison of performance with
existing techniques requiring derivative evaluations verifies the efficient character of the new methods
in terms of accuracy and executed CPU time.

The rest of the paper is summarized as follows. In Section 2, the scheme of fourth-order method
is proposed and its convergence order is studied for particular cases. The main result for the general
case is studied in Section 3. Numerical tests to demonstrate applicability and efficiency of the methods
are presented in Section 4. In this section, a comparison of performance with already established
methods is also shown. In Section 5, a conclusion of the main points is drawn.

2. Formulation of Method

To compute a multiple root with multiplicity m ≥ 1, consider the following two-step
iterative scheme:

zk = tk −m
f (tk)

f [sk, tk]
,

tk+1 = zk − H(xk, yk)
f (tk)

f [sk, tk]
, (3)

where xk =
m

√
f (zk)
f (tk)

, yk =
m

√
f (zk)
f (sk)

and H : C2 → C is analytic in a neighborhood of (0, 0). Notice that

this is a two-step scheme with first step as the Traub–Steffensen iteration in Equation (2) and the next
step as the Traub–Steffensen-like iteration. The second step is weighted by the factor H(x, y), thus we
can call it weight factor or more appropriately weight function.

In the sequel, we study the convergence results of proposed iterative scheme in Equation (3).
For clarity, the results are obtained separately for different cases based on the multiplicity m. Firstly,
for the case m = 1, the following theorem is proved:

Theorem 1. Assume that f : C→ C is an analytic function in a domain containing a multiple zero (say, α)
with multiplicity m = 1. Suppose that the initial point t0 is close enough to α, then the convergence order of
Equation (3) is at least 4, provided that H00 = 0, H10 = 1, H01 = 0, H20 = 2, H11 = 11 and H02 = 0, where
Hij =

∂i+j

∂xi∂yj H(xk, yk)|(xk=0,yk=0), for 0 ≤ i, j ≤ 2.
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Proof. Assume that the error at kth stage is ek = tk − α. Using the Taylor’s expansion of f (tk) about α

and keeping into mind that f (α) = 0 and f ′(α) �= 0, we have

f (tk) = f ′(α)ek
(
1 + A1ek + A2e2

k + A3e3
k + A4e4

k + · · ·
)
, (4)

where An = 1
(1+n)!

f (1+n)(α)
f ′(α) for n ∈ N.

Similarly we have the Taylor’s expansion of f (sk) about α

f (sk) = f ′(α)esk

(
1 + A1esk + A2e2

sk
+ A3e3

sk
+ A4e4

sk
+ · · ·

)
, (5)

where esk = sk − α = ek + β f ′(α)ek
(
1 + A1ek + A2e2

k + A3e3
k + A4e4

k + · · ·
)
.

Then, the first step of Equation (3) yields

ezk = zk − α

= (1 + β f ′(α))A1e2
k −

(
(2 + 2β f ′(α) + (β f ′(α))2)A2

1 − (2 + 3β f ′(α) + (β f ′(α))2)A2
)
e3

k +
(
(4 + 5β f ′(α)

+ 3(β f ′(α))2 + (β f ′(α))3)A3
1 − (7 + 10β f ′(α) + 7(β f ′(α))2 + 2(β f ′(α))3)A1 A2 + (3 + 6β f ′(α)

+ 4(β f ′(α))2 + (β f ′(α))3)A3
)
e4

k + O(e5
k). (6)

Expanding f (zk) about α, it follows that

f (zk) = f ′(α)ezk

(
1 + A1ezk + A2e2

zk
+ A3e3

zk
+ · · ·

)
. (7)

Using Equations (4), (5) and (7) in xk and yk, after some simple calculations, we have

xk = (1 + β f ′(α))A1ek −
(
(3 + 3β f ′(α) + (β f ′(α))2)A2

1 − (2 + 3β f ′(α) + (β f ′(α))2)A2
)
e2

k +
(
(8 + 10β f ′(α)

+ 5(β f ′(α))2 + (β f ′(α))3)A3
1 − 2(5 + 7β f ′(α) + 4(β f ′(α))2 + (β f ′(α))3)A1 A2 + (3 + 6β f ′(α)

+ 4(β f ′(α))2 + (β f ′(α))3)A3
)
e3

k + O(e4
k) (8)

and

yk = A1ek −
(
(3 + 2β f ′(α))A2

1 − (2 + β f ′(α)
)

A2)e2
k +

(
(8 + 8β f ′(α) + 3(β f ′(α))2)A3

1

− (10 + 11β f ′(α) + 4(β f ′(α))2)A1 A2 + (3 + 3β f ′(α) + (β f ′(α))2)A3
)
e3

k + O(e4
k). (9)

Developing H(xk, yk) by Taylor series in the neighborhood of origin (0, 0),

H(xk, yk) ≈ H00 + xk H10 + yk H01 +
1
2

x2
k H20 + xkyk H11 +

1
2

y2
k H02. (10)

Inserting Equations (4)–(10) into the second step of Equation (3), and then some simple
calculations yield

ek+1 = − H00 ek +
(

H00 − H01 + β f ′(α)H00 − (−1 + H10)(1 + β f ′(α))
)

A1e2
k −

1
2
(
(4 + H02 − 8H10 + 2H11

+ H20 + 4β f ′(α)− 10β f ′(α)H10 + 2β f ′(α)H11 + 2β f ′(α)H20 + 2(β f ′(α))2 − 4(β f ′(α))2H10

+ (β f ′(α))2H20 − 2H01(4 + 3β f ′(α)) + 2H00(2 + 2β f ′(α) + (β f ′(α))2))A2
1 − 2(2 + β f ′(α))(H00

− H01 + β f ′(α)H00 − (−1 + H10)(1 + β f ′(α)))A2
)
e3

k + δe4
k + O(e5

k), (11)

where δ = δ(β, A1, A2, A3, H00, H10, H01, H20, H11, H02). Here, expression of δ is not being produced
explicitly since it is very lengthy.
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It is clear from Equation (11) that we would obtain at least fourth-order convergence if we set
coefficients of ek, e2

k and e3
k simultaneously equal to zero. Then, solving the resulting equations, one gets

H00 = 0, H10 = 1, H01 = 0, H20 = 2, H11 = 1, H02 = 0. (12)

As a result, the error equation is given by

ek+1 = (1 + β f ′(α))A1
(
(5 + 5β f ′(α) + (β f ′(α))2)A2

1 − (1 + β f ′(α))A2
)
e4

k + O(e5
k). (13)

Thus, the theorem is proved.

Next, we show the conditions for m = 2 by the following theorem:

Theorem 2. Using the hypotheses of Theorem 1, the order of convergence of the scheme in Equation (3) for
the case m = 2 is at least 4, if H00 = 0, H10 = 1, H01 = 1, and H20 = 8 − H02 − 2H11, wherein
{|H11|, |H02|} < ∞.

Proof. Assume that the error at kth stage is ek = tk − α. Using the Taylor’s expansion of f (tk) about α

and keeping in mind that f (α) = 0, f ′(α) = 0, and f (2)(α) �= 0, we have

f (tk) =
f (2)(α)

2!
e2

k
(
1 + B1ek + B2e2

k + B3e3
k + B4e4

k + · · ·
)
, (14)

where Bn = 2!
(2+n)!

f (2+n)(α)

f (2)(α)
for n ∈ N.

Similarly, we have the Taylor’s expansion of f (sk) about α

f (sk) =
f (2)(α)

2!
e2

sk

(
1 + B1esk + B2e2

sk
+ B3e3

sk
+ B4e4

sk
+ · · ·

)
, (15)

where esk = sk − α = ek +
β f (2)(α)

2! e2
k
(
1 + B1ek + B2e2

k + B3e3
k + B4e4

k + · · ·
)
.

Then, the first step of Equation (3) yields

ezk = zk − α

=
1
2

( β f (2)(α)
2

+ B1

)
e2

k −
1

16
(
(β f (2)(α))2 − 8β f (2)(α)B1 + 12B2

1 − 16B2
)
e3

k +
1
64
(
(β f (2)(α))3

− 20β f (2)(α)B2
1 + 72B3

1 + 64β f (2)(α)B2 − 10B1
(
(β f (2)(α))2 + 16B2

)
+ 96B3

)
e4

k + O(e5
k). (16)

Expanding f (zk) about α, it follows that

f (zk) =
f (2)(α)

2!
e2

zk

(
1 + B1ezk + B2e2

zk
+ B3e3

zk
+ B4e4

zk
+ · · ·

)
. (17)

Using Equations (14), (15) and (17) in xk and yk, after some simple calculations, we have

xk =
1
2

( β f (2)(α)
2

+ B1

)
ek −

1
16
(
(β f (2)(α))2 − 6β f (2)(α)B1 + 16(B2

1 − B2)
)
e2

k +
1
64
(
(β f (2)(α))3

− 22β f (2)(α)B2
1 + 4

(
29B3

1 + 14β f (2)(α)B2
)
− 2B1

(
3(β f (2)(α))2 + 104B2

)
+ 96B3

)
e3

k + O(e4
k) (18)

and

yk =
1
2

( β f (2)(α)
2

+ B1

)
ek −

1
16
(
3(β f (2)(α))2 − 2β f (2)(α)B1 + 16(B2

1 − B2)
)
e2

k +
1
64
(
7(β f (2)(α))3

+ 24β f (2)(α)B2 − 14β f (2)(α)B2
1 + 116B3

1 − 2B1
(
11(β f (2)(α))2 + 104B2

)
+ 96B3

)
e3

k + O(e4
k). (19)
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Developing by Taylor series the weight function H(xk, yk) in the neighborhood of origin (0, 0),

H(xk, yk) ≈ H00 + xk H10 + yk H01 +
1
2

x2
k H20 + xkyk H11 +

1
2

y2
k H02. (20)

Inserting Equations (14)–(20) intothe second step of Equation (3), and then some simple
calculations yield

ek+1 = − H00
2

ek +
1
4
(
2 + H00 − H01 − H10

)( β f (2)(α)
2

+ B1

)
e2

k −
1

64

(
(β f (2)(α))2(4 + 2H00 − 8H01 + H02

− 4H10 + 2H11 + H20) + 4β f (2)(α)(−8− 4H00 − H01 + H02 + H10 + 2H11 + H20)B1 + 4(12 + 6H00

− 10H01 + H02 − 10H10 + 2H11 + H20)B2
1 − 32(2 + H00 − H01 − H10)B2

)
e3

k + φ e4
k + O(e5

k), (21)

where φ = φ(β, B1, B2, B3, H00, H10, H01, H20, H11, H02). Here, expression of φ is not being produced
explicitly since it is very lengthy.

It is clear from Equation (21) that we would obtain at least fourth-order convergence if we set
coefficients of ek, e2

k and e3
k simultaneously equal to zero. Then, solving the resulting equations, one gets

H00 = 0, H10 = 1, H01 = 1, H20 = 8− H02 − 2H11. (22)

As a result, the error equation is given by

ek+1 =
1

32

( β f (2)(α)
2

+ B1

)(
(2β f (2)(α)(3 + H02 + H11)B1 + 22B2

1 + ((β f (2)(α))2(H02 + H11)− 8B2)
)
e4

k + O(e5
k).

Thus, the theorem is proved.

Below, we state the theorems (without proof) for the cases m = 3, 4, 5 as the proof is similar to
the above proved theorems.

Theorem 3. Using the hypotheses of Theorem 1, the order of convergence of scheme in Equation (3) for the case
m = 3 is at least 4, if H00 = 0, H10 = 3− H01, and H20 = 12− H02 − 2H11, where {|H01|, |H02|, |H11|} <
∞. Moreover, the scheme satisfies error equation

ek+1 =
1
54
(

β f (3)(α)(−3 + H01)C1 + 12C3
1 − 6C1C2

)
e4

k + O(e5
k),

where Cn = 3!
(3+n)!

f (3+n)(α)

f (3)(α)
for n ∈ N.

Theorem 4. Using the hypotheses of Theorem 1, the order of convergence of scheme in Equation (3) for the case
m = 4 is at least 4, if H00 = 0, H10 = 4− H01, and H20 = 16− H02 − 2H11, where {|H01|, |H02|, |H11|} <
∞. Moreover, the scheme satisfies error equation

ek+1 =
1

128
(
13D3

1 − 8D1D2
)
e4

k + O(e5
k),

where Dn = 4!
(4+n)!

f (4+n)(α)

f (4)(α)
for n ∈ N.
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Theorem 5. Using the hypotheses of Theorem 1, the order of convergence of scheme in Equation (3) for the case
m = 5 is at least 4, if H00 = 0, H10 = 5− H01, and H20 = 20− H02 − 2H11, where {|H01|, |H02|, |H11|} <
∞. Moreover, the scheme satisfies error equation

ek+1 =
1

125
(
7E3

1 − 5E1E2
)
e4

k + O(e5
k),

where En = 5!
(5+n)!

f (5+n)(α)

f (5)(α)
for n ∈ N.

Remark 1. We can observe from the above results that the number of conditions on Hij is 6, 4, 3, 3, 3
corresponding to cases m = 1, 2, 3, 4, 5 to attain the fourth-order convergence of the method in Equation (3).
The cases m = 3, 4, 5 satisfy the common conditions, H00 = 0, H10 = m−H01, and H20 = 4m−H02− 2H11.
Nevertheless, their error equations differ from each other as the parameter β does not appear in the equations for
m = 4, 5. It has been seen that when m ≥ 4 the conditions on Hij are always three in number and the error
equation in each such case does not contain β term. This type of symmetry in the results helps us to prove the
general result, which is presented in next section.

3. Main Result

For the multiplicity m ≥ 4, we prove the order of convergence of the scheme in Equation (3) by
the following theorem:

Theorem 6. Assume that the function f : C → C is an analytic in a domain containing zero α having
multiplicity m ≥ 4. Further, suppose that the initial estimation t0 is close enough to α. Then, the convergence
of the iteration scheme in Equation (3) is of order four, provided that H00 = 0, H10 = m− H01, and H20 =

4m− H02 − 2H11, wherein {|H01|, |H11|, |H02|} < ∞. Moreover, the error in the scheme is given by

ek+1 =
1

2m3

(
(9 + m)K3

1 − 2mK1K2
)
e4

k + O(e5
k).

Proof. Taking into account that f (j)(α) = 0, j = 0, 1, 2, . . . , m− 1 and f m(α) �= 0, then, developing
f (tk) about α in the Taylor’s series,

f (tk) =
f m(α)

m!
em

k
(
1 + K1ek + K2e2

k + K3e3
k + K4e4

k + · · ·
)
, (23)

where Kn = m!
(m+n)!

f (m+n)(α)

f (m)(α)
for n ∈ N.

In addition, from the expansion of f (sk) about α, it follows that

f (sk) =
f m(α)

m!
em

sk

(
1 + K1esk + K2e2

sk
+ K3e3

sk
+ K4e4

sk
+ · · ·

)
, (24)

where esk = sk − α = ek +
β f m(α)

m! em
k
(
1 + K1ek + K2e2

k + K3e3
k + K4e4

k + · · ·
)
. From the first step of

Equation (3),

ezk = zk − α

=
K1
m

e2
k +

1
m2

(
2mK2 − (1 + m)K2

1
)
e3

k +
1

m3

(
(1 + m)2K3

1 −m(4 + 3m)K1K2 + 3m2K3
)
e4

k + O(e5
k). (25)

Expansion of f (zk) around α yields

f (zk) =
f m(α)

m!
e2

zk

(
1 + K1ezk + K2e2

zk
+ K3e3

zk
+ K4e4

zk
+ · · ·

)
. (26)
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Using Equations (23), (24) and (26) in the expressions of xk and yk, we have that

xk =
K1
m

ek +
1

m2

(
2mK2 − (2 + m)K2

1
)
e2

k +
1

2m3

(
(7 + 7m + 2m2)K3

1 − 2m(7 + 3m)K1K2 + 6m2K3
)
e3

k +O(e4
k) (27)

and

yk =
K1
m

ek +
1

m2

(
mK2 − (2 + m)K2

1
)
e2

k +
1

2m3

(
(6 + 7m + 2m2)K3

1 − 2m(6 + 3m)K1K2 + 6m2K3
)
e3

k + O(e4
k). (28)

Developing H(xk, yk) in Taylor’s series in the neighborhood of origin (0, 0),

H(xk, yk) ≈ H00 + xk H10 + yk H01 +
1
2

x2
k H20 + xkyk H11 +

1
2

y2
k H02. (29)

Inserting Equations (23)–(29) into the second step of Equation (3), it follows that

ek+1 =− H00
m

ek +
1

m2 (H00 − H01 − H10 + m)K1e2
k −

1
2m3

(
(H02 − 6H10 + 2H11 + H20 + 2m− 2mH10 + 2m2

+ 2(1 + m)H00 − 2(3 + m)H01)K2
1 − 4m(H00 − H01 − H10 + m)K2

)
e3

k +
1

2m4

(
(5H02 − 13H10 + 10H11

+ 5H20 + 2m + 2mH02 − 11mH10 + 4mH11 + 2mH20 + 4m2 − 2m2H10 + 2m3 + 2(1 + m)2H00

− (13 + 11m + 2m2)H01)K3
1 − 2m(2H02 − 11H10 + 4H11 + 2H20 + 4m− 3mH10 + 3m2 + (4 + 3m)H00

− (11 + 3m)H01)K1K2 + 6m2(H00 − H01 − H10 + m)K3
)
e4

k + O(e5
k). (30)

It is clear that we can obtain at least fourth-order convergence if the coefficients of ek, e2
k , and e3

k
vanish. On solving the resulting equations, we get

H00 = 0, H10 = m− H01, H20 = 4m− H02 − 2 H11. (31)

Then, error of Equation (30) is given by

ek+1 =
1

2m3

(
(9 + m)K3

1 − 2mK1K2
)
e4

k + O(e5
k). (32)

Thus, the theorem is proved.

Remark 2. The proposed scheme in Equation (3) reaches fourth-order convergence provided that the conditions
of Theorems 1–3 and 6 are satisfied. This convergence rate is achieved by using only three function evaluations,
viz. f (tn), f (sn), and f (zn), per iteration. Therefore, the scheme in Equation (3) is optimal by the Kung–Traub
hypothesis [17].

Remark 3. It is important to note that parameter β, which is used in sk, appears only in the error equations of the
cases m = 1, 2, 3 but not for m ≥ 4. For m ≥ 4, we have observed that this parameter appears in the coefficients
of e5

k and higher order. However, we do not need such terms to show the required fourth-order convergence.

Some Special Cases

We can generate many iterative schemes as the special cases of the family in Equation (3) based
on the forms of function H(x, y) that satisfy the conditions of Theorems 1, 2 and 6. However, we
restrict ourselves to the choices of low-degree polynomials or simple rational functions. These choices
should be such that the resulting methods may converge to the root with order four for m ≥ 1.
Accordingly, the following simple forms are considered:
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(1) Let us choose the function

H(xk, yk) = xk + m x2
k + (m− 1)yk + m xk yk,

which satisfies the conditions of Theorems 1, 2 and 6. Then, the corresponding fourth-order
iterative scheme is given by

tk+1 = zk −
(
xk + m x2

k + (m− 1)yk + m xk yk
) f (tk)

f [sk, tk]
. (33)

(2) Next, consider the rational function

H(xk, yk) = −
xk + m x2

k − (m− 1)yk(m yk − 1)
m yk − 1

,

satisfying the conditions of Theorems 1, 2 and 6. Then, corresponding fourth-order iterative
scheme is given by

tk+1 = zk +
xk + m x2

k − (m− 1)yk(m yk − 1)
m yk − 1

f (tk)

f [sk, tk]
. (34)

(3) Consider another rational function satisfying the conditions of Theorems 1, 2 and 6, which is
given by

H(xk, yk) =
xk − yk + m yk + 2m xk yk −m2 xk yk

1−m xk + x2
k

.

The corresponding fourth-order iterative scheme is given by

tk+1 = zk −
xk − yk + m yk + 2m xk yk −m2 xk yk

1−m xk + x2
k

f (tk)

f [sk, tk]
. (35)

For each of the above cases, zk = tk −m f (tk)
f [sk ,tk ]

. For future reference, the proposed methods in
Equations (33)–(35) are denoted by NM1, NM2, and NM3, respectively.

4. Numerical Results

To validate the theoretical results proven in previous sections, the special cases NM1, NM2,
and NM3 of new family were tested numerically by implementing them on some nonlinear equations.
Moreover, their comparison was also performed with some existing optimal fourth-order methods that
use derivatives in the formulas. We considered, for example, the methods by Li et al. [7,8], Sharma and
Sharma [9], Zhou et al. [10], Soleymani et al. [12], and Kansal et al. [14]. The methods are expressed
as follows:

Li–Liao–Cheng method (LLC):

zk = tk −
2m

m + 2
f (tk)

f ′(tk)
,

tk+1 = tk −
m(m− 2)

( m
m+2

)−m f ′(zk)−m2 f ′(tk)

f ′(tk)−
( m

m+2
)−m f ′(zk)

f (tk)

2 f ′(tk)
.
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Li–Cheng–Neta method (LCN):

zk = tk −
2m

m + 2
f (tk)

f ′(tk)
,

tk+1 = tk − α1
f (tk)

f ′(zk)
− f (tk)

α2 f ′(tk) + α3 f ′(zk)
,

where

α1 = − 1
2

( m
m+2

)mm(m4 + 4m3 − 16m− 16)
m3 − 4m + 8

,

α2 = − (m3 − 4m + 8)2

m(m4 + 4m3 − 4m2 − 16m + 16)(m2 + 2m− 4)
,

α3 =
m2(m3 − 4m + 8)( m

m+2
)m

(m4 + 4m3 − 4m2 − 16m + 16)(m2 + 2m− 4)
.

Sharma–Sharma method (SS):

zk = tk −
2m

m + 2
f (tk)

f ′(tk)
,

tk+1 = tk −
m
8

[
(m3 − 4m + 8)− (m + 2)2

( m
m + 2

)m f ′(tk)

f ′(zk)

×
(

2(m− 1)− (m + 2)
( m

m + 2

)m f ′(tk)

f ′(zk)

)] f (tk)

f ′(tk)
.

Zhou–Chen–Song method (ZCS):

zk = tk −
2m

m + 2
f (tk)

f ′(tk)
,

tk+1 = tk −
m
8

[
m3
(m + 2

m

)2m( f ′(zk)

f ′(tk)

)2
− 2m2(m + 3)

(m + 2
m

)m f ′(zk)

f ′(tk)

+ (m3 + 6m2 + 8m + 8)
] f (tk)

f ′(tk)
.

Soleymani–Babajee–Lotfi method (SBL):

zk = tk −
2m

m + 2
f (tk)

f ′(tk)
,

tk+1 = tk −
f ′(zk) f (tk)

q1( f ′(zk))2 + q2 f ′(zk) f ′(tk) + q3( f ′(tk))2 ,

where

q1 =
1
16

m3−m(2 + m)m,

q2 =
8−m(2 + m)(−2 + m2)

8m
,

q3 =
1
16

(−2 + m)m−1+m(2 + m)3−m.
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Kansal–Kanwar–Bhatia method (KKB):

zk = tk −
2m

m + 2
f (tk)

f ′(tk)
,

tk+1 = tk −
m
4

f (tk)

(
1 +

m4 p−2m
(
− f ′(zk)

f ′(tk)
+ p−1+m

)2
(−1 + pm)

8(2pm + m(−1 + pm))

)

×
(4− 2m + m2(−1 + p−m)

f ′(tk)
− p−m(2pm + m(−1 + pm))2

f ′(tk)− f ′(zk)

)
,

where p = m
m+2 .

Computational work was compiled in the programming package of Mathematica software [18] in
a PC with Intel(R) Pentium(R) CPU B960 @ 2.20 GHz, 2.20 GHz (32-bit Operating System) Microsoft
Windows 7 Professional and 4 GB RAM. Performance of the new methods was tested by choosing
value of the parameter β = 0.01. The tabulated results obtained by the methods for each problem
include: (a) the number of iterations (k) required to obtain the solution using the stopping criterion
|tk+1 − tk| + | f (tk)| < 10−100; (b) the estimated error |tk+1 − tk| in the first three iterations; (c) the
calculated convergence order (CCO); and (d) the elapsed time (CPU time in seconds) in execution of a
program, which was measured by the command “TimeUsed[ ]”. The calculated convergence order
(CCO) to confirm the theoretical convergence order was calculated by the formula (see [19])

CCO =
log |(tk+2 − α)/(tk+1 − α)|

log |(tk+1 − α)/(tk − α)| , for each k = 1, 2, . . . (36)

The following numerical examples were chosen for experimentation:

Example 1. Planck law of radiation to calculate the energy density in an isothermal black body [20] is stated as

φ(λ) =
8πchλ−5

ech/λkT − 1
. (37)

where λ is wavelength of the radiation, c is speed of light, T is absolute temperature of the black body, k is
Boltzmann’s constant, and h is Planck’s constant. The problem is to determine the wavelength λ corresponding
to maximum energy density φ(λ). Thus, Equation (37) leads to

φ′(λ) =
( 8πchλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5

)
= A.B. (say)

Note that a maxima for φ will occur when B = 0, that is when

(ch/λkT)ech/λkT

ech/λkT − 1
= 5.

Setting t = ch/λkT, the above equation assumes the form

1− t
5
= e−t. (38)

Define

f1(t) = e−t − 1 +
t
5

. (39)

The root t = 0 is trivial and thus is not taken for discussion. Observe that for t = 5 the left-hand side of
Equation (38) is zero and the right-hand side is e−5 ≈ 6.74× 10−3. Thus, we guess that another root might occur
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somewhere near to t = 5. In fact, the expected root of Equation (39) is given by α ≈ 4.96511423174427630369
with t0 = 5.5. Then, the wavelength of radiation (λ) corresponding to maximum energy density is

λ ≈ ch
4.96511423174427630369(kT)

.

The results so obtained are shown in Table 1.

Example 2. Consider the van der Waals equation (see [15])

(
P +

a1n2

V2

)
(V − na2) = nRT,

that explains the nature of a real gas by adding two parameters a1 and a2 in the ideal gas equation. To find the
volume V in terms of rest of the parameters, one requires solving the equation

PV3 − (na2P + nRT)V2 + a1n2V − a1a2n2 = 0.

One can find values of n, P, and T, for a given a set of values of a1 and a2 of a particular gas, so that the
equation has three roots. Using a particular set of values, we have the function

f2(t) = t3 − 5.22t2 + 9.0825t− 5.2675,

that has three roots from which one is simple zero α = 1.72 and other one is a multiple zero α = 1.75 of
multiplicity two. However, our desired zero is α = 1.75. The methods are tested for initial guess t0 = 2.5.
Computed results are given in Table 2.

Example 3. Next, we assume a standard nonlinear test function which is defined as

f3(t) =
[

tan−1
(√5

2

)
− tan−1(

√
t2 − 1) +

√
6
(

tan−1
(√ t2 − 1

6

)
− tan−1

(1
2

√
5
6

))
− 11

63

]3
.

The function f3 has multiple zero at α = 1.8411027704926161 . . . of multiplicity three. We select initial
approximation t0 = 1.6 to obtain zero of this function. Numerical results are exhibited in Table 3.

Example 4. Lastly, we consider another standard test function, which is defined as

f4(t) = t(t2 + 1)(2et2+1 + t2 − 1) cosh2
(πt

2

)
.

The function f4 has multiple zero at i of multiplicity four. We choose the initial approximation x0 = 1.2i
for obtaining the zero of the function. Numerical results are displayed in Table 4.

Table 1. Numerical results for Example 1.

Method k |t2 − t1| |t3 − t2| |t4 − t3| CCO CPU-Time

LLC 4 1.51× 10−5 1.47× 10−23 1.30× 10−95 4.000 0.4993
LCN 4 1.55× 10−5 1.73× 10−23 2.65× 10−95 4.000 0.5302
SS 4 1.52× 10−5 1.51× 10−23 1.47× 10−95 4.000 0.6390
ZCS 4 1.57× 10−5 1.87× 10−23 3.75× 10−95 4.000 0.6404
SBL 4 1.50× 10−5 1.43× 10−23 1.19× 10−95 4.000 0.8112
KKB fails - - - - -
NM1 3 5.59× 10−6 1.35× 10−25 0 4.000 0.3344
NM2 3 5.27× 10−6 9.80× 10−26 0 4.000 0.3726
NM3 3 5.43× 10−6 1.16× 10−25 0 4.000 0.3475
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Table 2. Numerical results for Example 2.

Method k |t2 − t1| |t3 − t2| |t4 − t3| CCO CPU-Time

LLC 6 9.09× 10−2 8.03× 10−3 2.33× 10−5 4.000 0.0780
LCN 6 9.09× 10−2 8.03× 10−3 2.33× 10−5 4.000 0.0784
SS 6 9.26× 10−2 8.58× 10−3 3.11× 10−5 4.000 0.0945
ZCS 6 9.62× 10−2 9.84× 10−3 5.64× 10−5 4.000 0.0792
SBL 6 9.09× 10−2 8.03× 10−3 2.33× 10−5 4.000 0.0797
KKB 6 8.97× 10−2 7.62× 10−3 1.68× 10−5 4.000 0.0934
NM1 6 9.91× 10−2 1.08× 10−2 8.79× 10−5 4.000 0.0752
NM2 6 8.06× 10−2 5.08× 10−3 2.81× 10−5 4.000 0.0684
NM3 6 8.78× 10−2 7.02× 10−3 1.31× 10−5 4.000 0.0788

Table 3. Numerical results for Example 3.

Method k |t2 − t1| |t3 − t2| |t4 − t3| CCO CPU-Time

LLC 4 1.11× 10−4 9.02× 10−19 3.91× 10−75 4.000 2.5743
LCN 4 1.11× 10−4 8.93× 10−19 3.72× 10−75 4.000 2.6364
SS 4 1.11× 10−4 8.71× 10−19 3.29× 10−75 4.000 2.8718
ZCS 4 1.11× 10−4 8.16× 10−19 2.38× 10−75 4.000 2.8863
SBL 4 1.11× 10−4 8.63× 10−19 3.15× 10−75 4.000 3.2605
KKB 4 1.11× 10−4 9.80× 10−19 5.87× 10−75 4.000 2.9011
NM1 4 2.31× 10−5 4.04× 10−21 3.78× 10−84 4.000 2.2935
NM2 4 2.07× 10−5 1.32× 10−21 2.18× 10−86 4.000 2.5287
NM3 4 2.11× 10−5 1.66× 10−21 6.36× 10−86 4.000 2.4964

Table 4. Numerical results for Example 4.

Method k |t2 − t1| |t3 − t2| |t4 − t3| CCO CPU-Time

LLC 4 2.64× 10−4 2.13× 10−15 9.11× 10−60 4.000 1.7382
LCN 4 2.64× 10−4 2.14× 10−15 9.39× 10−60 4.000 2.4035
SS 4 2.64× 10−4 2.18× 10−15 1.01× 10−59 4.000 2.5431
ZCS 4 2.65× 10−4 2.24× 10−15 1.14× 10−59 4.000 2.6213
SBL 4 2.66× 10−4 2.28× 10−15 1.23× 10−59 4.000 3.2610
KKB 4 2.61× 10−4 2.00× 10−15 6.83× 10−60 4.000 2.6524
NM1 4 1.43× 10−4 1.29× 10−16 8.61× 10−65 4.000 0.5522
NM2 4 4.86× 10−5 5.98× 10−20 1.36× 10−79 4.000 0.6996
NM3 4 6.12× 10−5 6.69× 10−19 9.54× 10−75 4.000 0.6837

From the computed results shown in Tables 1–4, we can observe a good convergence behavior of
the proposed methods similar to those of existing methods. The reason for good convergence is the
increase in accuracy of the successive approximations per iteration, as is evident from numerical results.
This also points to the stable nature of methods. It is also clear that the approximations to the solutions
by the new methods have accuracies greater than or equal to those computed by existing methods. We
display the value 0 of |tk+1 − tk| at the stage when stopping criterion |tk+1 − tk|+ | f (tk)| < 10−100 has
been satisfied. From the calculation of computational order of convergence shown in the penultimate
column in each table, we verify the theoretical fourth-order of convergence.

The efficient nature of presented methods can be observed by the fact that the amount of CPU
time consumed by the methods is less than the time taken by existing methods (result confirmed by
similar numerical experiments on many other different problems). The methods requiring repeated
evaluations of the roots (such as the ones tackled in [21–24]), also may benefit greatly from the use of
proposed methods (NM1–NM3, Equations (33)–(35)).
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5. Conclusions

In this paper, we propose a family of fourth-order derivative-free numerical methods for obtaining
multiple roots of nonlinear equations. Analysis of the convergence was carried out, which proved the
order four under standard assumptions of the function whose zeros we are looking for. In addition,
our designed scheme also satisfies the Kung–Traub hypothesis of optimal order of convergence.
Some special cases are established. These are employed to solve nonlinear equations including those
arising in practical problems. The new methods are compared with existing techniques of same
order. Testing of the numerical results shows that the presented derivative-free methods are good
competitors to the existing optimal fourth-order techniques that require derivative evaluations in the
algorithm. We conclude the work with a remark that derivative-free methods are good alternatives to
Newton-type schemes in the cases when derivatives are expensive to compute or difficult to obtain.
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Abstract: Currently, industry and academia are undergoing an evolution in developing the next
generation of drone applications. Including the development of autonomous drones that can carry
out tasks without the assistance of a human operator. In spite of this, there are still problems left
unanswered related to the placement of drone take-off, landing and charging areas. Future policies by
governments and aviation agencies are inevitably going to restrict the operational area where drones
can take-off and land. Hence, there is a need to develop a system to manage landing and take-off
areas for drones. Additionally, we proposed this approach due to the lack of justification for the
initial location of drones in current research. Therefore, to provide a foundation for future research,
we give a justified reason that allows predetermined location of drones with the use of drone ports.
Furthermore, we propose an algorithm to optimally place these drone ports to minimize the average
distance drones must travel based on a set of potential drone port locations and tasks generated
in a given area. Our approach is derived from the Facility Location problem which produces an
efficient near optimal solution to place drone ports that reduces the overall drone energy consumption.
Secondly, we apply various traveling salesman algorithms to determine the shortest route the drone
must travel to visit all the tasks.

Keywords: drone deployment; drone port; traveling salesman; facility location problem

1. Introduction

Recent reports from the Federal Aviation Agency state that there will be an increase from 2.75 to
4.47 million small drones operating in the United States by 2021. Since the end of May 2017, more than
772,000 owners have already registered with the Federal Aviation Administration (FAA) [1]. The main
reason for the sudden increase in drone ownership is due to consumers purchasing drones for their
high mobility and applications in the field of computer vision [2]. Thus, a shift in vision related jobs
(building inspection, traffic monitoring and temporary cellular coverage extension) slowly being taken
over by drones to perform these tasks. This is because drones can provide the required perspective
for jobs such as bird’s eye view. Additionally, by using machines to take pictures in hazardous areas,
we can minimize the risk to human safety. However, there is still no proposal on the initial deployment
of drones which do not include random placement. Furthermore, the cost of privately owning drones
can be far too expensive for companies who may only require drones for a single task, in comparison
to renting drones [3]. In the case of a rental system, companies and users are not required to purchase a
drone allowing the cost to be fairly distributed amongst them. Although the cost to rent can reduce the
overall cost when compared to owning a drone. Typically, users must visit a rental center to collect the
drone. Otherwise, the drone must fly from the shop to the task, reducing the total energy available for
completing tasks. Therefore, to overcome these foreseen issues, an unmanned drone rental service that
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utilizes drones placed at distributed drone ports is necessary. By providing a public service that allows
the rental of distributed autonomous drones waiting at drone ports, this can reduce the total number
of drones in the sky and the total cost of utilizing drones to complete tasks requested by the user.
Thus, we propose an algorithm that can be applied to a shared drone service to reduce the excessive
utilization to increase the efficiency by intelligently placing drone ports in respect to the demand and
limitations of drones.

1.1. Motivation for Distributed Drone Ports

In this paper, we assume that drones will return to the drone port and charge after each cycle since
there are already companies creating landing pads, including Skysense (San Francisco, CA, USA) [4].
We imagine that drones must land, take off and be stored at the base of the drone port to charge drones
while they are not completing tasks in the air to remove the risk of users being injured by rotating
blades and electrical components that charge the drone. Multiple charging pads can be distributed
over an area to reduce the average distance drones must travel to recharge. By doing so, we believe
the cost of operating a fleet of drones located at distributed drone ports will be less than the cost of
operating a central drone port because miniature drones don’t require a large drone and can be located
from small areas such as building tops to open fields closer to tasks. Finally, the introduction of drone
ports will give future research a foundation to justify their initial placement of drones.

1.2. Related Work

This section encompasses the work done by researchers who look at the problem of optimally
placing drones in the sky. However, from our research, we noticed that none of their work justified the
reason for the initial and final location of drones in their work. Thus, we proposed an idea to justify
further work’s reasoning of the initial and final location of drones. The authors in paper [5] propose a
discrete and continuous environment to determine the location of drones based on the users. However,
they fail to consider where these drones will begin and end their mission. Related work in the field of
deploying drones to provide coverage has been growing in interest. In Ref. [6], authors proposed an
optimal transport approach to minimize the energy consumption to gather data from moving clusters
of IoT (Internet of Things) devices. Works related to a rental system outline the challenges of providing
enough assets to satisfy the number of users in the area.

1.3. Challenges

One challenge faced with proposing a rental system is the finite number of combinations possible
between the number of drone ports, the location of drone ports and the association between tasks and
drones located at drone ports. Thus, we require an efficient mixed integer problem approach to solve
our facility location framework. To complement our facility location framework, we apply a subfield
of machine learning, clustering, to quickly identify the most efficient central points as drone ports.

Using the original facility location framework to solve the problem is a complex procedure that does
not guarantee an optimal solution because it only considers the average distance between the drone ports
and facilities. We also need to find the round-trip path to ensure that the drone can complete all the tasks
in its cluster.

Drones come in a variety of classes as outlined in Table 1. However, previous research shows,
among the available class of drones, the outlook looks the most promising for mini drones. This is due
to the fact that mini drones are expected to reach a level of autonomous control within the next five
years that meets FAA requirements. Despite the current legal roadblocks imposed by the FAA, there is
likely still going to be an increasing demand for mini drones in civilian. Mostly due to their small size
compared with larger drones, mini drones have a much greater intrinsic safety rating [7]. Furthermore,
the reason for choosing mini drones to complete tasks is due to their high mobility and much lower
cost compared with larger drones. Academics are already working to implement vision systems to
allow drones to land [8].
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Table 1. The various class of drones available.

Category Name Mass [kg] Range [km] Flight Altitude [m] Endurance [Hours]

Micro <5 <10 250 1
Mini <20/30/150 <10 150/250/300 <2

Close Range 25–150 10–30 3000 2–4
Medium Range 50–250 30–70 3000 3–6

High Alt. Long Endurance >250 >70 >3000 >6

1.4. Facility Location Problem

The Facility Location problem consists of a set of potential drone port locations L. We use this
set of potential drone locations to discretize our solution space. Secondly, there is also a set of task
locations D that must be serviced, as seen in Figure 1. The objective is to pick a subset l of drone ports
to open that minimizes the average distance between each customer and facility. The Uncapacitated
Facility Location (UFLP) and Capacitated Facility Location (CFLP) constitute the basic discrete facility
location formulation with an abundance of papers based on their extensions by relaxing one or more
of the underlying assumptions. The current state-of-the-art algorithm for solving Facility Location
problems is proposed by [9]. They provide a close approximation to the global optimum. We can apply
the facility location problem formulation since a drone port is considered to be a facility with limited
output and a task can be considered as a customer, with a required demand. However, because our
problem is not related to delivery trucks, we must make some adjustments to the original problem to
ensure that the drones can perform the task without running out of energy. For the situation where
there is delay, a congested facility location problem can be applied to minimize the waiting times
for customers [10]. Next, we apply the shortest path algorithm to confirm if a generated cluster of
tasks can be served by the drone port facility. In Figure 1, we illustrate the decision-making process.
The light shaded gray drone ports are the drone ports that were not constructed. Otherwise, the drone
ports selected to optimally serve tasks based on information such the population density and task
arrival rate. Each cell in Figure 1 represents the discrete space of potential drone port places.

Figure 1. An example of selecting drone ports based on a set of potential ’facility’ locations.
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1.5. K-Means Clustering Algorithms

Papers that utilize drones to provide coverage to a cluster of users such as [11] attempt to maximize
the ground users’ battery life by deploying drones in areas where existing macro base stations can not
provide sufficient coverage. Their numerical analysis showed promising results due to the fact that
their algorithm was able to position drones so that over 60% of users fell within a drone’s coverage.
However, they did not benchmark their algorithm with other clustering methods, therefore making it
difficult to truly understand if their approach was any better than other methods including exhaustive
search. One interesting point was their data was based on real Beijing downtown trajectory data.
The authors who proposed a k-means stochastic approach gave promising results with a level of
complexity O( 1

t ) under general conditions [12] with mini batches improving the speed of convergence
even more.

2. Materials and Methods

We envision that multiple drone ports will be managed by a central controller that is responsible
for assigning autonomous grounded drones waiting at a drone port to tasks located within the drones
operational coverage, removing the need for users to privately own a drone. A drone port is designed
to be a small designated take-off, landing and charging area for autonomous drones. Our method to
solve this is based on a facility location problem. Furthermore, our tasks only include those related to
computers, which just requires the drone to visit the task location, take a photo, and then return to
the base or move on to the next task. The tasks considered in this paper assumed that the drone is
capable of completing the digital task at the requested location without the need to adjust its path to
deliver a physical object, such as a delivery service. We apply k-means to reduce the complexity by
implementing a clusters subject to our framework based on the facility problem. Once the model is
matured, it allows us to determine the optimal location to install drone ports based on task demand.
Then, for additional tasks, we can immediately assign tasks to their respective drone port, thus
reducing the computational time to optimally associate drone port and tasks. Lastly, we distributed
the drone ports over an area to increase the average number of tasks a drone can complete in one
charge compared to a centralized drone port approach. In this section, we explain our system model
and justify our approach to solve the issue of placing drones efficiently in an area. Finding the optimal
solution for a Facility location problem is NP-Hard, it is not therefore advisable to use an exhaustive
method to determine the optimal number of drones. Our algorithm utilizes clustering to reduce the
initial search space of possible paths, thus improving the efficiency of our algorithm while giving a
near optimal route for drones. We also perform heuristic analysis to find the point at which each drone
can complete all of its tasks assigned to it during the cluster phase.

2.1. Central Controller

In our model, we consider a central controller that is responsible for a set of drone ports that each
have one drone. By using a central controller, we can assume that information containing the drone
state, drone port and task state is available. Therefore, giving a large advantage over a completely
distributed systems since information is accessible in a single place and can be used to increase the
co-operation between drones waiting at drone ports.

2.2. Drone Port

We propose the idea of a drone port that is connected via existing infrastructure to a central
controller then controls the drone and dispatches it to a job. Our model will consider a drone’s initial
position (x, y) at a drone port as well as the energy consumption e to fly to and from the task, and the
energy consumed while completing a task, and the distance flown before it can perform a task τ.
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2.3. Objective

Drones are considered to be resourced constrained devices; therefore, it is important that our cost
function puts an emphasis on maximizing the utility of a drone in one charge cycle, while ensuring
that it can safely return back to the drone to charge. Thus, the objective function is to minimize the
number of drone ports in a given area to serve as many tasks as possible. Then, we analyze the result
by applying various traveling salesman algorithms to see which algorithm maximizes the number of
tasks that can be completed subject to task delay and energy constraints.

2.4. Tasks

Tasks are generated by actual users or artificial intelligent agents that require data or images that
can only be collected by drones due to the location or danger to human safety. Since we can assume
that our tasks will be periodically requested, it is feasible to estimate an arrival rate based on factors
around the area, such as population density. The tasks in terms of a facility location problem are
known as the customers that must be served by some facility. In terms of drone demand, we can apply
different degrees of energy requirements to complete a task. For example, a task may require v units of
energy to perform a task, so, therefore, there must be v units of energy available in the drone’s battery
to complete the task.

In Figure 2, we illustrate that a drone can only land and take off at its own drone port, in the case
of a single drone at a drone port.

Figure 2. An example of a distributed drone port system.

2.5. Energy Consumption

We estimate the energy consumption to be the following:

ec+1 = ec − ∑
T∈di

tp + ∑
T∈di

||v ∗ ||γ. (1)

The energy consumption is calculated by the measuring the distance the drone must travel
multiplied by its energy consumption rate and the total energy required by its respective tasks.
The approximate energy function is vital because it calculates the energy remaining in a drone and
allows us to determine if the path generated is feasible. The energy level after a cycle is denoted as ec+1.
This energy level is calculated from the current energy state minus the task energy tp and distance
traveled ||v ∗ ||multiplied with an energy consumption constant γ [13]. Equation (1) shows that the
drone’s energy in the next cycle is its current energy minus the power requirements of the task and the
distance traveled to complete those tasks and return to its station.
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2.6. Facility Location Problem

The objective of an capacitated facility location is to minimize the distance between the tasks and
central drone port. We use this technique in combination with a shortest route algorithm to ensure
that the coverage size and the number of drones is suitable to satisfy all the tasks generated near the
drone port. In our initial formulation, introduce variable xi, xj containing the co-ordinates of potential
drone ports and tasks, respectively, where zi = 1, . . . , n where xi = 1 if drone port i is built, and xi = 0,
otherwise. We can treat the drone port acts as a facility because it contains the service subject to the
energy constraint, known as the supply.

2.7. Capital Expenditure

In respect to capital expenditure, our objective is to minimize the total monetary cost of building
new infrastructure. In the below cost function, our goal is to reduce the total distance between the
drone port xi and tasks xj. Since we are limited by the budget F, it is impossible to build every potential
drone port i:

minimize ∑
di

dij,

subject to ∑
i∈A

cizi ≤ F, i = 1, ..., n,

xj ∈ {0, 1}, j = 1, ..., m,
dij = ||xi − xj||2.

(2)

2.8. Operational Expenditure

In respect to operational expenditure, our objective is to maximize the number of jobs denoted
as yij the index of a job while satisfying constraints such as τj delay for every job. Furthermore, each
drone must return back to its drone port. Lastly, the path generated must not exceed the drone’s energy
capacity denoted as the function f (dij)

maximize ∑
i

∑
j

yij,

subject to ∑
j

yij f (dij) ≤ Bi i = 1, ..., n,

x0 = x fac ,
x f inal = x fac ,
τj ≤ τ̂j,
f (dij) = P ∗ dij + η,
τj = tcomplete − tarrival .

(3)

2.9. Drone Port Placement Algorithm

Algorithm 1 is an overview of our proposed algorithm to efficiently place drones in a distributed
area. We develop a heuristic approach by implementing a clustering and traveling salesman problem
ensemble to determine the feasibility our algorithm’s output data. We continue to increase the number
of drone ports until each drone has enough energy to perform all of the tasks in its coverage.
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Algorithm 1 Facility Location Problem for Drones

procedure DRONE PORT PLACEMENT AND SHORTEST ROUTE
i ← max number of droneports
T ← Task Locations array
P ← Set of drone ports array
Pmax ← max number of droneports
p ← Initial number of droneports
while p ≤ Pmax do

clusters ← GenerateCluster(Tasks, p)
shortestroute ← TSP(tasks, droneport)
e ← f (di j)
if e ≥ θ then

Break
else

p ← p + 1

return Drone Port location
return Shortest Routes

2.10. Traveling Salesman Problem

After creating the clusters, we apply a shortest route algorithm to ensure that the drone can
perform all of the tasks allocated to it while completing a round-trip back to its original drone port.
It is denoted as the Traveling Salesman Problem (TSP) below.

3. Performance Evaluation

Our simulation was conducted on a PC with the operating system Ubuntu 16.04. We applied the
algorithms in Table 2 written in Python 3.5 to conduct our simulations. The area size for our simulation
is 1000 × 1000 units.

Table 2. Algorithms we compared.

Algorithm Type Author

2-opt Shortest Path [14]

Genetic Algorithm Shortest Path [15]

Exhaustive Search Shortest Path

Ant Colony Shortest Path [16]

k-means Clustering [17]

3.1. Coverage Size effect on the Combinatorial Search Space

In Figure 3, we analyzed the combination space size in log units if clustering was not applied.
Increasing the potential coverage size and the number of potential drone ports exponentially increases
the search space. The average complexity is given by O(knT), where n is the number of combinations
and T is the maximum number of iterations. In practice, the k-means algorithm is fast, but it tends to
return a local minima. To avoid this, we used a bottom up approach to avoid falling in to any local
minima [18]. This means we can effectively reduce the number of combinations greatly by applying
k-means instead of using a naive approach such as a fixed coverage area. The constraints in our
proposal ensure that no task appears outside a drone port’s range due to improper clustering.
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Figure 3. The worst case to determine the optimal solution for possible drone port coverage sizes.

3.2. Average Round Trip Distance

In Figure 4, we determined the coverage and round trip distance. The result comes from our
problem formulation constraint, which is that the drone must visit all the tasks assigned within its
cluster. Our k-means selects locations based on shortest average distance between the potential drone
port point and task locations. The red line shows the optimal solution. It may provide the shortest
path and least cost, but it is computationally expensive by almost 50% on average compared with
the approximation algorithms. The issue with the genetic algorithm shown in Figure 4 is due to the
random approach it takes to converge to the optimal solution. This may have been due to not allowing
enough generations to fine the combination that gives the shortest path. Secondly, the 2-opt algorithm
performs slight worse, due to being a single thread and with a limited number of iterations to find the
optimal solution. Each time the number of drone ports increases, the number of combinations between
drone ports and tasks is restricted—thus allowing the solver to find the optimal solution with multiple
solution sub-spaces to solve producing a near-optimal solution. The genetic algorithm was able to
find a near-optimal solution once the sub-spaces were small enough so its random choices had a larger
impact on the distance traveled.

3.3. Infrastructure and Energy Cost

In Figure 5, we compared the cost of having drones fly further versus the cost of installing a drone
port. For this experiment, we set the cost of a drone flying per unit distance γ to 0.5. In addition,
the cost of a drone port to c 2. If our cost to install a drone port was a lot less than the operating cost of
a drone, then there would likely be a lot more drone ports since more ports would be possible without
increasing the budget. However, this cost does not consider the on-going costs of maintenance for the
drones and drone ports. These values can be configured later to reflect actual prices of drone ports
and electricity.
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Figure 4. Average round trip for drones based on k-means clustering and Traveling Salesman Approximation.

Figure 5. Infrastructure vs. monetary cost.

3.4. Discussion

Further studies that are concerned with the efficient placement of drone ports can now consider
our model to further reduce their model’s complexity and reduce the distance each drone requires
to visit each task. The algorithm is also robust to environments with dynamic arrival rates since we
are not randomly placing drone port areas. Instead, by using the k-means cluster, we can efficiently
determine areas to install drone ports, centroids where there is a high density of tasks appearing.
Although our research was able to show a reduction in the distance covered by drones, our model
does not consider factors such as external costs such as maintaining a distributed system. We imagine
this cost will be negligible since there is little to no moving parts associated with a drone port, and
only the drone. Furthermore, the charging speed and properties of a drone port are still undecided.
This system can also be further improved by including terrain data to minimize the difference in the
drone port and flight altitude height to which the drone must fly. We did not cover the implications
of security or privacy in this paper, but it is something to realize since our framework could be used
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to spy as noted in [19], therefore identifying rouge tasks is important. Several additional avenues for
drone port include the following—firstly, considering information such as buildings or landmarks to
include in the final decision-making to create a path that the drone can follow to complete the task;
secondly, adding more capacity at drone ports to allow multiple drones to land and take off; thirdly,
optimizing the coverage in a way that maximizes co-operation between drones such as a chain link
deliver system; and, fourthly, creating boundaries for partitions between two central controllers would
allow for a hybrid solution with each sub-space of an area having its own controller. Lastly, we also
wish to work on improving the computational efficiency of our proposed algorithm.

4. Conclusions

We proposed a novel algorithm to manage distributed drone ports with a centralized controller to
ensure maximum co-operation between drones and fair allocation of tasks. The main goal of this system
is to efficiently assign grounded drones at drone ports with their respective tasks. Our combination of
approximation algorithms ensures that the cluster of tasks belonging to each drone port are within
the drone’s coverage. Second, the drone can perform the maximum number before returning to the
drone port to recharge. We show that utilizing the Ant algorithm for our cluster round trip for drones
minimizes the distance traveled for each drone. By utilizing this approach, further tasks assigned to an
area can be immediately be assigned without the need to recalculate the entire environment.
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Abbreviations

Notation used in this article

Notation Explanation
ec Set of drone ports
tp Set of drones
di Drone i
v∗ Vector
γ Drone energy level
dij Distance between task j and drone port i
ci Cost to build drone port
zi Decision variable to build drone port
xj Decision variable for drone i to complete task j
yij Task completion state {0, 1}
x0 Drone initial position
x0 Drone final position
τj Calculated task completion delay
τ̂j Earliest deadline first constraint
f (dij) Power Function
τcomplete Drone energy function
τarrival Minimum drone energy
η Task’s drone energy consumption
η Task’s drone energy consumption
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Abstract: The order/disorder characteristics of a compartment fire are researched based on
experimental data. From our analysis performed by new, pioneering methods, we claim that
the parametric Jensen-Shannon complexity can be successfully used to detect unusual data, and
that one can use it also as a means to perform relevant analysis of fire experiments. Thoroughly
comparing the performance of different algorithms (known as permutation entropy and two-length
permutation entropy) to extract the probability distribution is an essential step. We discuss some of
the theoretical assumptions behind each step and stress that the role of the parameter is to fine-tune
the results of the Jensen-Shannon statistical complexity. Note that the Jensen-Shannon statistical
complexity is symmetric, while its parametric version displays a symmetric duality due to the a priori
probabilities used.

Keywords: full-scale fire experiment; compartment fire; permutation entropy; two length permutation
entropy; time series analysis; parametric Jensen-Shannon statistical complexity; symmetric duality

1. Introduction

We aim to perform a local entropic analysis of the evolution of the temperature during a full-scale
fire experiment and seek a straightforward, general, and process-based model of the compartment fire.
We propose a new statistical complexity and compare known algorithms dedicated to the extraction of
the underlying probabilities, checking their suitability to point out the abnormal values and structure
of the experimental time series. For recent research on the fire phenomena performed using entropic
tools, see Takagi, Gotoda, Tokuda and Miyano [1] and Murayama, Kaku, Funatsu, and Gotoda [2].

The experimental data was collected during a full-scale fire experiment conducted at the Fire
Officers Faculty in Bucharest. We briefly include here the description of the experimental setup
(Materials and Methods). Details can be found in [3].

The experiment has been carried out using a container (single-room compartment) having the
following dimensions: 12 m × 2.2 m × 2.6 m. A single ventilation opening was available, namely the
front door of the container, which remained open during the experiment. Parts of the walls and the
ceiling of the container were furnished with oriented strand boards (OSB). The fire source has been a
wooden crib made of 36 pieces of wood strips 2.5 cm × 2.5 cm × 30 cm, on which has been poured
500 mL ethanol shortly before ignition. The fire bed was situated in a corner of the compartment,
at 1.2 m below the ceiling. The measurement devices consisted of six built-in K-type thermocouples,

Symmetry 2020, 12, 22; doi:10.3390/sym12010022 www.mdpi.com/journal/symmetry183
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which were fixed at key locations (see Figure 1) and connected to a data acquisition logger. Flames
were observed to impinge on the ceiling and exit through the opening, and we also noted the ignition
of crumpled newspaper and stages of fire development that are known as indicators of flashover.

 

Figure 1. Arrangement of the flashover container.

In Section 2, we present the theoretical background and briefly summarize the approaches that
are used to model fire.

Section 3 is dedicated to the results regarding the analysis of the collected raw data.

2. Theoretical Background and Remarks

2.1. Entropy and Statistical Complexity

The natural logarithm is used below, as elsewhere in this paper.
Shannon’s entropy [4] is defined as H(P) = −∑n

i=1 pilogpi, where P =
(
p1, . . . , pn

)
is a finite

probability distribution. It is nonnegative and its maximum value is H(U) = logn, where U =
(

1
n , . . . , 1

n

)
.

Throughout the paper, we use the convention 0· log 0 = 0.
The Kullback-Leibler divergence [5] is defined by

D(P‖R) =
n∑

i=1

pi(log pi − log ri) (1)

where P =
(
p1, . . . , pn

)
and R = (r1, . . . , rn) are probability distributions. It is nonnegative and it

vanishes for P = R.
If the value 0 appears in probability distributions P =

(
p1, . . . , pn

)
and R = (r1, . . . , rn), it must

appear in the same positions for the sake of significance. Otherwise, one usually consider the
conventions 0 log 0

b = 0 for b ≥ 0 and a log a
0 = ∞ for a > 0. We remark that these are strong limitations

and such conditions rarely occur in practice.
To overcome this issue, the following divergence, well-defined, is used in the literature.
The Jensen-Shannon divergence (see [6,7]) is given by

JS(P‖R) = 1
2

D
(
P‖P + R

2

)
+

1
2

D
(
R‖P + R

2

)
= H

(P + R
2

)
− H(P) + H(R)

2
. (2)

The disequilibrium-based statistical complexity (LMC statistical complexity) introduced in 1995

by López-Ruiz, Mancini, and Calbet in [8] is defined as C(P) = D(P)H(P)
log n , where D(P), which is

interpreted as disequilibrium, is the quadratic distance D(P) =
∑n

i=1 (pi − 1
n )

2
.
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Interpreted as entropic non-triviality (in Lamberti et al. [9] and Zunino et al. [10]),

the Jensen-Shannon statistical complexity is defined by C(JS)(P) = Q(JS)(P)
H(P)
log n , where the

disequilibrium Q(JS)(P) is Q(JS)(P) = k·JS(P‖U). Here, k = (maxPJS(P‖U))−1 is the normalizing

constant and U =
(

1
n , . . . , 1

n

)
. Therefore, we have 0 ≤ C(JS)(P) ≤ 1.

For the convenience of the interested reader, we include the following method to determine the
normalizing constant (a result stated for computational purposes, without proof, in [9]).

Proposition 1. Using the above notation, for the computation of the normalizing constant, k = (maxPJS(P‖U))−1,
the maximum is attained for P such that there exists i, pi = 1.

It holds that k =
(
log 2− 1

2 log n+1
n − log(n+1)

2n

)−1
.

Proof. We have the following calculations:

JS(P‖U) = H
(P + U

2

)
− H(P) + H(U)

2
=

1
2

n∑
i=1

pi log pi −
1
2

log n−
n∑

i=1

(pi

2
+

1
2n

)
log

(pi

2
+

1
2n

)
. (3)

∂JS(P‖U)

∂pi
=

1
2

log pi +
1
2
− 1

2
log

(pi

2
+

1
2n

)
− 1

2
=

1
2

log pi −
1
2

log
(pi

2
+

1
2n

)
. (4)

∂2JS(P‖U)

∂pi2
=

1
2pi
− 1

4
(pi

2 + 1
2n

) =
1

2pi
− 1

2pi +
2
n

> 0,
∂2JS(P‖U)

∂pi∂pj
= 0. (5)

So, the Hessian of JS(P‖U) is everywhere positive definite, whence JS(P‖U) is (strictly) convex on
the open convex set

{(
p1, . . . , pn

)
: 0 < pi < 1 for all i,

∑n
i=1 pi = 1

}
. Therefore, JS(P‖U) cannot have a

maximum inside (otherwise, it would be constant), and the points of maximum must lie on the boundary.
See Theorem 3.10.10 in [11] (p. 171). Such points exist, because JS(P‖U) is continuous on the compact
set Δ =

{(
p1, . . . , pn

)
: 0 ≤ pi ≤ 1 for all i,

∑n
i=1 pi = 1

}
. The function JS(P‖U) is continuous and convex

on the compact convex set Δ, so its maximum lies on the set of vertices of Δ (where pi = 1 for one i).
See Theorem 3.10.11 in [11] (p. 171). Since JS(P‖U) does not depend on the order of the components of
P, the maximum value is attained at all vertices, so it can be straightforwardly computed by setting
P = (1, 0, . . . , 0). �

Remark 1. Note that the maximal value of JS(P‖U) is log 2− 1
2 log n+1

n − log(n+1)
2n ↗ log 2, as n→∞.

Since JS(P‖U) is bounded from above by log 2, independently of n, the normalization of JS(P‖U) in the definition
of the Jensen-Shannon complexity does not seem to be relevant, and one could simply consider JS(P‖U)

H(P)
log n .

Let λ ∈ [0, 1]. The parametric Jensen-Shannon divergence (see for instance, [6]) is given by

JSλ(P‖R) = (1− λ)D(P‖(1− λ)P + λR) + λD(R‖(1− λ)P + λR)
= H((1− λ)P + λR) − ((1− λ)H(P) + λH(R)).

(6)

It is positive and it vanishes for P = R or λ = 0 or 1. See also Figure 2.
The values 1− λ and λ are interpreted as a priori probabilities. Note that JSλ(P‖R) = JS1−λ(R‖P) and

JSλ is not symmetric, unless λ = 0.5.

Mutatis mutandis, from Donald’s identity (Lemma 2.12 in [12]), one has

JSλ(P‖R) + D((1− λ)P + λR‖Q) = (1− λ)D(P‖Q) + λD(R‖Q) (7)
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for an arbitrarily fixed λ ∈ [0, 1]. One needs only straightforward computation to check that it
holds. Therefore,

JSλ(P‖R) = min
{
(1− λ)D(P‖Q) + λD(R‖Q) : Q =(

q1, . . . , qn

)
is a finite probability distribution

}
.

(8)

We introduce the parametric Jensen-Shannon statistical complexity as

C(JS)
λ

(P) ≡ JSλ(P‖U)
H(P)
log n

. (9)

As in the case of the complexities C(P), C(JS)(P), the new ones, C(JS)
λ

(P), would be zero (minimum
complexity) for P = U or if there exists i such that pi = 1. These two cases describe very different states
of the system, both of which are extreme circumstances being considered simple, namely the states
with respectively maximum and minimum entropy.

We do not need to normalize JSλ(P‖U) in the definition of the parametric Jensen-Shannon
complexity (possibly one can feel more comfortable with its normalized version in other frameworks),
but we stress that one can easily prove, following the same recipe as above, that its maximum value is
attained for P such that there exists i, pi = 1.

λ
λ
λ
λ
λ

Figure 2. The parametric Jensen-Shannon divergence JSλ(P‖1− P), for P = (t, 1− t), t ∈ [0, 1].

Proposition 2. Let λ ∈ [0, 1]. Using the above notation, it holds

max
P

JSλ(P‖U) = −λ log λ− (1− λ) log(1− λ) − (1− λ) log
(
1 +

λ

(1− λ)n
)
− λ

n
log

(1− λ)n + λ

λ
. (10)

Moreover, max
P

JSλ(P‖U)↗ −λ log λ− (1− λ) log(1− λ) ≤ log 2, as n→∞.

Proof. We omit the computation of max
P

JSλ(P‖U), which is straightforward.

To justify the monotonicity, it is enough to prove that f(x) = λ
x log (1gλ)x+λ

λ is decreasing:

f′(x) = − λ

x2

[
λ

(1− λ)x + λ
− 1− log

λ

(1− λ)x + λ

]
< 0, for λ ∈ (0, 1) and x > 0. (11)

Furthermore, it is obvious that (1− λ) log
(
1 + λ

(1−λ)n
)
+ λ

n log (1−λ)n+λ
λ → 0 .

The last inequality follows from Jensen’s inequality, which is applied to the concave
logarithmic function.

Therefore, JSλ(P‖U) is bounded from above by log 2, independently of n. �
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Remark 2. We split this result into two inequalities (of independent interest), which can be proved by the same
technique. Namely, it holds that

max
P

D(P‖(1− λ)P + λU)↗ − log(1− λ) (12)

and
max

P
D(U‖(1− λ)P + λU)↗ − log λ, (13)

as n→∞ .

Proposition 3. Let λ,μ ∈ [0, 1]. Using the above notation, the following inequality holds:

min
{

1− λ
1− μ ,

λ

μ

}
JSμ(P‖R) ≤ JSλ(P‖R) ≤ max

{
1− λ
1− μ ,

λ

μ

}
JSμ(P‖R) (14)

where P =
(
p1, . . . , pn

)
and R = (r1, . . . , rn) are two finite probability distributions.

Proof. The result is a particular case of Theorem 3.2 from [13]. We include here an alternative proof for
the sake of completeness.

It is known that the entropy H is concave; Hence, H((1− λ)P + λR) ≥ (1− λ)H(P) + λH(R).
We prove that

min
{

1− λ
1− μ ,

λ

μ

}
[H((1− μ)P + μR) − (1− μ)H(P) − μH(R)] ≤ (15)

H((1− λ)P + λR) − (1− λ)H(P) − λH(R) ≤ (16)

max
{

1− λ
1− μ ,

λ

μ

}
[H((1− μ)P + μR) − (1− μ)H(P) − μH(R)]. (17)

We consider 0 ≤ 1−λ
1−μ ≤ λ

μ , so λ ≥ μ , which implies, by the concavity of H, that

(1− λ)H(P) + λH(R) + min
{

1− λ
1− μ ,

λ

μ

}
[H((1− μ)P + μR) − (1− μ)H(P) − μH(R)] = (18)

(1− λ)H(P) + λH(R) +
1− λ
1− μ [H((1− μ)P + μR) − (1− μ)H(P) − μH(R)] = (19)

λ− μ
1− μH(R) +

1− λ
1− μH((1− μ)P + μR) ≤ H

(
λ− μ
1− μR +

1− λ
1− μ ((1− μ)P + μR)

)
=

H((1− λ)P + λR), (20)

because it holds λ−μ
1−μ + 1−λ

1−μ = 1 and λ− μ ≥ 0.
For the second inequality, we have

(1− λ)H(P) + λH(R) + max
{

1− λ
1− μ ,

λ

μ

}
[H((1− μ)P + μR) − (1− μ)H(P) − μH(R)] = (21)

(1− λ)H(P) + λH(R) +
λ

μ
[H((1− μ)P + μR) − (1− μ)H(P) − μH(R)] =

− λ− μ
μ

H(P) +
λ

μ
H((1− μ)P + μR) ≥ H((1− λ)P + λR), (22)

because it holds that λ
μH((1− μ)P + μR) ≥ H((1− λ)P + λR) + λ−μ

μ H(P), which is equivalent to

H((1− μ)P + μR) ≥ μ

λ
H((1− λ)P + λR) +

λ− μ
λ

H(P). (23)
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For 0 ≤ λ
μ ≤ 1−λ

1−μ , the proof is similar. �

Remark 3. For λ ∈ [0, 1], μ ∈(0,1), and R = U in Equation (1), then the following inequality holds:

min
{

1− λ
1− μ ,

λ

μ

}
JSμ(P‖U) ≤ JSλ(P‖U) ≤ max

{
1− λ
1− μ ,

λ

μ

}
JSμ(P‖U). (24)

For μ = 1
2 in Equation (3), we obtain:

2min{1− λ, λ}JS(P‖U) ≤ JSλ(P‖U) ≤ 2max{1− λ, λ}JS(P‖U). (25)

Multiplying by H(P)
logn in Equation (4), we deduce the following inequality related to the parametric

Jensen-Shannon statistical complexity:

2kmin{1− λ, λ}C(JS)(P) ≤ C(JS)
λ

(P) ≤ 2kmax{1− λ, λ}C(JS)(P), (26)

where k = log 2− 1
2 log n+1

n − log(n+1)
2n .

2.2. Extraction of the Underlying Probability Distribution

The permutation entropy (PE) [14] quantifies randomness and the complexity of a time series
based on the appearance of ordinal patterns, that is on comparisons of neighboring values of a time
series. For other details on the PE algorithm applied to the present experimental data, see [3].

Let T = (t1, . . . , tn) be a time series with distinct values.
Step 1. The increasing rearranging of the components of each j-tuple

(
ti, . . . , ti+j−1

)
as(

ti+r1−1, . . . , ti+rj−1
)

yields a unique permutation of order j denoted by π =
(
r1, . . . , rj

)
, which is

an encoding pattern that describes the up-and-downs in the considered j-tuple.
Simple numerical examples may help clarify the concepts throughout this section.

Example 1. For the five-tuple (2.3, 1, 3.1, 6.1, 5.2), the corresponding permutation (encoding) is (2, 1, 3, 5, 4).

Step 2. The absolute frequency of this permutation (the number of j-tuples which are associated
to this permutation) is

kπ ≡ #
{
i : i ≤ n− (j− 1),

(
ti, . . . , ti+j−1

)
is of type π

}
. (27)

These values have the sum equal to the number of all the consecutive j-tuples; that is, n− (j− 1).
Step 3. The permutation entropy of order j is defined as PE(j) ≡ −∑

π pπlogpπ, where pπ = kπ

n−(j−1)
is the relative frequency.

In [14], the measured values of the time series are considered distinct. The authors neglect
equalities and propose to break them by adding small random perturbations (random noise) to the
original series.

Another known approach is to rank the equalities according to their order of emergence (to rank
the equalities with their sequential/chronological order, see for instance [15,16]). We use this method
throughout the paper to compute PE(j) for j = 3, 4, 5.

Applying the PE algorithm for experimental fire data, C(JS)
λ

(P) cannot be zero. The number of the
encoding patterns that occur is >1, and these patterns are not equiprobable: some patterns may be rare
or locally forbidden (that is, one encounters such patterns at some thermocouples, but not in all six
time series), as discussed in [3].

We briefly describe now the encoding steps in the TLPE algorithm (Two-Length Permutation
Entropy algorithm) given by Watt and Politi in [17]; other details are provided in [3].
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Step 1 given the j-tuple T =
(
t1, . . . , tj

)
, we start encoding the last k ≤ j elements

(
tj−k+1, . . . , tj

)
according to the ordinal position of each element; that is, every ts is replaced by a symbol which
indicates the position occupied by ts within the increasing rearranging of the considered k-tuple.

Next, we proceed by encoding each previous element tm up to m = 1 according to the symbol
provided by Step 1 applied to the k-tuple (tm, . . . , tm+k−1).

Example 2. Encoding obtained by the chronological ordering of equal values (4.1, 4.1, 4.1, 5, 2.1)→ (1, 1, 2, 3, 1)
for k = 3 and j = 5.

Step 2 and Step 3, they coincide with Step 2 and Step 3 in the PE algorithm above.
This algorithm leads, after computing the relative frequencies of the encoding sequences, to the

two-length permutation entropy (TLPE (k, j)).
Given the pair (k, j) of values, the number of symbolic (encoding) sequences of length j is k!kj−k,

which is a number that can be much smaller than j!, so this algorithm is faster, it involves a simplified
computation, and sometimes it makes the results more relevant for big values of j.

We deal with the equal values by using the same method as for PE; that is, we consider them
ordered chronologically.

In the next section, we apply the above techniques and observe their capability to discern the
changes of the parametric Jensen-Shannon statistical complexity of the experimental data.

3. Raw Data Analysis

The raw data set under consideration consists of measured temperatures during a compartment fire:
six thermocouples T1, . . . , T6 measure the temperatures every second during the experiment. Hence,
we get six time series consisting of 3046 entries (data points), and we aim to a better understanding of
these results by modeling the time series using information theory, and to assess the performance of
the discussed statistical complexities.

We plot the parametric Jensen-Shannon statistical complexity against the parameter (for λ ∈
{0, 0.2, . . . , 1}). We notice the unusual plotting for the time series at T5, which is definitely not caused
by the position of this thermocouple. The graph corresponding to the time series at T5 is far from the
rest of the graphs for the other thermocouples; hence, smaller values were obtained for the statistical
complexities, with no apparent experiment related or mathematical reason. See Figures 3–7.

We conclude that the PE and TLPE algorithms can be successfully used to detect unusual data
collected in fire experiments: different embedding dimensions and different algorithms used to determine
the underlying probabilities provide the same conclusion, the hierarchy among the statistical complexities
established for the thermocouples T1–T5 is the same, and T5 is always at a bigger distance from the rest of
them. The position of the thermocouple T5 does not justify this big difference (see Figure 1). This also
agrees with the smaller values provided at T5 by the LMC statistical complexity in Figure 8.

It is not clear in [9] why only the disequilibrium provided by JS has been considered and why JSλ
has been avoided. Using experimental data, we have verified that the parametric Jensen-Shannon
complexity can be used for the analysis of the time series related to the fire dynamics: except for the
trivial cases λ = 0 or 1, the results are not altered by the non-symmetry of JSλ for λ � 0.5 (however,
the embedding dimension j has to be adequate to the amount of data), so one can draw similar
conclusions as for λ = 0.5. See Figure 8 (the plots obtained by PE(3), PE(4), TLPE(3,5), and TLPE(2,5)
look similar, so we do not include them here). We have limitations for the choice of the embedding
dimension j, since the factorial increases fast, and one then requires a bigger amount of data n. So,
as a guideline for choosing the embedding dimension, the value of the statistical complexities remains
relevant for j such that n� j!. See also [18].

Moreover, the proposed parametric Jensen-Shannon statistical complexities complement and
validate the information provided bythe usual LMC and Jensen-Shannon statistical complexities.
See Figures 8 and 9 for a quick comparison to the descriptions provided by the Jensen-Shannon and
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LMC statistical complexities. According to our findings, the parametric Jensen-Shannon statistical
complexity is a valid tool for the analysis of the evolution of the temperature in compartment fire data.
The slight differences that appear between the upper line (corresponding to λ = 0.5) in Figure 9 and
the one in Figure 10 are because the Jensen-Shannon complexity [9] is defined using the normalized
Jensen-Shannon divergence, while we introduced the parametric Jensen-Shannon divergence in the
LMC style, that is without normalizing the disequilibrium.

Figure 3. Plot obtained using the PE(5) algorithm. PE: permutation entropy.

Figure 4. Plot obtained using the PE(4) algorithm.

Figure 5. Plot obtained using the PE(3) algorithm.
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Figure 6. Plot obtained using the TLPE(3,5) algorithm.TLPE: Two-Length Permutation Entropy algorithm.

Figure 7. Plot obtained using the TLPE(2,5) algorithm.

Figure 8. Statistical complexity.
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Figure 9. Jensen-Shannon statistical complexity (λ = 1/2).

λ
λ
λ
λ
λ

Figure 10. Obtained for the parametric Jensen-Shannon complexity using the PE(5)algorithm.

The most relevant aspect is that by applying the formula for the parametric Jensen-Shannon
complexity, one gets similar plots, regardless of the embedding dimension and the encoding type
algorithms used to determine the probability distribution, so the analysis is coherent and not misleading.
Similarities with other in use complexity formulae would certainly improve the whole picture and bring
us one step closer to the understanding of their ability to capture the behavior of various phenomena,
in this particular case the fire dynamics. See Figures 8–10. We remark that these types of similarities
might yield further mathematical results stating relationships among these mathematical notions:
the (parametric) Jensen-Shannon and the LMC complexities.

4. Concluding Remarks on the Limitations of Our Study

The newly proposed complexities are used to analyze a full-scale experimental data set collected
from a compartment fire.

For various algorithms and various embedding dimensions, more comparisons can be performed
from this point onwards. We could not answer the questions about the merits and demerits of the known
statistical complexities: such aspects are not yet clear in the literature, even in other frameworks where the
permutation entropy has already been used by many researchers. Therefore, we discussed the relevance
of the use of statistical complexities in the framework of fire data: small changes in the algorithms
or choosing different embedding dimensions does not affect the interpretation of the results and the
conclusions. This means that this new mathematical tool (the parametric Jensen-Shannon complexity) is
informally staying “stable” in the framework of fire data. The accuracy of the interpretations can definitely
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be improved by the choice of the parameters, but the degree of its change cannot be estimated out of the
data gathered in just one experiment: further research is required.

Other recent results on the analysis of this data set can be found in [19]. To understand this material
the reader is referred to [20]. For the use of the permutation entropy in another framework see [21,22].

Our results might also indicate a turbulenceor a malfunction of the thermocouple T5 (an improperly
calibrated scale); however, it is beyond the scope of the present paper to discuss it in detail.
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Abstract: In this paper, we propose a new asymmetric and heavy-tail model that generalizes both the
skew-t and power-t models. Properties of the model are studied in detail. The score functions and
the elements of the observed information matrix are given. The process to estimate the parameters
in model is discussed by using the maximum likelihood approach. Also, the observed information
matrix is shown to be non-singular at the whole parametric space. Two applications to real data sets
are reported to demonstrate the usefulness of this new model.

Keywords: alpha-power skew-t distribution; skew-t distribution; power-t distribution; asymmetry;
Fisher information matrix; maximum likelihood estimation

1. Introduction

In recent years, there has been considerable interest in the statistical literature related to flexible
families of distributions able of modeling data that present high degree of asymmetry, with kurtosis
index greater or smaller than the captured by normal model. In this context, two proposals that
have shown a promising behavior in this type of situations are the skew-normal (SN) distribution
of Azzalini [1] and the power-normal (PN) distribution of Durrans [2]. The SN distribution has
been widely studied by many authors, and its main drawback is that it presents singular Fisher
information matrix, implying the inference is useless from the theory of large samples using the
maximum likelihood (ML) approach. Although the PN model has a shorter asymmetry range than
SN distribution, it presents non-singular information matrix and can easily be extended to censored
scenarios, as it has a simple distribution function, see, for example, in Martínez-Flórez et al. [3].

The PN model is part of a wide family of distributions known as alpha-power, which has been
widely studied by many authors. In addition to the normal distribution, the Birnbaum–Saunders (BS)
distribution [4] has also been considered, see, for example, in Martínez-Flórez et al. [5], who propose
an extension of the BS distribution based on the asymmetric alpha-power family of distributions to
illustrate the applicability of the new proposal with a data set is related to the lifetimes in cycles ×10−3

n = 101 aluminum 6061− T6 pieces cut in parallel angle to the rotation direction of rolling at the rate
of 18 cycles per second and maximum stress of 21.000 psi. More details of the PN distribution can be
found in Gupta and Gupta [6] and Pewsey et al. [7].

An alternative propose for modeling asymmetric data that unifies the two previous approaches
was introduced by Martínez-Flórez et al. [8]. The proposed model, which is called alpha-power
skew-normal (APSN), has non-singular Fisher information matrix, and it can fit data with much more
asymmetry than PN models it can handle. In addition, symmetry can be tested by using the likelihood
ratio statistic, as the properties of large samples are satisfied for the ML estimator.

Another set of distributions with non-singular information matrices, useful for modeling
asymmetric and heavy-tailed data, are based on generalizations of the Student-t distribution, see,
for example, in [9–13]. Azzalini and Capitanio [9] for example, introduced a skew-t (ST) distribution as

Symmetry 2020, 12, 82; doi:10.3390/sym12010082 www.mdpi.com/journal/symmetry195
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an extension of the SN model for modeling asymmetric and heavy-tailed data as follows; The random
variable X is said to have the ST distribution with parameter λ and degrees of freedom ν, if X has the
probability density function (PDF) given by

fST(x; λ, ν) = 2 fT (x; ν)FT

(
λ

√
ν + 1
x2 + ν

x; ν + 1

)
, x ∈ R (1)

where λ ∈ R is a parameter that controls the skewness of the distribution, and fT (·; ν) and FT (·; ν)

denote the PDF and the cumulative distribution function (CDF) of a standard Student-t distribution with
ν degree of freedom, respectively. The ST distribution, like an extension of the SN model, inherits the
problem of the singularity of the information matrix and before this inconvenience Zhao and Kim [14]
proposed the power Student-t (PT) distribution, whose information matrix is non-singular and for a
given degree of freedom, the kurtosis range surpasses the kurtosis range of the skew-t model at all times.
The PT distribution is defined as follows. The random variable X is said to have the PT distribution
with parameter α, and degrees of freedom ν, if X has PDF given by

fPT(x; α, ν) = α fT (x; ν) [FT (x; ν)]α−1 , x ∈ R (2)

where α > 0 is a parameter that controls the form of the distribution, and, again, fT (·; ν) and FT (·; ν)

denote the PDF and the CDF of a standard Student-t distribution, respectively.
Based on the properties of the ST model, to fit data with high degree of asymmetry and the

characteristic of the PN model to capture kurtosis larger than the normal model, in this paper,
we introduce a new distribution for modeling asymmetric and heavy-tailed data. The proposed
model possess non-singular information matrix, and it is able to fit data with far more asymmetry
than ST and PT models can handle and with large sample properties satisfied for the ML estimator.
The model introduced in this paper is named as alpha-power skew-t (APST) model and it extends
both, ST and PT models. The APSN model by Martínez-Flórez et al. [8] is also a particular case when
ν tends to infinite. Note that symmetry can be tested using the likelihood ratio statistics with its large
sample chi-square distribution.

The rest of this paper is organized as follows. Section 2 introduces the APST model and some of
its properties like moments are studied. In particular, skewness and kurtosis indices are computed
showing that their ranges surpass those of the ST and PT models. Section 3 deals with the ML
estimation for the location-scale situation and its observed information matrix is derived. The extension
to censored data is also presented. Finally, two applications are shown in Section 4, revealing that the
model proposed can present much improvement over competitors.

2. The Alpha-Power Skew-t Distribution

Definition 1. The random variable X is said to have an alpha-power skew-t (APST) distribution, if X has PDF
given by

fAPST(x; λ, α, ν) = α fST(x; λ, ν)
[
FST(x; λ, ν)

]α−1, (3)

for x ∈ R, λ ∈ R, and α, ν ∈ R+. Functions fST(·) andFST(·) denote the PDF and the CDF of the standard ST
distribution. A random variable having fAPST(x; λ, α, ν) distribution is denoted shortly by X ∼ APST(λ, α, ν).

Figure 1 displays the form of the APST distribution for some selected values of the parameters λ

and α for ν = 6. Note from the figure that the asymmetry and kurtosis of the APST distribution are
affected by the parameters α and λ; therefore, the APST model is more flexible to model data that can
be highly skewed, as well as heavier tails than ST and PT models.

The following result provides some special cases of the model (3), which occur for different values
of λ, α, and ν.
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Figure 1. Probability density function of APST(λ, α, 10) for some values of λ and α.

Proposition 1. Let X ∼ APST(λ, α, ν),

(i) if λ = 0, then X ∼ PT(α, ν),
(ii) if α = 1, then X ∼ ST(λ, ν),
(iii) if λ = 0 and α = 1, then X ∼ T(ν), where T(ν) denotes the Student-t disribution with ν degree

of freedom.
(iv) if ν → +∞, then X ∼ APSN(λ, α),
(v) if λ = 0 and ν → +∞, then X ∼ PN(α),
(vi) if α = 1 and ν → +∞, then X ∼ SN(λ),
(vii) if λ = 0, α = 1 and ν → +∞, then X ∼ N(0, 1),

Proof. The proof of (i)–(vii) is immediate from the definition of APST distribution.

2.1. Moments

The following proposition presents an expression to compute the k-th moment of a random
variable APST(λ, α, ν).

Proposition 2. Let X ∼ APST(λ, α, ν), then

E
[
Xk] = E

[(
F−1

ST (Y; λ, ν)
)k
]

(4)

where Y follows a Beta(α, 1) distribution and F−1
ST (·; λ, ν) is the inverse of the function FST(·; λ, ν).

Proof. We have by definition that

E
[
Xk] = ∫

R

xkα fST(x)
(
FST(x; λ, ν)

)α−1dx

thus, letting y = FST(x; λ, ν), then x = F−1
ST (y; λ, ν), it follows that

E
[
Xk] = ∫ 1

0
α
(
F−1

ST (y; λ, ν)
)k

yα−1dy

which is the expected value of the function
(
F−1

ST (Y; λ, ν)
)k

, where Y follows a beta distribution with
parameters α and 1.

The indices of skewness (
√

β1) and kurtosis (β2) of APST distribution can be calculated by using
the moments (4) as follows,
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√
β1 =

μ3 − 3μ1μ2 + 2μ3
1

(μ2 − μ2
1)

3/2
and β2 =

μ4 − 4μ1μ3 + 6μ2μ2
1 − 3μ4

1
(μ2 − μ2

1)
2

where μk = E[Xk] for k = 1, . . . , 4. Table 1 presents the ranges of possible values for the indices of
asymmetry and kurtosis for ST(λ, ν), PT(α, ν), and APST(λ, α, ν) distributions, for values of λ between
−40 and 40, values of α between 0.5 and 50, and for values of ν = 2, 3, 4, 5, 6, 7. It can seen from Table 1
that the length of the admissible intervals for the skewness and the kurtosis parameters of the APST
distribution are larger than the corresponding intervals of the ST and PT distributions. This is an indicator
that the APST model is more flexible in terms of asymmetry and kurtosis than the ST and PT models.

Table 1. Skewness and kurtosis for the models ST(λ, ν), PT(α, ν), and APST(λ, α, ν), for λ ∈ (−40, 40),
α ∈ (0.5, 50) and ν = 2, . . . 7.

Skew−t Power−t Alpha−Power Skew−t

ν Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

2 (−0.963, 0.963) (3.170, 3.489) (−0.119, 3.040) (1.552, 10.436) (−2.452, 14.314) (1.395, 864.385)

3 (−0.950, 0.950) (3.146, 3.357) (−0.086, 1.362) (1.325, 3.223) (−2.130, 4.902) (1.628, 114.098)

4 (−1.853, 1.853) (5.099, 7.824) (−0.530, 1.178) (3.461, 5.299) (−1.898, 3.215) (3.153, 29.874)

5 (−0.947, 0.947) (3.051, 3.327) (−0.475, 0.271) (1.176, 3.130) (−1.968, 3.046) (3.862, 19.925)

6 (−1.681, 1.681) (4.554, 7.279) (−0.533, 1.118) (3.974, 5.173) (−1.681, 2.145) (3.892, 11.893)

7 (−0.944, 0.944) (3.007, 3.367) (−0.710, 0.243) (1.264, 3.082) (−1.535, 2.536) (3.136, 15.924)

2.2. Distribution Function

Proposition 3. Let X ∼ APST(λ, α, ν), then the CDF of X, namely, FAPST(x; λ, α, ν) is

FAPST(x; λ, α, ν) =
[
FST(x; λ, ν)

]α, x ∈ R. (5)

Proof. The proof is immediate and it follows from results of Durrans [2].

The inversion method can be used to generate a random variable with APST distribution.
Thus, taking λ ∈ R, α, ν ∈ R+ and a random variable with uniform distribution, namely, U ∼ U(0, 1),
random variable X with APST(λ, α, ν) distribution is generated by taking

X = F−1
ST

(
U1/α; λ, ν

)
.

Remark 1. We consider a truncated APST(λ, α) distribution to obtain a new and useful lifetime distribution.
A random variable T has a truncated alpha-power skew-t distribution (at zero), denoted by TAPST(λ, α, ν), if
its PDF is given by

f (t) =
α fST(t, λ, ν)

[
FST(t, λ, ν)

]α−1

1−
[
FST(0, λ, ν)

]α ; t > 0 (6)

The survival and hazard rate functions of a random variable T following a TAPST(λ, α, ν) distribution are
given by

ST(t) = P(T > t) =
1−

[
FST(0, λ, ν)

]α −
[
FST(t, λ, ν)

]α

1−
[
FST(0, λ, ν)

]α ; t > 0 (7)

and

hT(t) =
α fST(t, λ, ν)

[
fST(t, λ, ν)

]α−1

1−
[
FST(0, λ, ν)

]α −
[
FST(t, λ, ν)

]α ; t > 0 (8)

respectively.
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2.3. Location and Scale Extension

We can also consider a generalization of a APST distribution by adding location and scale
parameters. The following definition gives a generalization of the APST model.

Definition 2. Let X ∼ APST(λ, α, ν). The APST density of location and scale is defined as the distribution of
Y = μ + σX, for μ ∈ R and σ > 0. The corresponding PDF is given by

fAPST(y; μ, σ, λ, α, ν) =
α

σ
fST

(
y− μ

σ
; λ, ν

)[
FST

(
y− μ

σ
; λ, ν

)]α−1

, x ∈ R, (9)

for λ ∈ R and α, ν ∈ R+. A random variable following a APST distribution of location and scale is denoted by
Y ∼ APST(μ, σ, λ, α, ν).

The k-th moment of a random variable Y ∼ APST(μ, σ, λ, α, ν) can be obtained from the formula

E
[
Yk] = k

∑
i=0

(
k
i

)
μiσk−i

E
[
Xk−i],

where X ∼ APST(λ, α, ν).

3. Statistical Inference for APST Distribution

This section concerns likelihood inference about the parameter vector θ = (μ, σ, λ, α, ν)# of the
location-scale family defined in Equation (9). Let Y = (Y1, . . . , Yn)# be a random sample of the distribution
APST(μ, σ, λ, α, ν). The log-likelihood function for θ = (μ, σ, λ, α, ν)# can be written as follows,

�(θ; Y) ∝ n log α− n log σ− n
2

log ν

+ n log Γ
(

ν + 1
2

)
− n log Γ

(ν

2

)
− ν + 1

2

n

∑
i=1

log

(
1 +

z2
i

ν

)

+
n

∑
i=1

logFT

(
λzi

√
ν + 1
z2

i + ν
; ν + 1

)
+ (α− 1)

n

∑
i=1

logFST
(
zi; λ, ν

)
(10)

where zi = (yi − μ)/σ. Thus, by differentiating the log-likelihood function, we obtain the following
score equations,

∂�(θ; Y)

∂μ
=

ν + 1
σν

n

∑
i=1

zi

(
1 +

z2
i

ν

)−1

− λ

σ

n

∑
i=1

wi

(
1 +

z2
i

ν

)−1
fT
(
λziwi; ν + 1

)
FT

(
λziwi; ν + 1

) − α− 1
σ

n

∑
i=1

fST(zi; λ, ν)

FST(zi; λ, ν)
= 0 (11)

∂�(θ; Y)

∂σ
= −n

σ
+

ν + 1
σν

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−1

− λ

σ

n

∑
i=1

ziwi

(
1 +

z2
i

ν

)−1
fT
(
λziwi; ν + 1

)
FT

(
λziwi; ν + 1

)
− α− 1

σ

n

∑
i=1

zi
fST(zi; λ, ν)

FST(zi; λ, ν)
= 0

(12)
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∂�(θ; Y)

∂λ
=

n

∑
i=1

ziwi
fT
(
λziwi; ν + 1

)
FT

(
λziwi; ν + 1

) − α− 1
π(1 + λ2)

n

∑
i=1

(
1 + (1 + λ2)z2

i /ν
)− ν

2

FST(zi; λ, ν)
= 0, (13)

∂�(θ; Y)

∂α
=

n
α
+

n

∑
i=1

logFST(zi; λ, ν) = 0, (14)

∂�(θ; Y)

∂ν
=

nα

2

(
ψ

(
ν + 1

2

)
− ψ

(ν

2

)
− 1

ν

)
− 1

2

n

∑
i=1

log

(
1 +

z2
i

ν

)

+
ν + 1
2ν2

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−1

+
λ

2ν(ν + 1)

n

∑
i=1

z3
i wi

(
1 +

z2
i

ν

)−1
fT
(
λziwi; ν + 1

)
FT

(
λziwi; ν + 1

)
− λ

2ν(ν + 1)

n

∑
i=1

ziwi

(
1 +

z2
i

ν

)−1
fT
(
λziwi; ν + 1

)
FT

(
λziwi; ν + 1

)
− (α− 1)

2π(ν + 1)
λ

(1 + λ2)

n

∑
i=1

(
1 + (1 + λ2)z2

i /ν
)− ν

2

FST(zi; λ, ν)
+

α− 1
2

n

∑
i=1

g(zi; ν)

FST
(
zi; λ, ν

) = 0 (15)

where ψ(·) is the digamma function, wi =
√

ν+1
x2

i +ν
for i = 1, . . . , n, and g(x; ν) is the function defined by

g(x; ν) =
∫ x

−∞

{
(ν + 1)

ν2 s2
(

1 +
s2

ν

)−1

− log
(

1 +
s2

ν

)}
fST(s; λ, ν)ds

− λ

πν

∫ x

−∞
s
(

1 +
s2

ν

)−1 {
1 + (1 + λ2)

s2

ν

}− ν+2
2

ds (16)

Equations (11)–(15) include nonlinear functions; therefore, it is not possible to obtain explicit forms of
the maximum likelihood estimators (MLEs), and they must be calculated by using numerical methods.
In this work, we used the maxLik function of R Development Core Team [15] which uses the
Newton–Raphson optimization method. The elements of the observed information matrix are easily
obtained after calculating the second derivative of the log-likelihood function and multiplying by −1,
that is,

jθiθk = −
∂�(θ; Y)

∂θi∂θk
, i, k = 1, 2, . . . , 5 (17)

where θ = (μ, σ, λ, α, ν)#. This elements are given in the Appendix A. To find the standard errors (EE)
of the MLEs and calculate confidence intervals, the information matrix I (or Fisher information) must
be calculated, which is defined as the expected value of the second derived from the log-likelihood
function or less the expected value of the Hessian matrix; from this matrix, we calculate the EE as the
diagonal elements of the inverse of this matrix. The elements of the I matrix are obtained as

I(i, k) = −E
(

∂�(θ; Y)

∂θi∂θk

)
, i, k = 1, 2, . . . , 5 (18)

The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was
emphasized by Ronald Fisher following some initial results by Francis Edgeworth, see Lehman and
Casella [16] and Frieden [17] for more details. The Fisher-information matrix is used to calculate the
covariance matrices associated with maximum-likelihood estimates, and it can also be used in the
formulation of test statistics, such as the Wald test.

As the expected value under the APST distribution and the second-order derivatives are not
direct, numerical methods must be used to obtain the explicit form of the information matrix I.
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Therefore, we use the observed information matrix to calculate the standard errors in the rest of the
document.

When ν tends to infinite the ST distribution converges to the SN distribution and we recall that
the information matrix of a random variable X ∼ SN(μ, σ, λ) which is denoted by Iλ(ϕ), where ϕ =

(μ, σ, λ)#, is singular for λ = 0. Therefore, it is convenient to use a centered parameterization of the ST
distribution proposed by Arellano-Valle and Azzalini [18].

The centered parameterization of the SN distribution was proposed as an alternative to the problem
of singularity of the information matrix of the SN when λ = 0. Arellano-Valle and Azzalini [19] proposed
a second representation of the SN by defining a new random variable X as

X = μ + σ

(
Z−E[Z]√

Var[Z]

)
,

where μ ∈ R and σ > 0 are parameters of the random variable X and Z ∼ SN(λ). This representation
is called centered parameterization, as E[X] = μ and Var[X] = σ2 and it is denoted by CSN(μ, σ, γ1),
where −0.9953 < γ1 < 0.9953. Under the centered parameterization model, μ, σ, and γ1 =

√
β1

represent the mean, the standard deviation and the skewness index of X, respectively. If Z ∼ SN(λ)

then E[Z] = bδ and Var[Z] = 1− (bδ)2, where b =
√

2/π and δ = λ/
√

1 + λ2; it has that the random
variable X can be written as X = μ + σZ which has SN(λ1, λ2, λ) distribution, where

λ1 = μ− cσγ1/3
1 , λ2 = σ

√
1 + c2γ2/3

1 , λ =
cγ1/3

1√
b2 + c2(b2 − 1)γ2/3

1

(19)

with c = {2/(4 − π)}1/3. Under this denomination, the information matrix can be written as
Iγ1 = D#IλD, where D is a matrix that represents the derivative of the parameters of the standard
representation (λ1, λ2 and λ) regarding to the new parameters (μ, σ and γ1). It also follows that
the information matrix converges to a diagonal matrix Σ−1

c = diag(σ2, σ2/2, 6) when λ → 0.
This guarantees the existence and uniqueness of the MLEs of λ1 and λ2 for each fixed value of λ.

Following this same line of thought, we suppose that Y follows the model (1) with location
parameter μ ∈ R and scale parameter σ > 0, that is,

fST(y; μ, σ, λ, ν) =
2
σ

fT

(
y− μ

σ
; ν

)
FT

(
λ

√
ν + 1

Qy + ν

(
y− μ

σ

)
; ν + 1

)
, y ∈ R (20)

where λ ∈ R and Qy = ((y− μ)/σ)2. This representation relates to the direct parameterization of the
ST distribution with parameter vector ρ = (μ, σ, λ, ν)#. It follows that ZT = (Y − μ)/σ ∼ ST(λ, ν),
and by the stochastic representation of the ST distribution is given by ZT = Z/

√
V, where Z ∼ SN(λ)

and V ∼ χ2
ν/ν. This entails to compute the first four cumulants of ZT denoted by μ1(δ, ν), μ2(δ, ν),

μ3(δ, ν) and μ4(δ, ν), see [18]. The centered parameterization of the ST distribution of a random
variable Y comes by defining

μt = E[Y] = μ + σμ1(δ, ν) = μ + σbνδ

σ2
t = Var[Y] = σ2μ2(δ, ν) = η2

{
ν

ν− 2
− b2

νδ2
}

,
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γ1t =
μ3(δ, ν)

μ2(δ, ν)3/2 =
bνδ

μ2(δ, ν)3/2

{
ν(3− δ2)

ν− 3
− 3ν

ν− 2
+ 2b2

νδ2
}

γ2t =
μ4(δ, ν)

μ2(δ, ν)2 =
1

μ2(δ, ν)2

⎧⎨⎩ 3ν2

(ν− 2)(ν− 4)
−

4b2
νδ2ν(3− δ2) + 6b2

νδ2ν
ν−2 − 4b4

νδ4

ν− 3

⎫⎬⎭− 3.

The new representation is defined as the centered skew-t distribution with parameter vector
ρ̃ = (μ, σ2, γ1, γ2)

#. According to Arellano-Valle and Azzalini [18], the information matrix of this
representation can be written as

I(ρ̃) = B#I(ρ)B,

where B is a matrix representing the derivative of the parameter vector ρ with respect to the new
vector ρ̃. It can shown that bν → b when ν → ∞, see [18]. Therefore, the parameters of the centered ST
model converge to μt → μ, σ2

t → σ2, and γ1t → γ1 when ν → ∞, that is, the parameters of the CSN.
As ZT → SN(λ) when ν → ∞, it follows that the random variable Y converges to a distribution with
information matrix

I(μ, σ2, γ1, α) =

(
Iθ1θ1 Iθ1,α
I#θ1,α Iα,α

)
, (21)

where the elements of the diagonal correspond to the information of the parameter vector θ1 =

(μ, σ2, γ1) and α, and Iθ1,α is the joint information of θ1 = (μ, σ2, γ1)
# and α. Now, when λ → 0

and α = 1, it can be shown that Iθ1θ1 → diag(σ2, σ2/2, 6), with determinant equal to 0.3333/σ4,
and Iθ1,α = (0.9031/σ,−0.5956/σ, 0.7206)#; therefore, the determinant |I(μ, σ2, γ1, α)| �= 0, and it
concludes that the random variable Y converges to a distribution with information matrix non-singular
when ν tends to infinite.

3.1. Extension to Censored Data

Based on the goodness of the APST distribution to fit asymmetric and heavy-tailed data, in this
section we introduce the censored APST model which we will be denote by CAPST.

Definition 3. Suppose that the random variable Y follows APST distribution, and consider a random sample
Y = (Y1, Y2, . . . , Yn) where only the Yi values greater than a constant k are recorded. In addition, for values
Yi ≤ k only the value of k is recorded. Therefore, for i = 1, 2, . . . , n, the observed values Yo

i can be written as

Yo
i =

{
k, if Yi ≤ k,

Yi, if Yi > k.

The resulting sample is said to be a censored APST, and we say that Y is a censored random variable APST.
We will use the notation Y ∼ CAPST(θ), where θ = (μ, σ, λ, α, ν)#.

From Definition 3 it follows that P(Yo
i = k) = P(Yi ≤ k) = {FST ((k− μ)/σ)}α and for the

observations Yo
i = Yi, the distribution of Yo

i is the same of Yi, i.e., Yo
i ∼ APST(θ). For convenience,

we choose to work with the case of left-censored data; however, the followings results can be extended
to other types of censorship.

3.2. Properties of the CAPST Model

Let Y ∼ CAPST(μ, σ, λ, α, ν),

1. If α = 1, then Y ∼ CST(μ, σ, λ, ν), where CST indicates the censored skew-t model.
2. If λ = 0, then Y ∼ CPT(μ, σ, α, ν), where CPT indicates the censored power-t model.
3. If α = 1 and λ = 0, then Y ∼ CT(μ, σ, ν), that is, the censored Student-t model follows.
4. If ν → +∞, then Y ∼ CAPSN(μ, σ, λ, α), where CAPSN indicates the censored alpha-power

skew-normal model.
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5. If α = 1 and ν → +∞, then Y ∼ CSN(μ, σ, λ), that is, the censored skew-normal model follows.
6. If λ = 0 and ν → +∞, then Y ∼ CPN(μ, σ, α), that is, the censored power-normal model follows.
7. If α = 1, λ = 0 and ν → +∞, then Y ∼ CN(μ, σ2), that is, the censored normal model follows.

The estimates of the parameters of the model can be obtained via maximum likelihood method,
where the log-likelihood function is given by

�(θ; Y) ∝ α ∑
0

logFST

(
k− μ

σ
; λ, ν

)
+ n1 log α− n1 log σ− n1

2
log ν

+ n1 log Γ
(

ν + 1
2

)
− n1 log Γ

(ν

2

)
− ν + 1

2 ∑
1

log

(
1 +

x2
i

ν

)

+ ∑
1

logFT

(
λxi

√
ν + 1
x2

i + ν
; ν + 1

)
+ (α− 1)∑

1
logFST

(
xi; λ, ν

)
where xi = (yi − μ)/σ; ∑1 and ∑0 are the sum over censored individuals and uncensored individuals,
respectively; and n1 is the number of uncensored individuals.

4. Real Data Applications

In this section, we illustrate the applicability of the proposed model in Section 2 by analyzing
two data sets. We use the statistical software R [15], version 3.5.3 with the package maxLike for
maximizing the corresponding likelihood functions. For comparing purposes of various models,
the AIC Akaike [20], BIC Schwarz [21], and corrected AIC (CAIC) Bozdogan [22] information criteria
were used.

4.1. Application 1: Volcano Heights Data

Consider the data set related to heights of 1520 volcanoes in the world which is available in
website dx.doi.org/10.5479/si.GVP.VOTW4-2013 [23]. Table 2 presents the summary statistics for the
data set. It can be noted that the asymmetry and kurtosis indices seem to indicate that the use of an
asymmetric and heavy-tailed model is appropriate to analyze this data set. We analyzed these data by
fitting the Student-t, ST, PT, and APST distributions.

Table 2. Volcano heights data: Statistical summary.

n Mean Variance
√

b1 b2

1520 16.7760 15.6682 0.6461 4.3809

Table 3 shows the parameter estimates, together with their corresponding standard errors (SE).
Note that the values of the standard errors of the μ and σ estimates for the APST model are smaller than
the corresponding standard errors of the respective parameters for the Student-t, ST, and PT models.
Table 3 also presents some model selection criteria, together with the values of the log-likelihood.
The AIC, BIC, and CAIC criteria indicate that the APST model seems to provide better fit to the
volcanoes heights data than the T, ST, and PT models, supporting the asymmetry assertion of the
volcano’s heights variable. Figure 2 shows the graphs QQplot of the fitted models. It can be clearly
seen from the figure that the APST model fits the data better than the Student-t, ST, and PT models. In
addition, we can use the likelihood ratio (LR) test statistic to conform our claim. To do this, we consider
the following hypotheses,

H0 : (λ, α) = (0, 1) (T(μ, σ, ν)) v.s H1 : (λ, α) �= (0, 1) (APST(μ, σ, λ, α, ν)),
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The value of the LR test statistic is −2 log(Λ) = −2
(
�T(θ̂)− �APST(θ̂)

)
=134.823 and comparing

this quantity with χ2
2 =5.9914, the null hypotheses is rejected. The APST model is also compared with

the ST and PT models by considering the hypotheses

H01 : α = 1 (ST(μ, σ, λ, ν)) v.s H11 : α �= 1 (APST(μ, σ, λ, α, ν)),

and
H02 : λ = 0 (PT(μ, σ, α, ν)) v.s H12 : λ �= 0 (APST(μ, σ, λ, α, ν)),

respectively. The respective values of the LR test statistic are given by −2 log(Λ1) = −2
(
�ST(θ̂)−

�APST(θ̂)
)
=26.620 and−2 log(Λ2) = −2

(
�PT(θ̂)− �APST(θ̂)

)
=45.660 and comparing these quantities

with χ2
1 =3.8414, both null hypotheses are rejected. Finally, Figure 3left shows the histogram of the

volcano heights variable, whereas Figure 3right presents the empirical CDF (solid line) together with
the CDF of the fitted APST model (dotted line).
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Figure 2. Volcano height data: QQplot for Student-t, ST, PT, and APST models.
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Figure 3. (Left) Graph of fitted densities to volcano height data. (Right) Empirical CDF and CDF of
fitted APST model.

Table 3. Parameter estimates (SE) for the fitted models to the volcano height data.

Distribution

Estimates Student-t ST PT APST

μ̂ 14.7835(0.3615 ) 4.7469(0.6892) 8.4027(0.7923) 11.5509(0.1337)
σ̂ 11.0045(0.3975) 14.1532(0.7237) 11.8146(0.4707) 22.6885(0.0792)
λ̂ – 1.5673(0.1838) – 5.2347(0.2870)
α̂ – – 1.7912(0.1147) 0.3205(0.0347)
ν̂ 3.4156(0.3601) 3.4075(0.3454) 2.7473(0.2566) 12.8734(2.9729)
�̂ −6273.35 −6219.25 −6228.77 −6205.94
AIC 12,552.70 12,446.49 12,465.53 12,421.87
BIC 12,568.68 12,467.79 12,486.53 12,448.50
CAIC 12,571.68 12,471.79 12,490.83 12,453.50

4.2. Application 2: Stellar Abundances Data

The second data set is related to measurements for 68 solar-type stars, which are available
in the package astrodatR of the software R [24] under the name Stellar abundances. These data were
previously analyzed Mattos et al. [25] by using the Scale Mixture of Skew Normal Censored Regression
(SMSNCR) models. We take only the response variable: log N(Be), which represents the log of the
abundance of beryllium scaled to Sun’s abundance (i.e., the Sun has log N(Be) = 0.0)

In astronomical research, a previously identified sample of objects (stars, galaxies, quasars, X-ray
sources, etc.) is observed at some new wavebands. According to Feigelson [24], due to limited
sensitivities, some objects may be undetected, leading to upper limits in their derived luminosities.
For this dataset we have 12 left-censored data points, i.e., 12 undetected beryllium measurement,
that represents 19.35% of observations. Table 4 presents the ML estimates for the parameters of the
censored Studen-t (CT), censored skew-t (CST), censored power-t (CPT), and censored alpha-power
skew-t (CAPST) models, together with their corresponding standard errors. Table 4 also compares
the fit of the four models using the model selection criteria (AIC, CAIC and BIC). Note that, again,
the CAPST model with heavy tails have better fit than the CT, CST, and CPT models.

To identify atypical observations and/or model mispecification, we analyzed the transformation
of the martingale residual, rMTi , proposed in Barros et al. [26]. These residuals are defined by

rMTi = sign(rMi)
√
−2[rMi + δi log(δi − rMi )], i = 1, . . . , n

where rMi = δi + log S(yi; θ̂) is the martingal residual proposed by Ortega et al. [27], where δi = 0, 1
indicates whether the i-th observation is censored or not, respectively; sign(rMi) denotes the sign of
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rMi; and S(yi; θ̂) = Pθ̂(Yi > yi) represents the survival function evaluated at yi, where θ̂ are the MLE
for θ. The plots of rMTi with generated confidence envelopes are presented in Figure 4. From this
figure, we can see clearly that the CST, CPT, and CAPST models fit better the data than the CT model,
since, in that cases, there are not observations which lie outside the envelopes. The Figure 5 shows the
graph of the densities of the different models fitted to the stellar abundances data. From the figure, the
CAPST model seems to fit better the stellar abundances data than CT, CST and CPT models.

Table 4. Parameter estimates (SE) for the fitted models to the stellar abundances data.

Distribution

Estimates CT CST CPT CAPST

μ̂ 1.0314(0.0010) 1.2306(0.0018) 1.2098(0.0052) 1.1761(0.0054)
σ̂ 0.1596(0.0012) 0.2712(0.0058) 0.0818(0.0008) 0.0905(0.0020)
λ̂ – −3.5655(3.7748) – 0.6580(0.5031)
α̂ – – 0.1705(0.0208) 0.1518(0.0251)
ν̂ 0.9974(0.0884) 1.2501(0.1774) 6.0927(0.7501) 6.0999(0.7326)
�̂ −29.50743 −18.87016 −17.67113 −14.80241
AIC 65.01487 45.74033 43.34227 39.60482
BIC 71.67339 54.61836 52.22030 50.70236
CAIC 59.38987 38.37525 35.97719 30.57256
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Figure 4. Stellar abundances data. Envelopes of transformed martingale residuals for CT, CST, CPT,
and CAPST models.
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Figure 5. Graph of fitted densities to stellar abundances data.

5. Conclusions

In this work, a new asymmetric model has been introduced. It is based on the combination of
skew-t [1] and power-t [2] models. The new model presents greater ranges of asymmetry and kurtosis,
which is very useful for modeling skewed and heavy-tailed data. The problem of estimating the
parameters in the model is dealt by using the maximum likelihood approach which is also used for
developing large sample properties for the estimators. The elements of the observed information
matrix are analytically obtained. The likelihood ratio statistics can be used for testing the APST null
hypothesis since the Student-t, ST, and PT models are special cases of the model entertained. Two
applications to volcano heights data and stellar abundances data indicate that the proposed model can
be a useful alternative to the ST and PT models.
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Appendix A

In this section, expressions for the elements of the observed information matrix of the alpha-power
skew-t model are provided. Initially we suppose that Y ∼ APST(μ, σ, λ, α, ν), and for i = 1, . . . , n

we define zi = (yi − μ)/σ, wi =
√
(ν + 1)/(z2

i + ν), r1(z; ν) = fT(z; ν)/FT(z; ν), r2(z; λ, ν) =

fST(z; λ, ν)/FST(z; λ, ν), and r3(z; λ, ν) =
(
1 + (1 + λ2) z2

ν

)− ν
2 /FST(z; λ, ν). Denoting the elements

of the observed information matrix of the APST model by jμμ, jμσ, . . . , jαα, and after some algebraic
manipulations, we obtain
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ψ
(ν + 1

2

)
− ψ

(ν
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+
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4π2(ν + 1)2
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[
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where g(z; ν) is given in Equation (16), and g1(z; ν) and g2(z; ν) are given in Equations (A1) and (A3),
respectively.

213



Symmetry 2020, 12, 82

g1(x; ν) =
∫ x
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References

1. Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178.
2. Durrans, S.R. Distributions of fractional order statistics in hydrology. Water Resour. Res. 1992, 28, 1649–1655.

[CrossRef]
3. Martínez-Flórez, G.; Bolfarine, H.; Gómez, H.W. The alpha–power tobit model. Commun. Stat. Theory Methods

2013, 42, 633–643. [CrossRef]
4. Birnbaum, Z.W.; Saunders, S.C. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [CrossRef]
5. Martínez-Flórez, G.; Bolfarine, H.; Gómez, H.W. An alpha-power extension for the Birnbaum-Saunders

distribution. Statistics 2014, 48, 896–912. [CrossRef]
6. Gupta, R.D.; Gupta, R.C. Analyzing skewed data by power-normal model. Test 2008, 17, 197–210. [CrossRef]
7. Pewsey, A.; Gómez, H. W.; Bolfarine, H. Likelihood–based inference for power distributions. Test 2012, 21,

775–789. [CrossRef]
8. Martínez-Flórez, G.; Bolfarine, H.; Gómez, H.W. Skew-normal alpha-power model. Stat. J. Theor. Appl. Stat.

2014, 48, 1414–1428. [CrossRef]
9. Azzalini, A.; Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a

multivariate skew-t distribution. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2003, 65, 367–389. [CrossRef]
10. Branco, M.D.; Dey, D.K. General class of multivariate skew-elliptical distributions. J. Multivar. Anal. 2001, 79,

99–113. [CrossRef]
11. Durrans, S.R. Multivariate skew t-distribution. Stat. J. Theor. Appl. Stat. 2003, 37, 359–363.
12. Sahu, S.K.; Dey, D.K.; Branco, M.D. A new class of multivariate skew distributions with applications to

Bayesian regression models. Can. J. Stat. 2003, 31, 129–150. [CrossRef]
13. Jones, M.C.; Faddy, M.J. A skew extension of the t-distribution, with Applications. J. R. Stat. Soc. Ser. B

(Stat. Methodol.) 2003, 65, 159–174. [CrossRef]

214



Symmetry 2020, 12, 82

14. Zhao, J.; Kim, H.M. Power t distributions. Commun. Stat. Appl. Methods 2016, 23, 321–334.
15. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for

Statistical Computing: Vienna, Austria, 2018. Available online: http://www.R-project.org (accessed on 10
October 2019).

16. Lehman, E.L.; Casella, G. Theory of Point Estimation, 2nd ed.; Springer: New York, NY, USA, 1998.
17. Frieden, B.R. Science from Fisher Information: A Unification; Cambridge Univerisity Press:

Cambridge, UK, 2004.
18. Arellano-Valle, R.B.; Azzalini, A. The centered parameterization and related quantities of the

skew–t distribution. J. Multivar. Anal. 2013, 113, 73–90. [CrossRef]
19. Arellano-Valle, R.B.; Azzalini, A. The centered parametrization for the multivariate skew-normal distribution.

J. Multivar. Anal. 2008, 99, 1362–1382. [CrossRef]
20. Akaike, H. A new look at statistical model identification. IEEE Trans. Autom. Contr. 1974, 19, 716–722.

[CrossRef]
21. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
22. Bozdogan, H. Model selection and akaike’s information criterion (AIC): The general theory and its analytical

extensions. Psychometrika 2010, 52, 345–370. [CrossRef]
23. Siebert, L.; Simkin, T.; Kimberly, P. Global Volcanism Program. In Volcanoes of the World; v. 4.6.0.;

Venzke, E., Ed.; Smithsonian Institution: Washington, DC, USA, 2013. Available online: https://doi.
org/10.5479/si.GVP.VOTW4-2013 (accessed on 10 October 2019).

24. Feigelson, E.D. astrodatR: Astronomical Data. R Package v. 0.1. Available online: http://CRAN.R-project.
org/package=astrodatR (accessed on 10 October 2019).

25. Mattos, T.; Garay, A.M.; Lachos, V.H. Likelihood-based inference for censored linear regression models with
scale mixtures of skew-normal distributions. J. Appl. Stat. 2018, 45, 2019–2066. [CrossRef]

26. Barros, M.; Galea, M.; González, M.; Leiva, V. Influence diagnostics in the tobit censored response model.
Stat. Methods Appl. 2010, 19, 379–397. [CrossRef]

27. Ortega, E.M.; Bolfarine, H.; Paula, G.A. Influence diagnostics in generalized log-gamma regression models.
Comput. Stat. Data Anal. 2003, 42, 165–186. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

215





symmetryS S
Article

A Test Detecting the Outliers for Continuous
Distributions Based on the Cumulative Distribution
Function of the Data Being Tested

Lorentz Jäntschi 1,2

1 Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj, Romania;
lorentz.jantschi@chem.utcluj.ro or lorentz.jantschi@gmail.com

2 Chemical Doctoral School, Babes, -Bolyai University, 400084 Cluj-Napoca, Romania

Received: 12 June 2019; Accepted: 24 June 2019; Published: 25 June 2019

Abstract: One of the pillars of experimental science is sampling. Based on the analysis of samples,
estimations for populations are made. There is an entire science based on sampling. Distribution of
the population, of the sample, and the connection among those two (including sampling distribution)
provides rich information for any estimation to be made. Distributions are split into two main groups:
continuous and discrete. The present study applies to continuous distributions. One of the challenges
of sampling is its accuracy, or, in other words, how representative the sample is of the population from
which it was drawn. To answer this question, a series of statistics have been developed to measure
the agreement between the theoretical (the population) and observed (the sample) distributions.
Another challenge, connected to this, is the presence of outliers - regarded here as observations
wrongly collected, that is, not belonging to the population subjected to study. To detect outliers,
a series of tests have been proposed, but mainly for normal (Gauss) distributions—the most frequently
encountered distribution. The present study proposes a statistic (and a test) intended to be used
for any continuous distribution to detect outliers by constructing the confidence interval for the
extreme value in the sample, at a certain (preselected) risk of being in error, and depending on the
sample size. The proposed statistic is operational for known distributions (with a known probability
density function) and is also dependent on the statistical parameters of the population—here it is
discussed in connection with estimating those parameters by the maximum likelihood estimation
method operating on a uniform U(0,1) continuous symmetrical distribution.

Keywords: test for outliers; order statistics; extreme values; confidence intervals; Monte-Carlo simulation

1. Introduction

Many statistical techniques are sensitive to the presence of outliers and all calculations, including
the mean and standard deviation can be distorted by a single grossly inaccurate data point. Therefore,
checking for outliers should be a routine part of any data analysis.

To date, several tests have been developed for the purpose of identifying outliers of certain
distributions. Most of the studies are connected with the Normal (or Gauss) distribution [1]. The first
paper that attracted attention on this matter is [2] and this was followed by studies that identified the
derivation of the distribution of the extreme values in samples taken from Normal distributions [3].
Then, a series of tests were developed by Thompson in 1935 [4], these were subjected to evaluation [5],
and revised [6,7].

For other distributions such as the Gamma distribution, procedures for detecting outliers were
proposed [8], revised [9], and unfortunately proved to be inefficient [10].

The first attempt to generalize the criterion for detecting outliers for any distribution can be found in [11],
but further research on this subject is scarce apart from a notable recent attempt by Bardet and Dimby [12].

Symmetry 2019, 11, 835; doi:10.3390/sym11060835 www.mdpi.com/journal/symmetry217
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The Grubbs test is a frequently used test for detecting the outliers of a Normal distribution [7].
For a sample (x), the Grubbs’ test statistic takes the largest absolute deviation from the sample mean (x)
in units of the sample standard deviation (s) in order to calculate the risk of being in error (αG) when
stating that the most departed values from the mean (min(x), max(x) or both) are not outliers (see Table 1).
The associated probabilities of the observed (pG) are obtained from the Student t distribution [13].

Table 1. The Grubbs statistic.

Sample statistic (G) Associated probability (pG = 1-αG) Equation

G“min” =
x−min(x)

s αG = n·CDF“Student t”

(
−

√
n(n−2)

( n−1
G )

2−n
, n− 2

)
(1)

G“max” =
max(x)−x

s

G“all” = max(G“min”, G“max”) αG = 2n·CDF“Student t”

(
−

√
n(n−2)

( n−1
G )

2−n
, n− 2

)
(2)

One should note that the Grubbs test statistic produces a symmetrical confidence interval
(see Equations (1) and (2)). The Grubbs statistic as given in Table 1, is intended to be used with the
parameters of the population (μ and σ), which are determined using the central moments (CM) method

(μ̂ = x =
∑

x/n; σ̂ = s = (
∑
(x− x)2)

1/2
/n).

Here, a method is proposed for constructing the confidence intervals for the extreme values of any
continuous distribution for which the cumulative distribution function is also obtainable. The method
involves the direct application of a simple test for detecting the outliers. The proposed method is
based on deriving the statistic for the extreme values for the uniform distribution. Also, the proposed
method provides a symmetrical confidence interval in the probability space.

2. Materials and Methods

The Grubbs test (Table 1) is based on the fact that if outliers exist, then these are “localized” as the
maximum value and/or the minimum value in the dataset. Thus, the Grubbs test is essentially a sort of
order statistic [14].

Some introductory elements are required for describing the proposed procedure. When a sample
of data is tested under the null hypothesis that it follows a certain distribution, it is intrinsically
assumed that the distribution is known. The usual assumption is that we possess its probability
density function (PDF, for a continuous distribution) or its probability distribution function (PDF
for a discrete distribution). The discussion below relates to continuous distributions, although the
treatment of discrete distributions are similar to certain degree. Nevertheless, a major distinction
between continuous and discrete distributions in the treatment of data is made here; that is, a continuous
distribution is “dense”, e.g., between any two distinct observations it is possible to observe another
while in the case of a discrete distribution, this is generally not true.

Even when the PDF is known (possibly intrinsically), its (statistical) parameters may not necessarily
be known, and this raises the complex problem of estimating the parameters of the (population)
distribution from the sample; however, this issue is outside the scope of this paper. In general,
the estimation of the parameters of the distribution of the data is biased by the presence of the
outliers in the data, and thus, identifying the outliers along with the estimation of the parameters
of the distribution is a difficult task because two statistical hypotheses are operating. Assuming
that the parameters (“parameters”) of the distribution (of the PDF) are obtained using the maximum
likelihood estimation method (MLE, Equation (3); see [15]), there is some suggestion that the uncertainty
accompanying this estimation is transmitted to the process of detecting the outliers.∏

PDF(X; “parameters”)→ max. ⇒
∑

ln (PDF(X; “parameters”))→ min. (3)
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It should be noted that Equation (3) is a simplified version of the MLE method, since the real use
of it requires and involves partial derivatives of the parameters; see Source code (MathCad language)
for the MLE estimations in the Supplementary Materials available online.

Either way (whether the uncertainty accompanying this estimation is transmitted to the process
of detecting the outliers or not), once an estimate for the parameters of the distribution is available,
a test (most desirably, a test based on a statistic) for detecting the presence of an outlier must provide
the probability of observing that (assumed) “outlier” as a randomly drawn value from the distribution.
What to do next with the probability is another statistical “trick”: to observe a value with a probability
less than an imposed “level” (usually 5%) is defined as an unlikely event, and therefore, the suspicion
regarding the presence of the outlier is justified. With regard to the statistical “trick” mentioned
above, the opinion of the author of this manuscript is that one “observation” is not enough. Actually,
there should be a series of observations, that come from a series of statistics, each providing a probability.
Then, the unlikeliness of the event can be safely ascertained by using Fisher’s “combining probability
from independent tests” method (FCS, Equation (4); see [16–18]:

−
∑τ

i=1
ln (pi) ∼ χ2(τ) → αFCS = 1−CDFχ2(−

∑τ

i=1
ln (pi); τ) (4)

where p1, . . . , pτ are probabilities from τ independent tests, CDFχ2 is the χ2 cumulative distribution
function (see also up until Equation (6) below), and pFCS is the combined probability from
independent tests.

Taking the general case, for (x1, . . . , xn) as n independent draws (or observations) from a (assumed
known) continuous distribution defined by its probability density function, PDF (x; (πj)1≤j≤m) where
(πj)1≤j≤m are the (assumed unknown) m statistical parameters of the distribution, by way of integration
for a (assumed known) domain (D) of the distribution, we may have access to the associated cumulative
density function (CDF) CDF(x; (πj)1≤j≤m; PDF), simply expressed as (Equation (5)):

CDF(x; (πj)1≤j≤m) =

∫ x

inf(D)
PDF(x; (πj)1≤j≤m) (5)

where inf(D) was used instead of min(D) to include unbounded domains (e.g., when inf(D) = -∞; “inf”
stands for infimum, “min” stands for minimum). Please note that having the PDF and CDF does
not necessarily imply that we have an explicit formula (or expression) for any of them. However,
with access to numerical integration methods [19], it is enough to have the possibility of evaluating
them at any point (x).

Unlike PDF(x; (πj)1≤j≤m), CDF(x; (πj)1≤j≤m) is a bijective function and therefore, it is always
invertible (even if we do not have an explicit formula; let “InvCDF” be its inverse, Equation (6)):

if p = CDF(x; (πj)1≤j≤m), then x = InvCDF(p; (πj)1≤j≤m), and vice-versa (6)

CDF(x; (πj)1≤j≤m; “PDF”) is a strong tool that greatly simplifies the problem at hand: the problems
of analyzing any distribution function (PDF) are translated such that only one needs to be analyzed
(the continuous uniform distribution). That is, a series of observed data (xi)1≤i≤n is expressed through
their associated probabilities pi = CDF(xi; (πj)1≤j≤m) (for 1≤i≤n) and the analysis can be conducted on
the (pi)1≤i≤n series instead.

Since the analysis of the (pi)1≤i≤n series of probabilities is a native case of order statistics,
the discussion now turns to order statistics. The first studies in this area were by the fathers of modern
statistics, Karl Pearson [20] and Ronald A. Fisher [3] while the first order statistic applicable to any
distribution (not only the normal distribution) was first studied by Cramér and Von Mises (see [21,22]).
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An order statistic operating on probabilities ((pi)1≤i≤n) will sort the values (let (qi)1≤i≤n be the
series of sorted (pi)1≤i≤n values, Equation (7)) and will assess its departure from the continuous uniform
distribution (where it is assumed that SORT is a procedure that sorts ascending the values).

(qi)1≤i≤n ← SORT((pi)1≤i≤n) (7)

Since the assessment of the departure from the continuous uniform distribution cannot be
made directly, the use of a series of order statistics was proposed by several authors including:
Cramér and Von Mises [21,22], Kolmogorov-Smirnov [23–25], Anderson-Darling [26,27], Kuiper V [28],
Watson U2 [29], and the H1 Statistic [18]; see Equation (8). They remain in use today.

For instance, the Kolmogorov-Smirnov (KS) method (see Equation (8); the Kolmogorov-Smirnov
statistic) calculates the KSStatistic and later tests the value (from a sample) against the threshold of
a chosen significance level (usually 5%).

In order to have certain thresholds for a series of significance levels, these statistics can be derived
from Monte-Carlo (“MC”) simulations [30], and deployed for a large number of samples in order to
reflect, as best as possible, the state of the population.

KSStatistic =
√

n·max
1≤i≤n

(qi − i−1
n , i

n−qi)

KVStatistic =
√

n·(max
1≤i≤n

(qi − i−1
n ) + max

1≤i≤n
( i

n−qi))

ADStatistic = −n− 1
n ·

n∑
i=1

(2i− 1)· ln(qi·(1− qn−i))

CMStatistic =
1

12n +
n∑

i=1
( 2·i−1

2·n −qi)
2

WUStatistic = CMStatistic + ( 1
2 − 1

n

n∑
i=1

qi)
2

H1Statistic = −
n∑

i=1
qi· ln(qi) −

n∑
i=1

(1− qi)· ln(1− qi)

(8)

3. Proposed Outlier Detection Statistic

A statistic was developed to be applicable to any distribution. For a series of probabilities
((pi)1≤i≤n) or (sorted probabilities, (qi)1≤i≤n) associated with a series of (repeated drawing) observations
((xi)1≤i≤n), the (ri)1≤i≤n differences are calculated as Equation (9):

ri =
∣∣∣pi − 0.5

∣∣∣, for 1 ≤ i ≤ n (9)

The statistic called “g1” (see below) was generated based on the formula given in Equation (9)
(given as Equation (10)).

g1 = max
1≤i≤n

ri (10)

It should be noted that Equations (9) and (10) provide the same result regardless of whether the
calculation is made on a sorted series of probabilities ((qi)1≤i≤n) or not (then it is made on (pi)1≤i≤n).

Regarding the name of this new proposed statistic (“g1”), when Equations (1) and (2) (G“min”,
G“max”, G“all”) and Equation (9) are compared, for a standard normal distribution N(x; μ=0,σ=1)
the equation defining G“all” becomes much more like Equation (9), with the difference being that in
Equation (2) the sample mean (x) is used as an estimate for the mean of the population (μ) and the
sample standard deviation (s) is used as an estimate for the standard deviation of the population (σ)
while Equation (9) basically expresses the same in terms of associated probabilities (pi = P(X ≤ xi) =
CDF“Normal”(xi; μ,σ), 0.5 = P(X ≤ μ) = CDF“Normal”(μ; μ,σ)).

Therefore, the proposed statistic very much resembles the Grubbs test for normality (and hence its
name). One difference is that in the Grubbs test sample statistics are used to calculate the sample G“all”

value (x and s), thereby reducing the degrees of freedom associated with the value (from n to n-2) while
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for the g1 value (and statistic) the degrees of freedom remain unchanged (n). The major difference
is actually the one that makes the proposed statistic generalizable to any distribution—the mean
used in the Grubbs test is replaced by the median—the beauty of this change is that for symmetrical
distributions (including a Normal distribution) these two coincide.

A further connection with other statistics must also be noted. If any sample is resampled by
extracting only the smallest and the largest of its values, then the Kolmogorov-Smirnov statistic for
those subsamples almost perfectly resembles (by setting n = 2 in Equations (8)–(1)) the proposed
“g1” statistic.

Since CDF is a bijective function (see Equation (6)), the proposed generalization of the Grubbs
test for detecting the outliers for Normal distribution into the “g1” statistic for detecting the outliers
for any distribution is a natural extension of it. The “g1” test associated with the “g1” statistic
will be able to operate in the probability space ((pi)1≤i≤n or (qi)1≤i≤n) instead of the observed space
((xi)1≤i≤n), the calculation formula (Equations (9) and (10)) is slightly different (to those given in
Equations (1) and (2)), and the probability associated with the departure will no longer be extracted
from the Student t distribution (as in Equations (1) and (2)). The change from mean (μ for G“all”) to
median (0.5 in Equation (9)) is a safe extension for any distribution type, since Equation (9) measures
(or accounts for) the extreme departures from the equiprobable point—having an observation y
(y← X) with y ≤ InvCDF“Any distribution”(0.5; “parameters”) and an observation z (z← X) with z ≥
InvCDF“Any distribution”(0.5; “parameters”) is equiprobable.

One way to associate a probability with the “g1” statistic is to do a Monte-Carlo (MC) simulation.

4. Simulation Study

A MC study was conducted. Two different strategies were developed in order to deal efficiently
with a very large amount of data, and specifically, to solve the order statistics problem (that is, first
sampling from the uniform distribution, and later using Equations (7)–(10). One of those alternatives
has been described in [14] and the other is described below. Table 2 shows the details of the conducted
MC study.

Table 2. Details of the MC simulation on “g1” outlier detection statistic.

Parameter Meaning Setting

n sample size of the observed from 2 to 12
m sample size of the MC simulation 108

p control points for the probability 999
resa internal resamples (repetitions) 10
repe external repetitions 7

For each sample size of the observed n in each run m samples (see Table 2) were generated from
the standard uniform continuous distribution (e.g., from the [0, 1] interval). The outlier detection
statistic “g1” was calculated (Equations (9) and (10)). From a large pool of sampled and resampled
data (m·resa·repe = 7·109 in Table 2, repetitions were joined (n, p, g1) as pairs from the p·n control
points, that is, where the probability was from 0.001 to 0.999 with a step of 0.001 for each n (from 2 to
12). The external repetitions (resa = 7 in Table 2) were joined together by taking the median (since the
median is a sufficiency statistic [31] for any order statistic such as in the extraction of (n, p, g1) pairs
from the p·n control points). The MC simulation was conducted with the configuration set as defined
in Table 2. The obtained data were recorded in separate files by sample size and analyzed as such.

The objective associated (with any statistic) is to obtain the cumulative distribution function (CDF,
Equation (5)), and thus by evaluating the CDF for the value of the statistic obtained from the sample
(Equations (9) and (10)) to obtain a probability for the sampling. Please note that only in the lucky
cases are we able to do this; Generally only the critical values (values corresponding to certain risks
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of being in error) or approximation formulas are available (see for instance [21,24,26,28,29]). Here,
the analytical CDF formula was obtained for the “g1” outlier detection statistic.

5. The Analytical Formula of CDF for g1

The “g1” statistic have a very simple calculation formula (see Equation (9)) and, as expected, its
CDF formula is also very simple (see Equation (11)). Thus, for a calculated sample statistic g1 (x← g1
in Equation (11)), the significance level (α← 1-p) is immediate (Equation (11), where P represents the
probability that the random variable X takes on a value less than or equal to x).

p = CDF“g1”(x; n) = P(X ≤ x) = (2·x)n, α = 1− p = 1− (2·x)n (11)

6. Simulation Results for the Distribution of the “g1” Statistic

The results of the simulation for n varying from 2 to 10 were sufficient to provide a clear indication
of the analytical formula for the CDF of “g1”. Descriptive statistics including Standard Error (SE,
the standard error formula is given as Equation (12)) between the expected probability (from MC
simulation) and the calculated probability (from Equation (11), p̂i ← (2·xi)

n ) and the highest positive
and highest negative departures are given in Table 3.

SE =

√√√
1

999

999∑
i=1

(pi − p̂i)
2, pi =

i
1000

(12)

Table 3. Descriptive statistics for the agreement in the calculation of the “g1” statistic (Equation (10)
vs. Equation (11)).

n SE min(pi−p̂i) max(pi−p̂i)

2 2.9 × 10−6 −7.9 × 10−6 at p = 0.694 5.7 × 10−6 at p = 0.427
3 5.6 × 10−6 −1.2 × 10−5 at p = 0.787 1.6 × 10−6 at p = 0.118
4 2.2 × 10−6 −5.6 × 10−6 at p = 0.234 3.7 × 10−6 at p = 0.613
5 6.0 × 10−6 −1.2 × 10−5 at p = 0.546 2.3 × 10−6 at p = 0.080
6 3.5 × 10−6 −5.8 × 10−6 at p = 0.797 9.2 × 10−6 at p = 0.196
7 5.0 × 10−6 −9.6 × 10−6 at p = 0.777 3.8 × 10−6 at p = 0.035
8 4.2 × 10−6 −8.4 × 10−6 at p = 0.675 3.9 × 10−6 at p = 0.948
9 3.3 × 10−6 −9.1 × 10−6 at p = 0.269 7.9 × 10−6 at p = 0.689
10 2.8 × 10−6 −6.4 × 10−6 at p = 0.443 6.6 × 10−6 at p = 0.652

As can be observed in Table 3 the standard error (SE) slowly decreases beginning with n = 7, being
two orders of magnitude smaller (actually it is about 200 times smaller) than the step from the MC
experiment. Since the standard error alone is not proof that Equation (11) is the true CDF formula
for providing the probability for the g1 statistic, the smallest and the highest difference between the
observed and the expected probabilities are also given in Table 3. They substantiate that Equation (11)
is indeed the right estimate for the CDF of g1. For convenience, Figure 1 shows the value of the error in
each observation point (999 points corresponding to p = 0.001 up to p = 0.999 for each n from 2 to 12).
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Figure 1. Departures between expected and observed probabilities for g1 statistic (Equation (10)
vs. Equation (11)).

Regarding the estimation error (of the “g1” statistic) depicted in Figure 1, the “g1” statistic is
rarely bigger than 10−5, never bigger than 1.5·× 10−5 and tends to become smaller with the increase in
sample size (n). Using Equation (11), Figure 2 depicts the shape of the CDF“g1”(x;n).

With regard to the “g1” statistic (depicted in Figure 2), the domain for a variable distributed by
the “g1” statistic (see Equation (11)) has values between 0 and 0.5 with the mode at p = 0 (a vertical
asymptote at p = 0), a median of n−1·2−1/n (and having a left asymmetry decreasing with the increasing
of n and converging (for n→∞) to symmetry) and mean of 1/2(n+1).

Figure 2. CDF“g1”(x;n) for n = 2 to n = 20.
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The expression of CDF“g1” is easily inverted (see Equation (13)).

CDF“g1”(x; n) = (2x)n → InvCDF“g1”(p; n) = n√p/2 (13)

7. from “g1” Statistic to “g1” Confidence Intervals for the Extreme Values

Equation (13) can be used to calculate the critical values of the “g1” statistic for any values of α
(α← 1-p) and n. The critical values of the “g1” statistic acts as the boundaries of the confidence intervals.

By setting the risk of being in error α (usually at 5%), then p = 1-α and Equation (13) can be used
to calculate the statistic associated with it (InvCDF“g1”(1-α;n) = n√1− α/2). By placing this value into
Equations (9) and (10), the (extreme) probabilities can be extracted (Equation (14)).

max
1≤i≤n

∣∣∣pi − 0.5
∣∣∣ = n√

1− α/2. → pextreme(α) = 0.5 ± n√
1− α/2 (14)

One should note that the confidence interval defined by Equation (14) is symmetric.
In order to arrive at the confidence intervals for the extreme values in the sampled data (Equation (15))

it is necessary to use the inverse of the CDF (again), and for the distribution of the sampled data.

xextreme(α) = InvCDF“Distribution”(0.5± n√
1−α/2; “parameters”) (15)

To illustrate the calculation of the confidence intervals for the extreme values in the sampled data,
a series of 206 data was chosen from [32]. The data were tested against the assumption that it follows
a generalized Gauss-Laplace distribution (Equation (16), a symmetrical distribution), and later if there
were some observations suspected to be outliers. The steps of this analysis and the obtained results are
given in Table 4.

PDF“GL”(x;μ,σ, k) = c1σ
−1e−|c0z|k , c0 = (

Γ(3/k)
Γ(1/k)

)
1/2

, c1 =
kc0

2Γ(1/k)
, z =

x− μ
σ

(16)

The greatest departure from the median (0.5) for the 206 PCB dataset (Table 4) was 9.603
(CDF“GL”(9.603; μ = 6.47938, σ = 0.82828, k = 1.79106) = 0.9998). Due to the force of this deviation
from the median, 9.603 was suspected as being an outlier and was removed (it should be noted that in
a broader context, an outlier can be also seen as an atypical observation, correctly collected from the
population observation, as part of the data generation process and thus it may be maintained in the
sample but probably with a less weight). The same procedure (as in Table 4) can be applied to the
remaining data (205 observations). Then, InvCDF“g1”(1-0.05; 205) = 0.499875, pmin(n=205) = 0.0001251;
and pmax(n=205) = 0.9998749. The MLE estimates for the parameters of the Gauss-Laplace distribution
remain unchanged (μ = 6.47938, σ = 0.82828, k = 1.79106) and the removed observation (9.603) is still
not an outlier (xmax = InvCDF“GL”(0.9998749; μ = 6.47938, σ = 0.82828, k = 1.79106) = 9.7166 > 9.603).

Table 4. Distribution analysis for a series of 206 measurements for the octanol water partition coefficient
(Kow) of polychlorinated biphenyls expressed in logarithmic scale (log10(Kow))

Step Results

Dataset (given for convenience) 4.151; 4.401; 4.421; 4.601; 4.941; 5.021; 5.023; 5.150; 5.180; 5.295; 5.301; 5.311; 5.311; 5.335; 5.343; 5.404; 5.421; 5.447;
5.452; 5.452; 5.481; 5.504; 5.517; 5.537; 5.537; 5.551; 5.561; 5.572; 5.577; 5.577; 5.627; 5.637; 5.637; 5.667; 5.667; 5.671;
5.677; 5.677; 5.691; 5.717; 5.743; 5.751; 5.757; 5.761; 5.767; 5.767; 5.787; 5.811; 5.817; 5.827; 5.867; 5.897; 5.897; 5.904;
5.943; 5.957; 5.957; 5.987; 6.041; 6.047; 6.047; 6.047; 6.057; 6.077; 6.091; 6.111; 6.117; 6.117; 6.137; 6.137; 6.137; 6.137;
6.137; 6.142; 6.167; 6.177; 6.177; 6.177; 6.204; 6.207; 6.221; 6.227; 6.227; 6.231; 6.237; 6.257; 6.267; 6.267; 6.267; 6.291;
6.304; 6.327; 6.357; 6.357; 6.367; 6.367; 6.371; 6.427; 6.457; 6.467; 6.487; 6.497; 6.511; 6.517; 6.517; 6.523; 6.532; 6.547;
6.583; 6.587; 6.587; 6.587; 6.607; 6.611; 6.647; 6.647; 6.647; 6.647; 6.647; 6.657; 6.657; 6.671; 6.671; 6.677; 6.677; 6.677;
6.697; 6.704; 6.717; 6.717; 6.737; 6.737; 6.737; 6.747; 6.767; 6.767; 6.767; 6.797; 6.827; 6.857; 6.867; 6.897; 6.897; 6.937;
6.937; 6.957; 6.961; 6.997; 7.027; 7.027; 7.027; 7.057; 7.071; 7.087; 7.087; 7.117; 7.117; 7.117; 7.121; 7.123; 7.147; 7.151;
7.177; 7.177; 7.187; 7.187; 7.207; 7.207; 7.207; 7.211; 7.247; 7.247; 7.277; 7.277; 7.277; 7.281; 7.304; 7.307; 7.307; 7.321;
7.337; 7.367; 7.391; 7.427; 7.441; 7.467; 7.516; 7.527; 7.527; 7.557; 7.567; 7.592; 7.627; 7.627; 7.657; 7.657; 7.717; 7.747;
7.751; 7.933; 8.007; 8.164; 8.423; 8.683; 9.143; 9.603

For n = 206 calculate the
probability that the extreme
values contain an outlier by

using Equation (13)

At α = 5% risk being in error InvCDF“g1”(1-0.05; 206) = 0.498755
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Table 4. Cont.

Step Results

Calculate the critical
probabilities for the extreme

values by using
Equations (9) and (10)

g1 = 0.498755→ |0.5 - pmin/max| = 0.498755→ 1 - 2pmin/max = ± 0.99751→
pmin = 0.0001245; pmax = 0.9998755

Estimate the parameters of the
distribution fitting the dataset

(distribution: Gauss-Laplace; μ
- location parameter; σ - scale

parameter;
k - shape parameter)

Initial estimates (from a hybrid CM & MLE method): μ = 6.4806; σ = 0.83076; k = 1.4645;
MLE estimates (by applying eq.3): μ = 6.47938; σ = 0.82828; k = 1.79106;

Calculate the lower and the
upper bound for the extreme

values by using InvCDF of the
distribution fitting the

data (Equation (15))

InvCDF“GL”(0.0001245; μ = 6.47938, σ = 0.82828, k = 1.79106) = 3.2409
InvCDF“GL”(0.9998755; μ = 6.47938, σ = 0.82828, k = 1.79106) = 9.7178

Make the conclusion regarding
the outliers

Since the smallest value in the dataset is 4.151 (> 3.24) and the largest value is 9.603 (< 9.71), at 5% risk being
in error there are no outliers in the dataset on the assumption that data follows the Gauss-Laplace distribution

8. Proposed Procedure for Detecting the Outliers

The procedure for detecting the outliers should start with measuring the agreement between the
observed and estimated (Figure 3).

Figure 3 contains a statistical “trick”, namely, when there are no outliers the statistics measuring
the gap between the observation and the model (order statistics, Equation (6)) are in agreement
(their associated probabilities are not too far from each other). When outliers exist, the order statistics
are also sensitive to their presence. Since this is a separate subject, for further discussion please see the
series of papers beginning with [32–34].

 
Figure 3. The procedure for detecting outliers.

9. Second Simulation Assessing “Grubbs” and “g1” Outlier Detection Alternatives

Another MC study was designed to test the claim that the proposed method provides consistent
results. This second MC simulation is much simpler than the one used to derive the data for constructing
the outlier statistics (Figure 4).
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Figure 4. The procedure for testing the outlier statistics.

The data used here as a proof of the facts are from [7] and all cases involve a Normal distribution
(Distribution = Normal in Equation (15); PDF and CDF for Normal distribution in Equation (18);
a symmetrical distribution) with α = 5% risk being in error. The parameters of the Normal distribution
(μ and σ) are determined for each case, as well as the sample size (Equation (17)).

xextreme(α) = InvCDF“Normal”(0.5± 0.5· n√
1−α;μ, σ) (17)

PDF“Normal”(x;μ, σ) =
e−

(x−μ)2
σ2

σ
√

2π
, CDF“Normal”(x;μ, σ) =

∫ x

−∞
PDF“Normal”(t;μ, σ)dt (18)

For comparison, the same strategy for calculating the confidence intervals of the extreme values
for the Normal distribution with the Grubbs test statistic (Equation (2)) was used to provide an alternate
result (Equation (19)).

xcrit(α) = x±Gcrit(α) · s, Gcrit(α) =
n− 1√

n

√√
t2
G(α)

n− 2 + t2
G(α)

, tG = InvCDF“Student t”(
α
2n

, n− 2) (19)

The steps followed in this analysis are given in the Table 5.

Table 5. Comparison of the steps of the analysis and simulation for extreme values confidence intervals
(proposed method vs. Grubbs test)

Step Action (step 0 is setting the dataset; α← 0.05)

1 Estimate (with MLE, Equation (3)) parameters (μ, σ) of the Normal distribution; calculate the associated CDFs (Equation (18))

2 Calculate the order statistics, their associated risks being in error, FCS and pFCS (Equations (6) and (4))

3 For n and α calculate the confidence intervals for the extreme values by using (a) Equation (6) and (17) and (b) Equation (19)

4
Run the MC experiment (Figure 4) for K = 10000 (and then the expected number of outliers is 500) samples and count the
samples containing outliers for the existing method (Grubbs, Equation (19); with μ and σ from CM method) and for the

proposed method (g1, Equations (13)–(15) and (17); with μ and σ from the MLE method)

Results of the analysis using the steps given in Table 5 for the first dataset are given in Table 6.
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Table 6. Outlier analysis results for {568, 570, 570, 570, 572, 572, 572, 578, 584, 596} dataset.

Step Results (for α = 5%)

1 μ = 575.2; σ = 8.256 (MLE)→ CPs = {0.1916, 0.2644, 0.2644, 0.2644, 0.3492, 0.3492, 0.3492, 0.6328, 0.8568, 0.9941}

2

Statistic AD KS CM KV WU H1 FCS

Value 1.137 1.110 0.206 1.715 0.182 5.266 12.293

αStatistic 0.288 0.132 0.259 0.028 0.049 0.343 0.056

3 xcrit(5%) = 575.2 ± 2.29·8.7025; pextreme(5%) = 0.5 ± InvCDF“g1”(1-0.05; 10); xextreme(5%) = {552.086, 598.314}

4

Number of samples
containing outliers

Existing method
(Grubbs)

Proposed method (g1)

First run 1977 (19.77%) 510 (5.1%)

Second run 2009 (20.09%) 526 (5.26%)

In regard to the results given in Table 6:
At step 1, CPs are the cumulative probabilities ({p1, . . . , p10} in Figure 3) associated with the series

of the observations from the sample ({x1, . . . , x10} in Figure 3).
At step 2, the data passes the normality test (αFCS = 7% > 5% = α, see Figure 3).
Step 3 was made for n = 10 (see Figure 4). (a) The proposed method does not detect outliers in the

sample (552.086 < 568, 596 < 598.314); (b) Grubbs test detect 596 as being an outlier (596 > 595.13).
At step 4 (see Figure 4), since {510, 526} are comparable with 500 and {1977, 2009} are much greater

than 500, the results lead to the conclusion that the existing method produces type I errors by leading
to false positive detection of outliers in the samples while the proposed method does not.

10. Going Further with the Outlier Analysis

What if “596” is removed from the sample? The following table provides mirror-like results for
this scenario (Table 7).

Table 7. Outlier analysis results for {568, 570, 570, 570, 572, 572, 572, 578, 584} dataset.

Step Results (for α = 5%)

1 μ = 572.889; σ = 4.725 (MLE)→ CPs = {0.1504, 0.2705, 0.2705, 0.2705, 0.4254, 0.4254, 0.4254, 0.8603, 0.9907}

2

Statistic AD KS CM KV WU H1 FCS

Value 0.935 1.057 0.174 1.535 0.155 4.678 9.715

αStatistic 0.389 0.167 0.327 0.082 0.088 0.394 0.137

3 xcrit(5%) = 572.89 ± 2.215·5.011; pextreme(5%) = 0.5 ± InvCDF“g1”(1-0.05; 9); xextreme(5%) = {559.822, 585.956}

4

Number of samples
containing outliers

Existing method
(Grubbs)

Proposed method (g1)

First run 2341 (23.41%) 563 (5.63%)

Second run 2333 (23.33%) 543 (5.43%)

As can be observed in Table 7, the data is not in good agreement with normality (αFCS in Table 6 is
7%, while in Table 7 it is 16%) and there is no change in the accuracy of the classification ({563, 543}
comparable with 500, {2341, 2333} is much greater than 500; the existing method produces type I errors
by leading to false positive detection of outliers in the samples, while the proposed method does not).
When comparing the results given in Table 6 with the results given in Table 7 it should be noted that
both tests (Grubbs and the newly proposed g1) produce somewhat confusing results (see Table 8 for
side-by-side outcomes).
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Table 8. Side-by-side comparison of the analysis of the samples.

Sample
{568, 570, 570, 570, 572, 572,

572, 578, 584, 596}
{568, 570, 570, 570, 572, 572,

572, 578, 584}

At 5% risk being in error can the
hypothesis that the sample was drawn
from a normal distribution be rejected?

No (αFCS = 7%) No (αFCS = 15.8%)

Grubbs confidence interval for ‘no
outliers’ at 5% risk being in error

(555.27, 595.13)
596 is detected as being outlier

(561.79, 583.99)
584 is detected as being outlier

g1 confidence interval for ‘no outliers’ at
5% risk being in error

(552.08, 598.32)
no outliers

(559.82, 585.96)
no outliers

Table 8 highlights the fact that based on the {568, 570, 570, 570, 572, 572, 572, 578, 584} sample,
the g1 test may be interpreted as identifying 596 as being an outlier. This is not quite true because the
g1 test was not intended to be used in this way. That is, 596 is outside of the dataset, so at the time of
constructing the confidence intervals for the extreme values, the information regarding its observation
was missing.

Another trial was done, this time with 601 replacing 596 in the initial dataset (Table 9).

Table 9. Outlier analysis results for the {568, 570, 570, 570, 572, 572, 572, 578, 584, 601} dataset.

Step Results (for α = 5%)

1 From the CM method: μ = 575.7; σ = 10.067; from MLE method: μ = 575.7; σ = 9.550

2

Statistic AD KS CM KV WU H1 FCS

Value 1.267 1.109 0.225 1.774 0.198 5.411 13.652

αStatistic 0.241 0.132 0.226 0.018 0.035 0.254 0.034

3 Grubbs confidence interval for ’no outliers’ at 5% risk being in error: (552.647,598.753); 601 is an outlier
g1 confidence interval for ’no outliers’ at 5% risk being in error: (548.963, 602.437); no outliers

In a further trial, 604 replaced 596 in the initial dataset (Table 10).

Table 10. Outlier analysis results for the {568, 570, 570, 570, 572, 572, 572, 578, 584, 604} dataset.

Step Results (for α = 5%)

1 From the CM method: μ = 576.0; σ = 10.914; from MLE method: μ = 576.0; σ = 10.354

2

Statistic AD KS CM KV WU H1 FCS

Value 1.348 1.108 0.238 1.803 0.209 5.481 14.468

αStatistic 0.216 0.133 0.206 0.015 0.028 0.215 0.025

3 Grubbs confidence interval for ’no outliers’ at 5% risk being in error: (551.00, 601.00); 604 is an outlier
g1 confidence interval for ’no outliers’ at 5% risk being in error: (547.01, 604.99); no outliers

The conclusion is simple (see the results in the Tables 6, 7, 9 and 10): A test will hardly ever detect
an outlier for a small sample; it is more likely to reject the hypothesis of the sample drawn from the
distribution itself!

The same trick was used on a bigger sample and the results are shown in Table 11 (the dataset is
from Table 4).
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Table 11. Outlier analysis results for Table 4 dataset under the assumption of normal distribution.

Step Results (for α = 5%)

1 Table 5 Dataset; Normal distribution→ CM: μ = 6.481; σ = 0.831; MLE: μ = 6.481; σ = 0.829

2

Statistic AD KS CM KV WU H1 FCS

Value 0.439 0.484 0.049 0.952 0.047 104.2 1.276

αStatistic 0.812 0.965 0.886 0.852 0.743 0.641 0.973

3 Grubbs confidence interval for ’no outliers’ at 5% risk being in error: (3.492, 9.470); 9.603 is an outlier
g1 confidence interval for ’no outliers’ at 5% risk being in error: (3.444, 9.517); 9.603 is an outlier

4

Number of samples
containing outliers

Existing method
(Grubbs)

Proposed method (g1)

First run 637 (6.37%) 511 (5.11%)

Second run 630 (6.3%) 481 (4.81%)

On one hand, as the results in Table 11 prove, the proposed method correctly identifies the
confidence interval for the extreme values, while the existing method does not.

On the other hand, the results in Table 11 also show that the likelihood of identifying the
outliers increases with the sample size, making it perfectly possible to identify outliers with the
proposed method, although this is not the case in small samples. It is possible to detect the outliers in
small samples as well, but not when the parameters of the distribution are derived from the sample
data—only when the parameters of the distribution are known a priori or determined from other
samples (the results given in Tables 6–10 are proof of this).

11. Further Discussion

The obtained expression for CDF of “g1” (Equation (11)) reveals the domain of a random variable
distributed by the “g1” statistic ([0, 0.5]), which is consistent with the definition of “g1” (Equations (9) and (10)).

Independently of the shape of the theoretical distribution being tested (the generic case is
defined by Equation (5)), as defined by Equations (9) and (10), the newly proposed statistic “g1”
defines a symmetric confidence interval for the extreme values in samples in the probability space
(Equation (14)). Later, this symmetric confidence interval may be changed back into an asymmetrical
one when it is expressed in the domain of the theoretical distribution being tested (Equation (15)).
It should be recognized that “g1” uses a symmetrization strategy to obtain the confidence interval for
the extreme values in samples.

It might seem that the literature on robust statistics was ignored in this work, however, this is not
entirely true. In fact, a whole pool of robust statistics was used extensively in the study (see Equation (8)),
introduced as a tool in Table 5 and involved in the later calculations (Tables 6, 7 and 9, Tables 10 and 11).
Also, it should be noted that the substitution of the mean by the median is not a new idea; it is well known
in the field of robust statistics (for example, Watson U2 [29], the WUStatistic in Equation (8), uses it).

A short literature survey provides several of examples of current real applications that require
the proposed method. Thus, in signal processing, non-stationary, non-Gaussian, spiky signals are
usually regarded as outliers and thus discarded (see [35–38] as typical cases). In this context, it should
be noted that Mood’s median test is preferred to the Kruskal-Wallis test when outliers are present [39].
The identification of outliers is also recognized as an issue in the validation of protein structures,
and the current methods are revised in [40]. Other examples can be found in [41].

In the wider context, an alternate window-based strategy has been proposed in which outliers
are detected in each window by the Tukey method and labeled so that they can be excluded from the
realization of the process points to be used for model identification [42]. A contingency-based strategy
proposes maximization of true positive (TP) values and minimization of false negative (FN) and false
positive (FP) values [43]. Finally, another distribution testing procedure has been proposed in [44].
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12. Conclusions

A new method for detecting outliers was proposed in this paper. The method is applicable to
any continuous distribution at any risk being in error. It was proved that the method correctly detects
the outliers. For a normal distribution at 5% risk being in error, it was also shown that the proposed
method outperforms the classical Grubbs test for detecting the outliers.

Supplementary Materials: Details of the software used for deriving the results given in the figures and tables, algorithms
and source codes are given as supplementary material available online at http://www.mdpi.com/2073-8994/11/6/835/s1.
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